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Abstract

We develop the Darboux procedure for the case of two-level systems. In particular, it is demon-
strated that one can construct a Darboux intertwinning operator which preserves the form of the
equations defining the two-level system, and only transforms the interaction potential. We apply the
obtained Darboux transformation to known exact solutions of certain two-level systems. Thus, we
find two classes of new exact solutions and the corresponding interaction potentials.

1 Introduction

It is well-known that some complex quantum systems with a discrete energy spectrum are situated in
some special dynamical configuration in which only two stationary states are important. To describe
such systems one can use appropriate models with two-level energy spectra. In a number of important
- cases, these two-level models in a time-dependent background are based on the Schrédinger equation
(h=¢=1)in 0 + 1 dimensions,

i%:ﬂﬁ',‘l’(t}m(ﬁggg), 0
where the Hamiltonian & reads £
- £
2= 5 19), @)

with £ a constant and f (f) a real function of time (in what follows, we call it the interaction potential
or just the potential). In the sequel, the equation (1) with the Hamiltonian (2) is called the two-level
system.

The dynamics of such two-level models in time-dependent backgrounds possesses a wide range of
applications, e.g., in quantum optics and in the semi-classical theory of laser. These systems can be
helpful to describe the behavior of molecule beams that cross a cavity immerse in a time dependent
magnetic or electric field, as well as the behavior of an atom under the action of the electric field of a laser
(see, for example, [1]). Another important example is the use of two-level systems to describe resonance
absorption and nuclear induction experiments [3]. The two-level systems with periodic (quasi-periodic)
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potentials f (t) were studied by several authors. They considered various approximation methods for
finding solutions of the equation (1), e.g. perturbative expansions {4], the method of averaging [2], and
the rotating wave approximation method. For a review of these and other methods see [5].

So far a few cases have been known for which two-level systems admit exact solutions, see the pioneer
work of Rabi [6], where a spatially homogeneous and time-dependent external magnetic field is analyzed
and the work [7], where exact solutions of two-level systems were found for the following specific potentials:

_ Ty _ t
fo=t r=t, ®
f(t):;,—ﬂtanhr+r—l, @

where rg, 1 and T are real constants.

In some circumstances, there exists the possibility to construct new exact solutions of certain dif
ferential equations (in particular, of eigenvalue problems) with the help of the Darboux transformation
method [8, 9]. The idea of the Darboux transformation method is to find an operator (an intertwining
operator) that relates solutions which correspond to different potentials. Thus, if one knows solutions
- for a certain potential, and the Darboux transformation can be found, there exists the possibility to con-
struct solutions for another potential and, at the same time, determine the explicit form of this potential.
The method was applied for the first time by Darboux to find solutions of the Sturm-Liouville problem.
Applications of the Darboux transformations to Schridinger-type equations can be found in the survey
{10). For the generalization of the method to sets of differential equations see e.g. [11].

In the present article, we develop the Darboux procedure to the case of two-level systems (Sect.II).
We demonstrate that one can construct the Darboux intertwining operator which preserves the form of
the defining equations of the two-level system, only transforming the interaction potentials f (t). Then
(Sect.III) we apply the obtained Darboux transformation to known exact solutions of the two-level system.
Thus, we find two classes of new solutions and the corresponding new potentials that allow such solutions.

2 Darboux transformations

2.1 General

Let us consider two linear operators fio and By , and let us suppose that there exists an operator L such
that

Lho =M. (&)
We call [ the intertwining operator for the operators fzg and hy. In this case, an eigenvector ¥ of the
eigenvalue problem

ho¥ = £¥, (6)
generates an eigenvector .
&=L : (0
(sometimes trivial) of the eigenvalue problem
h®=ed. (8)

If @ is not trivial, then both eigenvectors correspond to the same eigenvalues e.
In the case where hy and F; are differential operators and [ is a first order differential operator, the
relation (7) is called a Darboux transformation.
_ Let us suppose that ¥ and & are column matrices with n time-dependent components, and ho and
hi are n X n matrices whose elements can only contain first order derivatives. In this case, we have two
linear sets of n first-order differential equations. Let us consider hg and h; of the following form 11
ho=7a +V (), =y Vi (0), )
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where V4 (t) and V; (¢) are matrix potentials and + is a constant n x n matrix. In this case, we can
suppose the following form for the intertwining operator:

f,uA(t)%+B(t), (10)

where A (t) and B (t) are some time dependent n x n matrices. Then the initial equation (5) for L is
equivalent to the following sets of equations for 4 (¢) and B (¢),

