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Abstract

The linear sigma model invariant under O(4) (with pions and a sigma) coupled to fermions (two
component baryons) and to a (massive) gange vector field is considered for the description of a system
at finite (baryonic) density, which may be bound. The Gaussian variational approximation ﬁvith
truncations is considered to compute quantum fluctuations for the spin zero particles. Nearly exact
solutions for the stability equation of a bound homogeneous system, which are solutions of equations
of mouvement, are found within a proposed general prescription. The “incompressibility” modulus
K can have any value to be adjusted as a boundary condition for a differential equation, eventually
assuming the correct nuclear matter value. The sigma and the pions have non zero expected classical
values at finite density corresponding to (condensates of) the “chiral” and isospin dynamical symmetry
breakings, respectively. The sigma expectation value, expected to be identified with the QCD scalar
condensate & o< g >, seems to decrease as density increases although there may have solutions in
which it increases. A generalized symmetry radius is defined at a given stable density and the in
medium sigma and pion masses are analyzed. The two components of in medium fermions, neutron
and proton for example, acquire different masses due to the isospin symmetry breaking and these
states may even oscillate in the baryonic medium. A non trivial solution is proposed of an extended
Euler-Lagrange equation for the {massive) vector field - which is not quantized so far, and which may
eventually be a kind of classical "dressed photon”. This vector field may be a “condensate” and it
seems to indicate the occurrence of a gauge dynamical symmetry breaking at finite density typical of

a superconductor,
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1 Introduction

When a Lagrangian theory is invariant under a transformation group and the ground state of this theory
is not, this symmetry is spontaneously (or dynamically) broken (S8B). The strong interacting realization
of such implementation of a theory was discussed by Nambu [1]. In this case there appears a non zero
expected value of field(s} (composite or not, one or more) in the ground state, the so-called condensate(s).
The energy is lowered and the system is re-arranged [2]. This is the Nambu picture in contrast to the
'.WigneruVVeyl one in which there appears states multiplets with opposite parity what is not observed in
the low energy hadronic .phenomenology.

Quantum Chromodynamics (QCD) is the fundamental theory for the Strong Interactions, at least up
to a certain level. It has intrincated flavor and color non abelian structures and strong coupling constants
-for processes mainly at low and intermediary energies. At not high energies quarks and gluons, whose
color charges respect the SU(N=3) algebra, are confined such that no colored states are exptected to be
6bserved. Due to these features it is very difficult to obtain exact solutions what is then to be mostly
a.ccomplished in finite lattices where space-time is discretized. One therefore constructs effective models
which respect the main properties and symmetries of the QCD for the range of energy densities for the
process of interest. It is interesting to note that one may have different effective theories for certain
ranges of these variables which can be different if one consider different systems such as the vacuum
or high energy density formed in relativistic heavy ions collisions as AGS, RHIC and CERN. In the
wvacuum, the lightest strong interacting particles are known to respect, at least approximatedly, chiral
symmetry - whose group is SUL(2) x SUg(2) - which is spontaneously broken down to SU(2). QCD
vacuum would have therefore a preferencial direction in chiral/flavor space. Vacuum would acquire a non
trivial structure due to the formation of scalar quark-anti-quark condensate < gg >, which would be the
order parameter of the Chiral SSB [3].

These features can be taken into account in sigma models (O(4) invariant) which, in the linear realiza-
tion with mesons, implement chiral symmetry SU(2) x SU(2) (two flavors QCD) in the Nambu realization
with two fields: the (pseudo-scalars) pions and the (scalar) sigma - which is called the chiral partner of
the pion. Pseudo scalar pions have small masses in the hadronic scale and they are almost omnipresent
in hadronic and nuclear physics. The (ground state) expected value of sigma is considered to be, in this
_.model, the order parameter of chiral SSB, < ¢ >x< §g >. Long time ago S. Weinberg pointed difficulties
in the linear sigma model for describing hadronic processes [4] which a,re. being rediscussed nowadays.

and proposed the non linear realization of chiral symmetry in which the sigma field is eliminated. There




are actually strong evidences for the existence of the sigma [5, 6, 7, 8 which would be a Higgs field
for hadrons, though a composite one. Both implementations of chiral symmetry have been extensively
developped since the works of Schwinger, Levy—Gell-Mann, Nambu and Weinberg among others [1, 4, 3].
The linear realization of chiral symmetry exhibits several advantadges over the non linear realization,
for example, for the description of finite density systems [9]. At finite density QCD is known/expected
to have a complex phase diagram with the appearance of other effects [3] with an eventual restoration
i of the chiral symmetry when < §g > would be close to zero at high energy densities. While the sigma
‘acquires a classical value the pion field (ground state) expected value are to be zero in the vacuum,
7 =< vac)w|vac >= 0. As far as we know, two ways of obtaining general properties of normal finite
dénsity baryonic states using a linear implementation of chiral symmetry were studied in the i)ast. The
linear sigma model with a vector meson and “vacuum polarization” of nucleons has been studied and
applied tb nuclear matter and, in some cases, partially appropriate description of some properties have
been obtained. Besides the normal solution, "abnormal” bound states were also found but faced as
problem for the description of finite nuclei; the vector meson mass was also considered to be generated by
2:1 Higgs mechanism from the coupling to the sigma field what yielded other difficulties [10]. A second way
ﬁras to consider quantum fluctuations for the baryonic and spin zero bosonic fields, but they introduced
unaccetable behaviors or ghost poles eventually associated with imaginary effective potential [11]. This
however seems to be rather an issue of most approximations used to deal with quantum fluctuations and
‘may eventually be related to the asymptotic freedom of the asymmetric phase of the A¢* model which is
qﬁite similar to the linear sigma model (LSM) [12]. Nevertheless it is worth to emphasize that in these
.-works some of the QCD believed properties were not taken into account (for example in the analysis of
[13]) as we propose in this article and forthcoming ones. Furthermore, in all these cases the pion expected
value in the finite density ground state from a condensation (”classical” value), like a “pion condensate”,
has not been taken into account which does not seems to be the same of that developped during the 70’s
[14]. The full solution of the nuclear systems and the “self consistency”, in a general way, was truncated-
at an approximated level [15].

