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Abstract

In this brief article, we discuss spin polarization operators and spin
polarization states of 2 + 1 massive Dirac fermions and represent a con-
venient representation by the help of 4-spinor for their descriprion. We
stress that namely the use of such a representation allows us to introduce
the conserved covariant spin operator in the 2 + 1 field theory. Another
advantage of this representation is related to the pseudoclassical limit of
the theory. As one can see, quantizing the corresponding pseudoclassical
model of spinning particle in 2 + 1 dimensions, we obtain namely the 4-
spinor representation as the adaquate realization of the operator algebra.
In this realization, the operator of a first-class constraint that cannot be
gauged out by imposing gauge conditions is just the operator represented
in this article.

I. The 2 + 1 spinor field theory [1] attracts in recent years great attention
due to various reasons: e.g. because of nontrivial topological properties, and
due to a possibility of the existence of particles with fractional spins and exotic
statistics (anyons}, having probably applications to fractional Hall effect, high-
T, superconductivity and so on [2]. In many practical situations the quantum
behavior of spin 1/2 fermions (further sirply fermions) in 2+ 1 dim. can be de-
scribed by the corresponding Dirac equation with external electromagnetic field.
The main difference between the relativistic quantum mechanics of fermions in
d+1andin 2+1 dim. is related to the different description of spin polarization
states. It is well know that in 3 + 1 dim. there exist two massive spin 1 /2
fermions, the electron and the corresponding to it antiparticle positron. Both
electron and positron have two spin polarization states. In 2+1 dim. there exist
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four massive fermions, two different types of electrons and two corresponding
positrons. In contrast to the situation in 3 + 1 dim., each particle in 2 + 1
dim. has only one polarization state. We recall that constructing covariant and
conserved spin operators for the 3 + 1 Dirac equation with external field is an
important problem for finding exact solution of this equation and specification
spin polarization states (3]. Here does not exist universal covariant conserved
spin operators which serve for any external field, for each specific configuration
of the external field one has to determine such operators [4]. On the first glance,
the problem does not exist in 2 + 1 dim. since each fermion there has only one
spin polarization state. Nevertheless, the spin (or spin magnetic momentum) as
a physical quantity in 2 + 1 dim. does exist, and therefore, the corresponding
operators do exist. One can see, solving the Dirac equation in 2 + 1 dim., that
knowledge of such spin operators is very useful for finding physically meaning-
ful solutions. Moreover, it turns out that in 2+ 1 dim. the appropriate spin
operator serves at the same time as particle species operator, and its explicit
expression is useful for interpretation of the theoretical constructions. In this
brief article, we discuss spin polarization operators and spin polarization states
of 2 4+ 1 massive Dirac fermions and some convenient representations for their
description.

I1. It is well known that in 241 dim. (as well as in any odd dimensions) there

exist two inequivalent sets (representations) of gamma-matrices. For example,

denoting these matrices via T'¥, u = 0,1,2, where the subscript s = +1 labels
the different representations, we can chose

[ =02 Il =io? I'? = —sio!, 9= 41, (1)
where ¢ are the Paitli matrices. Respectively, there exist two different Dirac
equations and two different Lagrangian of the corresponding spinor field. ¥ an
external electromagnetic field is present, then the particle (¢ = 1) and antipar-
ticle (¢ = —1) with the charges (e, e > 0 respectively obey the Dirac equations
in which the operator 8, has to be replaced by P, = i8, — (eA, (z), where
A, (z) are electromagnetic potentials. Thus, in fact, in 2 + 1 dim. we have
four massive fermions (let us call further the two different type of fermions up
and down particles} and respectively four types of solutions of the 2 + 1 Dirac
equation (2-spinors ¥($:4) (z)):

(C4P, ~m) T (2) =0, 2 = (z*) , p=0,1,2,
P, =i8, — (eA, (), s5,{ = %1. (2)

In such a picture (and in stationary external fields that do not violate the
vacuum stability), the only states from the upper energy branch are physical,
and only such states can be used for secondary quantization [?].