Ay—-vA=0, (11)
YA+~yB —By+ViA— AV =0, (12)
yB+WiB — AV, — BV, =0, (13)

where the dot denotes differentiation with respect to ¢ and the derivative of a matrix is the derivative of
each of its elements. Choosing A as a non-singular matrix, we can use (12) to define V3,

Vi = (AV0 4+ By—~B - ')u‘i) A7 (14)
By substituting the above expression in (13) we obtain,
fyB+(A%+BW—WBH7A)A‘1B—A%—B%zO, (15)

where A remains an arbitrary non-singular matrix restricted by (11). The equation (15) can be linearized
and integrated by means of the substitution
B=_AUU, (16)
where U is an arbitrary non-singular matrix. As a result, we get the relation
AUAU ' =0, (17)
where the matrix A obeys the relation
AU + VU = UA <= hoU = UA. (18)

We can satisfy the equation (17), and consequently (13), by setting A to be a given constant (A = 0)
matrix. Then (18) is the equation which defines the matrix U. The matrix B (16), and the transformed
potential V; (14) are expressed now in terms of the matrix I/, the matrix A, and the matrix A as follows:
B=Ayt (B -UAUTY), ' (19)
Vi = Ay Voy+UAU T =y IWUAU19) A71 —yAA7T . (20)

Let us select A to be Hermitian and diagonal. Thus,
Ars = 61'3A(3) » (21)

where all the A, are real. In such a case we get n equations of the form (6) for the n-component columns
¥(1y, U2y, s Tn)s
Ula

~ U2a
hoPey =Aa)¥e), Tm=[ . |.s=12.,n. (22)
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Therefore, we arrive at a remarkable result: whenever one knows any n different levels (As), ¥(s) of the
eigenvalue problem (6), one can construct the matrix I/ as

U=(%q ¥g - ¥m)- (23)

Once the matrix U is constructed, and the matrix A is fixed, the matrix B and the potential V; are
defined by the equations (19) and (20). The intertwining operator L assumes the form

L=ay1 (&0 - UAU-l) . (24)

Now, let us take ¥ to be an eigenvector of (6) with the eigenvalue €. If € # A, then we find an
eigenvector @ of the eigenvalue problem (8) that corresponds to the eigenvalue ¢ as follows

$=LT=Ay"(e-UAU) ¥. (25)

One can see that for A¢;) = ¢ the intertwining operator annihilates the corresponding eigenvector Lo =
0.

It is easily verified that the transformation & = A¥ of the vector ¥ is also a solution of the problem,
so that we can take, without loss of generality, A = I, where I is the n X n unit matrix.

The procedure described above can be used iteratively, so that solutions to a new problem, with a
new potential V5, can be constructed in the same way from the solutions of k,, and so forth.

2.2 Darboux transformations for two-level system

In this Subsection, we adopt the above described Darboux procedure to two-level systems. The Schrodlnger
equation (1), with Hamiltonian (2) implies the following pair of equations :

ithe + fibo = ¥, ity — fopy = exho (26)

for two time-dependent functions ¢ and 1. This set of equations can be written in the form (6) with
the operator kg given by

. d .

ho=7 dt‘i‘Vo(t)a’Y iay, Vo =ioaf (1) , @n

where ¢; are the Pauli matrices. Let us look for a intertwining operator that relates ho to an operator
hy of a similar form

N d i i
h1=’rgi+’l/1(t),jm%al,V1='wzg(t)- (28)

Which means that the matrix potentials V5 and V] obey some algebraic restrictions and the Darboux
transformation has to respect these restrictions. In other words, we are looking for Darboux transfor-
mations that do not change the form of the equation of the two-level system. The existence of such
transformations 18 & nontrivial fact which we are going to prove below.