In this work we find results suggesting that the Linear Sigma Model (LSM) with nucleons and a
.(massive) gauge vector field yields in an interesting picture considering pion ”condensate” - which has
not been considered in the way it is proposed here so far. This is in agreement to what has been proposed
by Brown and Rho [9]. We show new insights (for example, considering the pion “condensate”) and we

argue that previous limitations may be eliminated. Moreover strong evidences of the existence of the




sigma, the chiral partner of the pion claim for new developments. This scalar particle composed, in
principle, by a pair of quark-antiquark can be described by a field whose classical component corresponds
i;o < ggq >. This scalar condensate would be the main component for masses of light sector of QCD
spectrum in a sort of mixed superfluid and Higgs picture, for QCD-hadronic Physics respectively, which
also can accomodate the quark masses [16]. This paper is organized as follows. In the next section the
linear sigma model (LSM) with nucleons and a massive vector abelian gauge boson for finite density
systems is 'presented. In the following section the Gaussian variational approximation for the sigma and
pions is performed and truncations of the corresponding non-perturbative quantized effective potential
‘are performed. The vector field equation is a sort of modified Hamilton equation as a proposal to obtain a
“solution which takes into account more non linearities than usually done for a Fermi liquid picture. This
édrresponds to a new variational method which yields an extended Hamilton Jacobi equation, in principle
‘expected to be valid at least for finite density systems. In section 4 the variational and stability equations
for a bound homogeneous limit are solved with particular prescriptions. We show there may take place
a (isospin) spontaneous symmetry breaking (SSB) generating non zero expected value for the pion field
at finite density besides the usual chiral SSB. The bosonic averaged values in the ground state will be
referred to as "condensates” [17]. The stability condition for the normal nuclear density is satisfied and
the incompressibility modulus is calculated resulting an excellent agreement with observations [18]. Some
symmetry properties for the in medium observables are found. We mostly found solutions for which that
the scalar condensate (associated with the chiral order parameter) decreases with density although there
‘may exist others with which it may increase [19, 20] whose meaning is less appealing. The mass of the
vector field is considered to be either non-zero at finite density, and it eventually reduces to zero in the
vacuum what may suggest to relate it to a "dressed photon” or it maybe explained to correspond to one
_of the lighest vector meson by means of a vector meson dominance in the medium [15]. Numerical results
for some equations as well as some other possible pictures and consequences are analyzed in section 5.

"In final part there is a summary.




2 Gauged Linear sigma model for finite baryonic density systems

- The O(4) invariant Lagrangian density of the Linear Sigma Model with two-component baryons, N;{x),

sigma and pions (o, 7) covariantly coupled to a gauge vector field V), may be given by:
_ e e 1 - »
L = Ni(x) (i7,D* — gs(o + iys7.7)) Ni(x) + 5 (8,0.0%0 + O, 7.04T) +

2 1
~2FuF® 1 5 (0 + @2 —0?) 4 MV,
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where the covariant derivative is: D* = 9% — igyV*#, the gauge invariant tensor is: F* = g¢VY — J¥VH,

(1)

gv, gs and A are the coupling constants and v = F; ~ 88 MeV, the pion decay constant, in the vacuum in
the so called chiral limit. Pion mass is known/expected to break the chiral symmetry usually explicitly,
in such case one should add another (small) term L, = eo, where c is a constant proportional to the
mass. We however consider the pion mass in such a way it is generated by non perturbative quantum
ﬂuctuationé of spin zero particles themselves [21]. Basically this can be seen with a shift of the chiral
condensate from Fy to fr =~ 92 MeV as it is expected [22, 21] due to the massive character of the pions.
This now is due to quantum fluctuations. This is of no qualitative relevance for our main results [16].
A shift of the coupling of the temporal component of the vector field gy to the nucleons is equivalent to
a (re)definition of a chemical potential whose introduction can be done adding the Lagrange multiplier
8L = —N7yopuoN to the above Lagrangian.

We will develop the model in a Hamiltonian formalism within which we consider the existence of non
zero (“classical”) expected values (condensates) for all the bosonic fields and look for solutions for their
- equations within variational approxima,fions. In this work nearly the whole baryon masses (as explained
below) come from the the coupling to the scalar mesonic field by a Higgs mechanism (M* = gg&). This
seems to be present in quark effective models interacting with bosonic fields which undergoes superfluidity
generating a bound scalar isoscalar particle (o, as a composite Higgs) [16, 23]. As at least & must depend
(strongly) on the density so M* does, the effective nucleon mass. An explicit mass term for the ba,ryons'
in the Lagrangian (due to another quark and gluon effects and different mechanism(s), for instance a,
gluon condensate is expected to contribute for some hadron masses such as the rho and nucleon masses
[24]) does not seem to change the qualitative results of this work although it would break chiral symmetry
explicitely. This would correspond to an in medium (effective) mass, for example such as: M* = M +gg55
which breaks explicitely chiral symmetry.