III. To define & spin magnetic momentum of the 2 + 1 massive fermions let
us set the external field to be uniform constant magnetic field. In 2 + 1 dim.
the magnetic field has only one component Fy; = ~Fj3 = B = const. The sign
of B defines the "direction” of the field, the positive B corresponds the "up”




direction whereas the negative B corresponds to the "down” direction. In such
a background the equation (2) can be reduced to the stationary form

H(C:a) ‘I"S’LC'S) (x) — ngss)g!gfls) (x) , H(Ca‘g) - _FEFI;P’G + Fgm,
W) (£) = exp (—ie(c"")mo) T (x) , elo) 50, x = (z,2%) . (3)
As usual we pass to the squared equation by the ansatz
9 (x) = [[% + PP, +m] 89) (x) (4)
to obtain the following equation
[Eﬁ _ D(c,s)] 3 (x) =0,

D) = m? + P? 4 2(eF, [[4,T3] = m? + P? — s(eBo®, P = (P}, P?) .
(5)

The 2-component spinors () {x) may be chosen in the form &) (x) =
f}f"") (x) v, where f.,(f"q) (x) are some functions and v some constant 2-component
spinors that classify spin polarization states. We select v to obey the equation
0% = v. One can see that selecting v to be the eigenvector of ¢® with the
eigenvalue —1, we do not obtain new linearly independent spinors lI'Sf"’) (x).
This is a reflection of the well known fact (see e.g. [?]) that massive 2 + 1
Dirac fermions have only one spin polarization state. In a weak magnetic field
it follows from (5):

s(e

61(1(’8) = E'S‘E,S) — M(C’S}B, ‘u(c:s) s = .
2¢m2 + (ff(f:s)) szT(LC’S)

B=0

(6)

We have to interpret 1($*) as the spin magnetic momentum of 2 + 1 fermions.
Thus in 2 + 1 dim., we have

sign p(69) = s¢ (7

One ought to remark that this result matches with the conventional descrip-
tion of spin polarization in 2 4+ 1 dimensions. Considering the total angular
momentum in the rest frame (see, for example, [6, §]), one can define the oper-

ators S{ga) of spin projection on the x%-axis,

i s
S5 = 1 [[5,T3] = 503- (8)

* In the nonrelativistic limit we obtain from (4) and (6),

) = Z_Cng’ w69 (x) = 2mBS),




In such a limit the Dirac spinors @+ (x) are eigenfunctions of the operators

®), |
S (x) = 269 (x)

Thus, one can consider

€ (s
M) — %Sé ) (9)

as spin magnetic momentum operator. However, the operators Sés)are not co-
variant and are not conserved in the external field. Below we represent a con-
served and covariant spin operator for 2 4 1 massive fermions.

IV. Let us use a 4-component spinor representation for the wave functions
to describe particles in 2+ 1 dimensions. Namely, let us introduce 4-component
component spinors of the form

D () = ( ‘I'(C’B” “ )’ i (z) = ( 01'11{4’0‘1) (=) ) 10)

These 4-component spinors are representatives of 2-component spinors ¥{6+1) (z)
and =1 (3). At the same time it is convenient to use three 4 x 4 matrices
7%, and 4* taken from the following representation {7} of 3 + 1 gamma-

matrices
I 0 Il 0]
o _ +1 1 _ 11
7—(0 —ral)""‘(o —rl_l)’
2 _ I"?l_l 0 3 6 I
- ( 0 Pgl Y= I 0 ' (11)

In the new representation, the 4-component spinors (10) obey the Dirac equation
of the following form

(VP —m)(2) =0, P, =i0, — Ced, (x) , z = (z*) , p=0,1,2. (12)

In fact, this equation can be considered as a result of a partial dimensional
reduction of the 3+ 1 Dirac equation. Stationary solutions of the equation (12)

can be expressed via solutions &{$'*) (x) of the equation (5) as follows
ij’(_f,s) (.’B) = exp (_ieg,s)mﬂ) [’705-,(5’8) + 'YkPk + m] ()o(g,s) (X) X = (xl’w2) :
S+ _ 0 .
St ( ’ ) S6D) _ ( e ) e 5 g, (13)

whereas the energy spectrum is the same as for the equation (5). One can
easily see that the 4-spinors ¢($9) are eigenvectors of the operator 5% with the
eigenvalues s being the particle species

] 8 ; i 0
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The operator % commutes with the squared Dirac equation. This fact allows
us to find a spin integral of motion for the Dirac equation (12). Such an integral
of motion reads

_ HER 4R
- 4dm

A , Ho= -+ ¥m. (15)