Choosing A =1 in (10) and substituting the potential V; from (28) into the equations (12} and (13),
we get

o B - Boy + o2 (g—f)=0, (29)
o1B +02Bg —oa2f — Boaf = 0. (30)
Let us chose
B=at)+i8{) oz, {31)
where « (f) and 3 {t) are some real functions. Then, it follows from (29) that
—f-28. (32)




Substituting (31) and (32) into (30), we obtain two real equations
a+28(B-f)=0,8~f-2a8=0. (33)
These equations imply P
F@+6-1)=0=+-p =R, (34)

where R i3 a real constant.
Note that the above expression is satisfied if we choose

a=Rcosp(t), 8=Ff(@)+Rsinpu(t), (35)

with g (2) a real function . Substituting Eqs. (35) into (33), we obtain for the function u (¢) a nontrivial

transcendental differential equation
p=2(Rsinpu+ f). (36)

In what follows, we are going to find the functions @ and 3 independently, without the need to solve the
equation (36). Thus, at the same time, we find in an indirect way solutions for this latter equation.
h follows from {23) that the matrix U can be construct as

(T () - [ B ) (o) _ [ 1
U=( ), T (% , @ o ) (37)
where ¥(21) and ®(2) are solutions of the system (26), that is,
itho + fipa = Ayhr , ith1 — b = Aaytha (38)
s + fp2 = Agypr , i1 — for = Aaypa - (39)

Using Eq. (37), we may find

VAU =

Ay + A Ay — A
- 2 @ + (1)2A @ (o — 1) 01—

i (P11 + tas) 02 + (Y1002 + P21 ) 03] (40)
where A = ;05 — 9a¢p;. Substituting the above expression in (20}, with A = I, gives
Ay — A
Wi = —ioaf + (1—)&””‘(-21 [($r902 + t201) 03 — & (P11 + Yhag02) 0a] . (41}

In order to maintain the specific form (28) of the potential V3, we must choose

Q =tz + thapr = 0. (42)
On the other hand, the equations (38) imply
iQ = (A + A2)) Wror +aipa) - (43)
Thus, we obtain
Ay ==z = A. (44)

Besides, notice that if ¥{®) is a solution of (26) with eigenvalue £, then T(~€) = 0'3'11(5) is a solution
~ of the same equation with the eigenvalue —&. Therefore,

wxv(—d:( © ) | (45)
~yf?
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Thus,

¥ = ( 0 ) , () = ( ;ﬁfﬁ’;;z ) ) A= =2y (46)
Using the above result, we obtain
RN

Comparing the expressions (47) and (48) with (28) and (31), respectively, we obtain explicit expres-
sions for the functions a, G, and g,

ht) g A(h ¥
(¢2 P ) h=1 (% 1/«’1) 9=1-26. (49)
Taking into account the relation (34), we obtain A*> = —R2, which implies A = —iR. Thus, we arrive at
_ R ¢ R th
“T2 (% wl) A=f+i (¢2 'l’l) ' (%0)

Finally, we represent the explicit form of the intertwining operator, remembering that the operator L
(10) will be used to produce e1genfunct10ns of by from eigenfunctions of Ao only. We write this operator

as ~
L= (ho—UAU™) =a+i (8 - f) 03 — ihoor . (51)

As was mentioned above, with the knowledge of a and $, we, in fact, can find a solution of the
transcendental equation {36).

We note once again that the new potential V; (47) has the same matrix form as the potential Vj
(27). Hence, all the relations between (37) and (44) continue to be valid, and the same procedure can be
applied to the potential ¥i: one starts from one eigenfunction of le, which determines an independent
one by (45), and one obtains solutions for a new problem, with a new potential V3 = igog with ¢ given
by (49). This procedure can continuously be applied to provide an entire family of potentials and its
respective solutions.

3 New exact solutions for two-level systems

In the following, we will apply the formalism developed in the previous Section to two-level systems in
order to obtain two types of new solutions. Namely, below we consider an application of the Darboux
transformations to exact solvable cases with the potentials (4).