In the same way, the mass of the vector field can be generated by the scalar condensate for gauge
invariant covariant couplings to the other bosons (substituting 8, by a covariant derivative in the deriva-

tive terms). Besides this possibility we consider an explicit mass term given by: 6L = 1/2 miV,V#
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which may be considered to be zero only at zero baryonic density {pg) - corresponding to a different
Lagrangian density due to the finite density. Therefore, at least two non excludent possibilities arise for
the vector boson {effective) mass origin and behavior. Explicitely writing the resulting terms due to the

vector field covariant coupling to the other bosons we have:
r 1 .+ o _ “ 1 ) g " 1 4 " 9
V_BME(  +igy V) o (0% —igyV )a+~2~(3p+%gVVu)ﬂ'(3 —igvV )7T+§mVVuV ; 2)

where we consider only the component Vj to be non zero. The non derivative terms are masses terms of the
sigma and pion AND/OR of the vector field. While in the latter picture the usual non renormalizability
| issue arises, there is the former possibility, sigma and pion masses due to a classical component V,, which
“has not been considered so far. Although they are non excludent ideas, in this work we take the second
q(usua,l) one to obtain a zero vector field mass in the vacuum (non zero mass in the medium} and leave a
"_further development for another work. We will be concerned, at this level, with an homogenous system in
which case the other (spatial) components of the vector field V; may be set to zero as usually considered

in nuclear systems calculations. The expression for in medium m%, at finite density can be given by:'
e = md, — g& (62 + 72). (3)

The other terms of (massive and coupled) V), (spatial V;,¢ = 1,2,3) would introduce time dependence

and spatial inhomogeneities, therefore they were not considered. Since the vector field acquires mass,
._;.3,1'; the classical level, the other components may contribute with another coupled equation. They would
_. bé,sica,il_y produce shifts in the numerical results.

The baryon (nucleon) field is quantized in terms of creation and annihilation operators. Its wave
function is usually written as superposition of spinor , isospinor and coordinate components . It generates
non zero scalar, baryonic and eventually pseudo-scalar densities (p,, pp and pps). We will not explicitly
evaluate here all these quantities but only indicate some usual calculations of pp and the quantized

fermionic energy density p;. From the Landau’s Fermi liquid theory, they are respectively given by the

kp 3 I 3
pB=4[ (;;T’)“S, pf=4fk (;ITI)CSMk2+(M*)2. (4)

In these expressions kp is the baryon momentum at the Fermi surface. This picture should be expected to

expressions:

be limited and, to go further, these two quantities are considered in this work as functions of the bosonic
degrees of freedom with functional forms which are to be determined such as the expected observables

are obtained in agreement with experimental values. This means that in the averaged Hamiltonian




from which the Hamilton and variational equations are extracted these densities are to depend on the
bosons parameters. The (interacting) bosonic properties and effects produce these quantities by means
of their interactions with baryons. This way we expect to take into account higher order non linear and
interacting effects with relation to the usual picture with Euler-Lagrange equations which lead to a Fermi
liquid theory. The effective mass - M* = gg& - and the nucleon momentum at the Fermi surface are the
parameters used in the present work for the determination of baryons properties. Latter we will show
that M* may be defined as a matrix which depends on the isospin {and spin) of the baryons when & # 0.

For the moment M* = gg& is a number.

3 Gaussian Variational Approximation for Spin Zero Bosons

To take into account the quantum fluctuations of the sigma, and pions we consider the variational approack
" using Gaussian trial wave-functionals in the Schroedinger picture [25] and perform truncations. With
the variational principle an estimation for the energy density of the ground state can be obtained by
c.alculating the functional averaged energy with trial wave-functionals |¥ [o, w] >. The trial pé,rameters

of the wave-functional are fixed to yield a minimum (total) energy density with relation to them,
Hiot =< U, [0, ] |H lo, 7, V,, N ¥,z [o, ] >

where the subscript (s, z) stands for spin zero components. The averaged energy density #Hy is considered
to be the total averaged Hamiltonian, including the contributions of the other bosons and baryons. The
trial Gaussian wave-functional for the spin zero bosons is decomposed into two Gaussians |Psi[o, w] >=

|lI!5 [o] > x|¥p [7] >. For the sigma component we can write:
Ug[o(x)] = Nsexp {—i/dz’xd?’yéa(x)GEl(x, y)éa(y)} , (5).

Where, in the translational invariant limit, do(x) = o(x) — #; the normalization is N such that
| S Dlo]¥s¥s = 1 (omitting space coordinates), the variational parameters are the condensate & =<
Vg|o|¥s >, the quantum fluctuations, represented by the width of the Gaussian which is the two-point

function in 3 dimensional space,
Gs(x,y) =< Vgldo(x)do(y)|Ts > .

This function is the Feynman Green’s function of an explicitely covariant formalism [2]. An analogous

expression for the pions is considered with variational parameters given by: #©# =< Up|n|¥p > and -




G?gb(x, y), which is'a matrix in isospin space that can be considered to be diagonal as a particular case
along this work (G%* = Gp). This reduces the corresponding functional space and it guarantees the
explicit "chiral and isospin” invariances. '

Tt will be assumed that the quantum fluctuations of spin zero bosons - through the two two-point
Green’s functions Gg and Gp - have two effects only:

(1) they produce and change the resulting meson masses - shown below - as well as

(2) they cause shifts of the respective condensates with respect to their values at the tree level. This
is considered such that the modified condensates (& and #) are related to the tree level ones (& and 7,
respectively) by:

: #=7*+Gp, &*=7"+Gs (6)

We are omitting the coordinate dependence of functions G; = G;(x, x), which contain ultraviolet (UV}
d_ivergences and are local. Quantum fluctuations always re-arrange the model parameters determined in
the tree level. Due to the two above hypothesis it is not needed to evaluate the G; functions explicitely
because fixing the values of & and &, which are given by F; = 88 MeV and f; = 92 MeV, as discussed
in section 2 and in [21], it has a finite value already. Chiral radius and scalar condensate are not always
equal to the pion decay constant [8, 26]. These two approximations (1 and 2) correspond to a truncation
of the full (self-consistent) Gaussian effective potential of spin zero fields, neglecting few non linear terms
in G of the effective potential. This prescription is however nearly exact. As the model is an effective
model this should be valid and it should correspond nearly to a fixed energy scale from the renormalized
theory [19, 20]. Furthermore the variational approximation, such as it is used, does not introduce different
couplings (a third order coupling in the o potential, for example) as it occurs in the usual procedure of
shifting fields after a SSB. More exact calculations are being done for this and other theories and will be

' shown elsewhere.

The minimizations of the total averaged energy, from which the equation of motion for the vector

| field is also derived, with respect to the Gaussian variational parameters yield the GAP and condensate

equations which define the minimum of the potential for these parameters. The following two expressions

are obtained for the sigma parameters:

tot
6?5 :0_>&)\(52+3G3+‘ﬁ‘2+GP—'02)+d%+W5:O;
gH™ dpp Gz A ) (")

= — =5 _ = 4 L (657 + 252 2Gp — 20%) + Wp =0,
e =9 dok s 2+4(a+21r+6G3+Gp v)+.p

where the W; stands for variations of other terms with respect to & and G'g. The second expression can




be written in a compact and transcendental form for Gg:

1
G = Gs(x, %) =< %|—mmm=lx > g

. where the Laplacian A was diagonalized and the sigma mass is pg obtained from equation (7), expressing
ﬁhe averaged value of G's with the (“physical”) mass [27} p2 = A(35% + #2 — v?) + .... For the sake of
clearness we perform usual approximations from what would be the exact solution considering that: the
fermionic density does not depend explicitely on the fluctuations G; and fluctuations of both particles,

sigma and pions, are not too large and are nearly equal (Gp ~ Gg = G). This can only be obtained by
fixing different cutoffs because ug # up.

The corresponding equations for the pion, without the intermediary step shown above, are:

)\fra(frz-l-SGp-l—ﬁ‘z-l-Gs—vz)+j$=0; :
a (9)
pp=A(372 452 =02 +...)
As far as the fermionic density depends on the pion field it may produce a variable pseudo scalar density

._ dpys/dT  pps. The baryonic and fermionic densities were considered to depend on % which is chosen to
be non zero. This condensate is to represent kind of “long range pionic correlations” which should be
of relevance to the actual fermionic wave-function and densities leading to a non zero derivative in the
above equation. As discussed above, the expressions for the meson masses (,u?g ~ 600MeV and #213 o~ 140

'_M_eV), and the shift of the fields {6) are the only effects of the quantum fluctuations in the present work

' in which some parameters of the model are adjusted with experimental data. Since we will not explicitly
calculate the two point function G;, there will be no concern with Ultra Violet divergences here.

We can face the two equations of the sigma and pion condensates as partial differential equations for
pi = ps(5) = ps(#%). Furthermore, these equations are isomorfic and show an equal dependence of py
with each of these “classical fields” - apart from the fact that the condensates are expected to have very
different values in the vacuum at least. They can be written as:

dp dp Aiag |
N R ) (10)

Total energy density and vector field equation
The resulting total averaged energy yields an extense expression as functions of the four variational

parameters, two condensates and two Green’s functions, model parameters, plus nucleonic densities and




vector field variables and coupling constants. The truncated: a\feraged'energy density can be written as:
tot loara, Asa 22 o | 11
H™ = ps +9vVops = 5y Vo + 7(6°+7 — o), (11)

Where mn is an "eflective mass” for the vector field (expression (3)). From now on, pp (and eventually
py) are to depend on the classical &, % and Vg, as variational parameters.

As discussed previously, to take into account further correlations and many-body effects of the
fermions for the vector field solution we will consider that the energy density is varyed with respect
to the classical vector field, which is not quantized so far. Since we do not calculate the explicit depen-
~dence of the fermions wave function on Vj we consider the baryonic density to depend on it. This is
-expected to account, variationally, for further correlations, many body and eventual quantum fluctuations

effects. The modified (variational) equation is given by:

dpp ~
Va2 } 177 . 2
gv (PB+ OdVo) myVo =0 (1 )

Where V} is now a sort of variational parameter for a more exact density pg = pg[V], and eventually in

a still more complete self consistent fashion p¢[pp (Vo).

4  Stability and Solutions

In this section solutions for the above equations (7,9,12) are searched such that the main properties of a
stable finite density system are consistently described. The stability condition of the bound system can

be written as:

aH _H
dpB  PBlog=po

where py is the stability density. To satisfy this expression we consider some prescriptions for the variables

<0, (13)

such as to consider the dependence of them on the baryonic density. In particular, the expression for
‘the energy density (11) within condition (13) is separated into three equations such that they obey the

stability condition individualy:

dps _ Pt

dps  pB’ .

d@2+7 —v?)  (F2+7 —2?) (14)
dpp -~ Tops ’

dHy _ Hv

don G
In this last expression Hy is the energy 'density with contributions of the vector field in expression (11). A

detailed comparison of this prescription with the exact result will be shown elsewhere. The solutions for

10




these (stability) equations do obey the equations of motion, being this approximation therefore probably
reliable. _

From the first of the differential equations (14) we find a solution for the dependence of p; on
the baryonic density (p; = py(pp)) which is in agreement with that resulting from the integration of
* expression (4) in the range of densities not too far from py. A solution for the above prescription (14) is

given by:

: 2
- _gPB PB \LErPB 15
pr = —K%2In () + Bpp+K {2, (15)

where B is a constant fixed to reproduce py according to expression (4) (B ~ 3.8f m™! for the values
~ adopted in section 4) and K is the usual incompressibility modulus:

d(E/A)

K = 9p; )

>0 (16)
20 .