3.1 The first case
Let Vp in (27) be a constant matrix potential, f = fy = const., such that

d .
E +ioafo. (52)

A general solution of (38), with the Hamiltonian (52) and eigenvalue )A(;y = —iR, can be written as

h(} = 3-0'1

Y1 =i(fo+iw)p+iRq, Y2 = Rp+ (fo +iwo)q,
P = poexp (wot) , ¢ = goexp (—wot) , wi = B2 — f2, (53)




where go and pg are complex constants. Substituting these expressions in (50) gives

2
a_“uﬂwo_(g_zz),ﬂm_ wp

C2Q+f)\p ¢ Q+fo’
R (p q)
=Z(=+3). 54
-3 (84 64
As a result, the function g (32), which defines the new matrix poteﬁtial Vi (28), assumes the form
202
g="ro 0+ 7 (65)

In the case R* > f§, with the choice po/go = exp (2a), with a an arbitrary phase, we get
@@ = Rcosh 2 (wot + a) , (56)

For fo = 0 this potential is a special case of (3}, otherwise we have a new solution.
In the case R? < f2, with the choice po/go = exp (2ia), we obtain

Q@ =Rcos2(|Jwo|t +a) .

Thus, from the knowledge of solutions of two-level systems with the potential f; = const. we construct
solutions of the same system with the potential g given by (55). Such solutions have the form

&) = [ (57)

where the components 1) and 13 of T(S) are given by (53) by substituting R for ic and pq, ¢o for arbitrary
new constants. Remark that these new solutions are expressed in terms of elementary functions.

Afterwards, we can use these new functions $() with eigenvalue ¢ = —iR; (and R; # R) to find new
solutions and so on.

3.2 The second case

Now we agsume that the function f in (27) has the form (4). In this case, solutions of (26) can be written
as (see [7])

1 =(1-2) Elaz’F(a+1,b;62) + 2z #F (G + 1,5 2)] ,
Yo =(1 - 2)" [(ro — r1 + 2ip) e1z#F (2, b+ 1;¢2) +
(ro —r1— 2igg) a2z *F (&, b+1;¢ z)] , (58)

where rp, 11 and T are real constants present in the definition of f, and
z= %(1+tanh1-) y@=p+vtirg, b=p+v—irg, a=—-pu+v+in,
b=—p4v—irg,c=1+2u, 8=1-2u, E=¢T,

with e1, e2, & and v complex constants. If the following relations are satisfied

4ﬂ2+E2+(T0—T‘1)2 =0,
WP+ B+ (ro+1)* =0, (59)

we can identify F (g, b; ¢; 5) with the hyper-geometrical function.




We are going to construct the operator L in the case where g and v are real. Therefore, making
E = —iR in (59), the reality condition will be satisfied if

R? > max (ro £ ).

In this case, we can write

1 1
o= /B o = B o, 2

and the expressions (58) become

't/)P) =—iR(1-2)" (clz“"Fo + ez HOF ) ,
W = (1— )" [(ro — r1 + 2ipg) 12" Fy + (ro — 11 — 2ipe) c2z "0 Fy]
Fy=Flag+1,a0;1+ 2u0;2) , Fy =F(8g+1,a5;1— 2up;2) ,
g =po+V¥gt+ire, a1 =—ppg+1p+irg. (61)
where the # represents complex conjugation. The constants ¢; and ¢, will be chosen such that the relation
1

o = p* (ro — 11 — 2Zipg) R~ = pPHoe2ivo (62)

is satisfied, where p is a new real constant and ¢ is a constant phase defined, in agreement with (60),
by the expression )
(ro — 11 + 2ipg) Rt = %0, (63)

For such a choice of the constants ¢; and cq, the solutions (61) assume the form

(0 — -z'R( -2 oA, ¢ = R(1 - 2)° JargA*,
A= (p2)" e Fy + (pz) 0 0 (64)
Using the above solutions and the expression (49), the constants o and 3 are seen to be real, and they
can be written as
_iR(A* - 4%) g+ B (42 + 4%
= “erax Pt —gag

with f defined by (4). In this case, the Darboux transformation (51) prowdes exact solutions of the
two-level problem with a potential given by

(65)

R(A*? + A2
(————)— 70 tanhr ~ L (66)

9= T |4 T T

We remark that the new potential, as well as the corresponding solutions, are expressed via the hyper-
geometric functions only.
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