The agreement of this expression for ps(pp) with the one written in (4) close to the stability density
- (because they have different slopes with kr) garantees once again that the above prescriptions is still
-~ reliable.

From the second expresgion in (14) we find a solution which seems to represent a sort of ”constraint”

which defines a symmetry radius in the medium:

(52 + 7% - %) = Cy/p5. (17)

"The abave expression is, in principle, valid at zero density and at pg but seems to be also valid at different
pg. C is a constant to be fixed by this boundary condition. Therefore, in the vacuum at tree level we
have # = 0, 3% = F?2 as discussed above. We stress that & = f, # & in the vacuum, ie., quantum
fluctuations re-arrange the scalar condensate and other characteristics of the symmetries. The curious
"constraint” between the values of the condensates yields the saturation density (or are fixed by it)
and seems to have some meaning by means of 2 dimensionful proportionality constant to be calculated
microscopically. The presence of the @ which should be present at experimental conditions may alter
- several usual interpretations of the observations which lead unambiguously to a direct (and fast) reduction
of the scalar condensate.

The “condensate” equations from expressions (7,9), for & and 7, can be faced as differential equations

for py as written in equation (10). They can be written as:

=

3
12

&,
)
Sy,

P
&

(18)

> | Do
o,
3%
3| D2
>
¥
[~

(52 + 72 —v?)




Those equations are isomorfic and show an equal dependence of py with each of these two variables. We
envisage three ways of finding solutions.

- (1) An approximated solution for the two condensate equations can be found as if p; were a function
of these fields independently. These solutions for py, labeled for each of the above equations with a and

b can be inverted and written as:

- ’U2 ~2 '02 - 2
02=?—1r + (-—2-—0'2) +X'0?’ )
19
2 b 4
=2 _ v Py
T _i( 5 EFV St

‘Eliminating p; from the second expression (p'}'- = pf‘f) we find the following approximated value for the

pion condensate (if |#|2 << v?):
) 22722 _ ~9
L, P@=P)

T AT 7))

With gs = 10 and M* = 0.7M, where M = 940 MeV, we find the values #2 ~ 0.47fm~2 and #° ~

(20)

—0.034fm™2. Only the second value seems consistent with the approximation done for expression (20).
For the sake of comparison we remind that v? =~ f2 = 0.22fm~2. In these solutions, as well as in others
more exact, 72 may be either positive or negative,

" (2) An alternative way can also be done by adding the two differential equations (18) which can be
séen as partial differential equations. This yields p; = p?) (6) and py = p_(fg) (#%) with constants fixed for
the boundary pg = 0 when ¥ = 0 and @ = v. The constant obtained in the solution of the differential
equations resulting from the addition of both equations for p; are fixed by requiring that in the vacuum

7 =0 and & = v. We find the solutions:

oD o 252 (v = 52) + Oy (62— oP),

(21)
=2 ~2 ~2
oY = ST (0 —7) = O,

‘Where Cy is a constant.
(3) A more consistent way of solving these equations is to face the second of the above equations (18)
as a differential equation for p; = p;(#%) in which 62 is given by the "preliminar solution” of the first

equation, which is given by the first expression in (19). We change the variables to: t? = 22 —4ps/A—v*0?,

and z = % — 72 and obtain the following equation:
dt =z
p i FlL (22)

12




"A solution for this differential equation is given by:

2V1? — 2t — 2% = Crexp (—ﬁarctanh (M)) , (23)

5 bz

Where Cj is a constant determined by the boundary condition: #®(ps = 0) = 0. This is a transcendental
solution which may yield several solutions for only one fermionic density and sigma classical field & which
_' ._Was eliminated by the first of expressions (21). Numerical values are showed in the next section. The
‘opposite reasoning is valid for determining 2. Nevertheless in the present work this variable was fixed
by a reasonable value of the baryonic effective mass as discussed above.

Finally, considering the extended Hamilton (or extended Euler-Lagrange) equation for Vj - expression

(12) - as a differential equation of the baryonic density pp as a function of ¥y we obtain the following

solution:

—gvpp \/g%p?g — 2Cy ppmé (24)

Vi)(ﬂB) = 3
ms

where Cy is a (negative) constant which is fixed to provide non-complex values of V{. In spite of the
éxistence of two solutions for Vg they are degenerated and this constant will be proportional to the only
contribution of the vector field to the energy density within this approach: Hy = Cypp. Furthermore,
in the limit of zero density and/or zero mass, ™3, we get Vo — 0. It is still required that the mass of
the vector field is proportional to the density, i.c., it is an in medium effect, as required. This seems to
be consistent with the supposition of equivalence of the redefinition of Vy and the introduction of the
Chemical potential. It is seen that the baryonic density generates a non zero value of ¥, - which may be
_viewed as a “condensate” from at least another SSB, of a gauge symmetry.

The constant Cy is found fixing the nucleon binding energy. If the solution of the vector field
component, Vg, corresponds to a value which minimizes the baryonic density at the saturation density
po, Le., reciuiring the baryonic density to be stable with relation to variations on Vg, we find that:
dpp/dVp = 0, d*pp/dV# > 0. At this point we would have: V4 = gvpo /m%, which is the usual
solution for the vector field associated to the lightest vector meson. However the contribution to the.
energy density can be written as < H' >,= g p%/(2m?) which has thus quite different form.

The massive vector field is then characteristic from a superconductive state which is expected to occur
at finite density. This seems to suggest the existence of still another QCD condensate at finite density. The
question of (non) renormalizability of the LSM and {couple to} massive gauge theory (moreover forming
a finite density medium) will not be addressed in detail here. It is nevertheless worth to emphasize that

this model is an effective model for QCD.

13




5 Numerical Results

~ Considering all the terms in the averaged density energy for the calculation of binding energy (—E/A =
#H/po) we adopt the values of K ~ 1 fm™!, —E/A = 16.0 MeV and py = 0.16fm™% in expressions
(11,15,17,23,24). The value of the coupling constant ) is varied to obtain for the solutions of 52. We
take M* = 0.7M and gs = 9. These values fix & = M*/gs. We would like to stress that the effective
mass in nuclear matter is usually consider to be higher than in (most part of the) finite nuclei, which it
depends on r. However considering smaller or larger effective mass these calculations would still present
numerical solutions for the classical fields as presented below.
. | In figure 1 the solutions of expression (23) of the equation of the pion ”condensate” square as a
function of the coupling A are shown - there may have several values for only one value of A. The dots
{crosses) correspond the minimum (maximum) values which the square pion ”condensate” may acquire
with the above parameters for each value of }, i.e., the classical pion field, #2, may have values between
the dots and crosses. We see that the pion condensate may be imaginary as well as it may assume
relatively large absolute values with relation to f2 ~ .22 fm~2. There is an intriguing behavior in this
figure in two points: the discontinuities of the values when A ~ 16 and ) ~ 43. These discontinuities are
not yet very well understood. The values found in expression (20) can be, in some points, quite consistent
with these shown in the figure 1. The solutions of the expression (20) do not depend on A however.
The corresponding maximum and minimum values for the Symmetry Radius € are obtained from
expression (17) with the results of Figure 1 for fixed & and they can be seen in Figure 2 as a function of A
at the stabitily density. The same behavior of figure 1 is found because & was kept nearly constant (the
most reasonable and believed value). These results are in agreement with the usual idea of symmetry
‘restoration as precluded by Brown and Rho [9]. However a more extensive comparison will be left for
‘another work. As showed above, the generalized symmetry radius C is related to the values which the
b”pion condensate” may assume. Depending on these values we also found solutions for which the chiral
symmetry behavior with density is the opposite. This may appear by using the same way of calculating
72 (item 3 above) to calculate the &, i.e., from a similar expression to that shown for the sigma, for
deriving equation (23). This means the possibility, although not very usual nor appealing, of further
chiral symmetry breaking with & > v at finite density [19, 20]. At high densities asymptotic freedom
makes QCD coupling constants to be weak and therfore quarks to deconfine eventually restoring chiral
symmetry such that @ — 0. This is in fact what happens inside the nucleon [8]. It is interesting to

note that the quantities usually identified with the chiral order parameter in medium may be in fact
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including the square pion condensate. In other words, we can ask: is the usual parameter associated to
the experimental behavior of the nuclear matter at variable densities only & or does it take into account
somehow the & behavior which is not taken into account in the usual models?

For some of the solutions of figures 1 and 2 we show results for the vector field constant Cy which is
found fixing the binding energy in expression (11} for fixed pion and sigma classical values and choosing

the resulting ¢!. Some values are shown below (for M* = 0.7M and gs = 9):

A= 16.0 = v/ ~C/pp = 25MeV — Cy ~ —3.6fm™ + M,

~ (25)
A 40.0 = +/+C/pg = 55MeV — Cy =~ =3.9fm™ + M,

where M is the nucleon (effective) mass. Although the resulting Cy are similar there are some differences
between these two solutions. In the first the value of the pion condensate is small (being more reasonable)
(_%2 ~ —0.05fm~?), the constant C is small and negative indicating that 52 + #% < v? at the saturation
density and making & closer to fr. In the second case C is large and positive due to the large value of
the pion condensate #2 ~ 0.14fm 2 and then 5% + # > v2. The values of Cy are nearly consistent with
_estimates from the expressions deduced above for the vector field parameters, to be of the order of the
usual ones, i.e., my ~ 780 MeV and gy ~ —5.

* In figure 3 we show the behavior of the pion mass in the medium (divided by its value in the vacuum)
for some of the solutions shown in ﬁgureé 1 and 2 as a function of the coupling A - keeping & constant.
We want to call the attention of the reader that the pion mass in the vacuum is non zero, generated
by quantum fluctuations (expression (9)). A calculation with zero pion mass was equally done resulting
in different results leading to a disappearance of the pion condensate for several values (but not all) of
the coupling A and will be shown elsewhere. By varying further the scalar condensate we can obtain
different results. The behavior with varying density is more involved and deserves more developments.
The increase of the value of pp may be associated to the tendency of the restoration of chiral SSB at
finite density. A complete account of these possibilities will be shown elsewhere.

From the GAP equations of pion and sigma we can write the ratio of their in medium masses as:
up _ 2+ Cypp (26)
pe  262+Cypp

This expression reduces to a non zero value in the vacuum according to the assumptions done for the
‘pion mass because G; # 0.
In Figure 4 we show values of the ratio of the in medium sigma mass (u3 = p%(F,#2)) to its value

in the vacuum as a function of the A for some of square pion condensate solutions of figure 1. This in
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medium mass, for lower values of the A is lower than its value in the vacuum (u} =~ 482MeV in the
present work, smaller than usually considered) whereas for higher values of X it becomes higher than
#%. An increase of the p% was also found in the quark meson coupling model with a similar calculation

_ without pions [20] although the origins of this effect seem to be different here.

6 Further Discussions

The above solutions were found by fixing the scalar condensate to fit the in medium effective mass of
the nucleon, the # contribution was assumed and found to be smaller for most values of the model
parameters. This was done for a coupling gg = 9 which is not necessarily the best value. The scalar con-
densate could then be smaller or greater than & in the vacuum which would correspond to gg smaller or
greater by considering a (fixed) effective mass for the nucleon. The scalar and pseudo scalar condensates
would compose the observables which are usually attributed uniquely to the value of & without the pion
condensate (it is only expected to appear at higher densities, even if this would contradict asymptotic
freedom (and eventually deconfinement)) intervening in the same range of energies/densities. Recently
quantum fluctuations of the sigma were included in the quark-meson-coupling model (QMC) without
pions [20]. A further in medium symmetry breaking was found with increasing baryonic density (asymp-
totic freedom and the symmetry restoration inside nucleons as "bags” were not considered [28, 8]). These
would be contradictory effects in principle although pions were not included in both models in the same
way. In the present work, several pictures for restoration {(or further breakdown) of isospin and chiral
symmetries (and eventually the related gauge symmetry) appear. These results for rs and pp are not
completely self consistent because & and G; are fixed at py. In principle renormalization of the ultraviolet
divergences in a more complete calculation should not change this features because in an effective model
| the corresponding cutoff or renormalization energy scale are expected to be fixed finite. These solutions
_of decreasing and increasing & with density would correspond respectively to the symmeiry restoration
-according qualitatively at least to the Brown Rho scaling [9] - or, in a less usual or appealing picture, to
a further breaking of the chiral symmetry at finite baryonic density [19, 20]. This brings new possibilities
for the phase diagram and structure of finite density QCD-like theories and models.
 With the expressions for o5 (21) and the symmetry radius C,/pp (from expression (17)) we obtained
a consistent basis for the study of the dependence of the condensates with density. Expecting that the

solutions for the densities (21,17) are good in the region close to pg we can equate expressions (21) to
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obtain another ”constraint” for the condensates:
« Mo 2 y V2
Cilvm =3 ((02 - '5)2 - (% - 3)2) - (27)
This also expresses the dynamical symmetry breakings which occur in the medium due to the fact that
Cy and C are non zero. However if they were zero (or pp = 0), for in the vacuum, we would also have
non vanishing & with the chiral S5B.

" At finite baryonic densities therefore there seems to have a non zero expected classical pion field
("condensate”, whose meaning is not necessarily the same as discussed in [14]). Departing from the
~calculation of M™ in the vacuum, using it for finite density situations 1. we propose in the following
nucleonic effective masses 2. This would explicit or manifest the fact that the nucleon densities depend

on the pion condensate. From the averaged value of the Lagrangian we may consider a matrix for M™

-which depends on the isospin (and spin) of the nucleons:
abis = 95 < Yo, 7]|. < Nos|(o + ivsTm)| Ny s > | ¥[o, 7] >=gs(F + il\'/l'(‘ﬁhb)jsﬁd). (28)

In this expression a,b,d stands for the isospin index (neutrons/protons), M is a non diagonal isospin
matrix and the final spin (s) structure is not written. This allows for the possibility of different values
of baryonic masses - i.e. a mass splitting between neutron and proton states - but it also means possible
oscillations between the isospin states (proton and neutron for example) in the medium associated to
electroweak processes. This matrix includes a dependence on the baryon spins as well which is not
discussed further here. The nucleonic mass would be therefore obtained by the averaged value & plus a
contribution from the averaged value of the pion field. However, the quantities calculated for the nucleons
in the present work -the densities (ps,p5)- were the usual ones, i.e., with a constant diagonal effective
mass due to 7, i.e. M, (%) =~ M*, which is the leading term. Furthermore the mass splitting leads to
different densities for nucleons what is expected to be observed in finite nuclei where the stability line’
shows already N — Z # 0 for non light nuclei. This non trivial solution corresponds to a non invariant
ground state under an isospin transformation, although the Lagrangian is symmetric. Thisis a dyna,mica,l"
symmetry breaking of isospin symmetry.

This mass splitting, which is probably connected with the Nolen-Schiffer effect [29], relates the nucleon

effective masses to the scalar and pseudo scalar QCD condensate(s) < gg >, < §ys{7)g >. It is obtained

!Either from the Lagrangian density or from the equation of motion of the baryons
ZA different expression seems to arise if M* is calculated from the averaged energy density depending on the level of

approximation for the baryon wavefunctional. This way a nucleon in the surface of a nucleus, where pairing is to be more

important, would have not only a different value but also a slightly different ”structure” than that of a bulk nucleon.
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from expression (28) and it is given by:
AM* = Mj; — M} = 2igg|ms). (29)

- Considering one small imaginary solutions of # from figure 1 with A ~ 60 we find that AM* =~ 40gg MeV

which is seemingly too much large for the coupling gg = 9. The inverse reasoning can be done and then

gs|%| could be fixed to reproduce an expected AM*. This yields a smaller value. A more reasonable

value can be found if we introduce the nucleon mass term in the Lagrangian for which case the coupling

| gs would be smaller. In this case, one would have good hints from nuclear phenomenology of how to
obtain better measures and manifestation of these pion “condensates”.

For spontaneous symmetry breakings one usually expects zero energy collective modes to appear [30].
In nuclear matter calculations - usually zero sounds (damped or not) - they can be associated to giant
resonances in nuclei [31). In particular, the isovector channel seems to suggest the idea that the massive
vector field is in fact a sort of ”dressed (massive) photon” which would be characteristic of a supercon-
ducting state. In the isovector channel, which is excited by means of a photon from electromagnetic
external interaction, there is a very collective resonant behavior (known as dipole isovector giant reso-
nance in nuclei) that makes charged protons move in the opposite direction of neutrons although they are
kept bound. The giant dipole resonances decay by photon emission with energies around 10 — 15 MeV.
These must be indicating a deeper relation between strong and electromagnetic interactions. Finally, the
breakdown of isospin symmetry is connected to the charge conservation.

Processes involving pions in the nuclear medium provide valuable information. Let us take for grant
that the Goldberger-Treiman relation nearly holds at the saturation density. If we write it in such a way
as to encompass quantum fluctuations with the rearrangement of the scalar condensate as considered
.in expression (6) we can write, independently for protons or neutrons, (which now would have non

- degenerated masses):

955 = (M* £ AM*)g4, (30)
Where AM* is given below expression (29) for protons and neutrons. For in the vacuum (AM* — 0,
¢ = fr and M* — gg5) we obtain a small value g4 ~ 1.05. It could not be expected to result a
realistic value in the vacuum (although it is reasonable at the saturation density) for g4 with the present
arguments, but we can expect that the behavior at varying density may be reasonable since it is expected
to change with density in spite of new results {32]. Weak interactions should be considered for a full precise
picture. Again we notice differences between the chiral radius and sigma (or QCD scalar) condensate

(and eventually pion decay constant) at any density as precluded before [8].
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The fact that the ¢ — w type models (cubic and quartic order scalar interaction terms) are usually
accepted as more suitable for the nuclear observables [13, 15| seems to be a consequence of the fact
that the calculations usually done with them take into account nonlinearities which may nearly be
present (or which may be equivalent) in a more exact linear realization of the sigma model with ”"pion
condensates” as we have studied (even if pion condensate is quite small and maybe difficult to measure
éxperimentally, although not necessarily the same as studied before [14]). This also means that self

'”(:onsistency of these works ([13, 15]) may be enlarged: first of all, as we have shown, the usual vector
field (not necessarily the omega meson) solution was extended to take into account more interactions
and correlations with fermions. This means that a sort of truncation is done even in the coupled (Euler-
Lagrange) equations for the non linear models - even more because this picture does not take into account
all properties/observables of the system. We do not neglect the possibility that the scalar present in these
non linear models is related to the sigma condensate in a non trivial way. However in our approach the
connection with QCD is much clearer and more direct. Besides that the presence of the “pion condensates”
indicates a stronger relationship to the Quantum Chromodynamics and secondly a richer qualitative basis
to the description of nuclear systems. The next step seems to be the calculation of finite nuclei properties

“with the linear realization of chiral symmetry as we study here and compare to previous works.

7 Summary and final remarks

We have exhibited solutions for the linear sigma model coupled to a massive vector (gauge) boson and
nucleons which are proposed to be the basic elements for the properties of a finite density hadronic
system. This offers a suitable and beautiful frame for the study of zero and finite baryonic density strong
interacting systems. The self consistent equations of the fields, at the level of approximations done, yield
a non zero expected pion classical field ("condensate”). Pion ”condensation” seems to occur already at
not high density without need of further assumptions for the system, although our concept of condensate
is not the same as considered before [14]. It may induce topological properties for the system. It was
found to be directly related to the Chiral SSB which already occurs in the vacuum. Expressions of
constraint for the fields at the saturation density were found defining a chiral-isospin radius given by an
expression like (17), i.e.,
é’\/ﬁz (&2 +1T'2—UZ).

The non zero value of the pion condensate lead to a splitting of the neutron and proton masses in the

medium with the possibility of oscillations between these isospin two states. Together with the pion
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condensates this garantees‘ the charge conservation being eventually related to electroweak interactions
issues which will be developped elsewhere, Some systems seems to be more appropriate to the experimetal
- observation of such effects.
A non zero solution for the massive (gauge). vector field - such as a “condensate” - at finite density
- was found from s modified dynamical equation and it seems to correspond to a dynamical breakdown of
a gauge symmetry typical of superconductors. The classical vector field solution is a consistent solution
- which takes into account more effects than the usual solution considered in nuclear matter investigations.
Its mass is considered to be non zero at finite density eventually reducing to zero in the vacuum sug-
gesting it may be considered to be a dressed photon asking with arguments of the kind of vector meson
‘dominance for identification with the omega meson. This may occur also due to a B.E.C. condensation of
éomponent (s) of this field. Phase diagram of QCD would probably include these pseudo scalar and vector

"condensates”. The present model will be considered for the description of (hadronic) nuclei eventually

with inhomogeneous situations or in cases for which topological properties may arise.
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Figure caption

- Figure 1 Squared pion condensate #2 (fm~2) as a function of the coupling A for M* = 0.7M and gg = 9
found self consistently.
Figure 2 Symmetry radius C' (fm~1/2) for the solutions of figure 1 as a function of \.

"Figure 3 Ratio of the squared pion mass in the medium divided by its value in the vacuum as a function

of A for the solutions of figure 1.

Figure 4 Ratio of the squared sigma mass in the medium divided by its value in the vacuum as a function

of A for the solutions of figure 1.
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