In the case under consideration, we obiain

€)= Syc) p=looms 101 0
Mgl = 2ylen, p=catmt= (00 O ). (16)
V. Now we can consider 2 + 1 QFT of the spinor field that obeys the equa-
tion (12). Such a QFT can be obtained by a standard quantization of the
corresponding Lagrangian. Here the field operators have the form

-~ _ ‘i’ 1 (."L’)
'i,b (.’B) - ( 0_15—_1 (ﬂ:) ) ] (17)

where the 2-component operators ‘i’s {z) describe particles of the s-species.
Decomposing the field (17) into the solutions (13), we obtain four type creation
and annihilation operators: a,, and af,, which are operators of particles (¢ =

&n
+1) and by, and bj‘,n which are operators of antiparticles (¢ = ~1). Thus, in
the QFT under consideration all the types of 24+ 1 fermions appear at the same
footing.

In the QFT one can define the second-quantized operator A that corresponds
to the operator A of the field theory,

«_E AT A
A= m[w Addx. (18)

It is easily to verify that such an operator is a scalar under 2 + 1 Lorentz
transformations and is conserved in any external field. We call the operator A
the spin magnetic polarization operator. One can casily see that this operator
is expressed via charge operators Q¢ of 2 + 1 fermions as follows:

R 1 /= R
A= (G -Qm), (19)
where

Q, = gf [li!l, ‘i’,,] dx = eZ (0 nsn — bl bn), s=1.  (20)
ki3

Remark that the eigenvalues of the operator A in the one-particle sector coincide
with the spin magnetic momenta p(¢*) = s¢e/2m of the 2 + 1 fermions in the
rest frame.

We stress that namely the use of a spinor representation with more than
2-components allows us to introduce the conserved covariant spin operator in




the 2 + 1 field theory. There is another argument (which is related to the first
quantization procedure) in favour of such representations is discussed below.

VI It was demonstrated in [9] that relativistic quantum mechanics of all the
massive 2 4 1 fermions can be obtained in course of the first quantization of a
corresponding pseudoclassical action where the particle species s is not fixed.
General state vectors are 16-component columns. The states with a definite
charge sign ¢ can be described by 8-component columns ¢¢. The operators of
space coordinates X* and momenta P; act on these columns as

Xb = gh1, Py = pil, pr = —i0y .
Here, I is the 8 x 8 unit matrix. Besides the spin degrees of freedom are related
to the operators
£ = -;-antidia,g (v 7)), €= %diag (v, %) .
The operator of a conserved first-class (ungauged) constraint has a form
t=0-8, 6 =diag(A,A), § =22

To fix the gauge at the quantum level, one imposes according to Dirac the
condition {¢; = 0on physical state vectors. At the same time we chose ¢, to

~ be eigenvectors of the matrix §,

8

bc,s = §¢5c,3 .

We see that in the first quantized theory under comsideration the operator s
acts as the operator A in the quantum mechanics of item IV,

- 8
Si¢s = 5Pcs -

Thus, we can interpret the operator S as spin operator.
Finally, there exists a relation between the representations of one-particle
quantum states in terms of ¢¢  and &%), Such a relation reads:

1 (¢H) 1 (-1
Yot (7} = % ( 7gb¢(c,+1)(aa) ) S (@)= 7 ( W?TP(C"”(%) ) '

One can easily demonstrate that these two representations are physically equiv-
alent,.

Acknowledgement S.P.G.and J.L.T. are grateful to FAPESP. D.M.G.
acknowledges the support of FAPESP, CNPq and DAAD.




References

[1] W. Sigel, Nucl.Phys. B156, 135 (1979); R. Jackiw and S. Templeton,
Phys.Rev. D23, 2291 (1981); J.F. Schonfeld, Nucl.Phys. B185, 157 (1981);
S. Deser, R. Jackiw, and S. Templeton, Ann.Phys. (N.Y.) 140, 372 (1982);
185, 406(E) (1988); S. Forte, Int.J.Mod.Phys. A7, 1025 (1992)

[2] F. Wilczek, Fractional Statistics and Anyon Superconductivity (World Sien-
tific, Singapore 1990)

[3] V.G. Bagrov and D.M. Gitman, Ezact Solutions of Relativistic Wave Equa-
tions, (Kluwer Acad. Publisher, Dordrecht 1990).

[4] A.A. Sokolov and .M. Ternov, Synchrotron Radiation (Akademie-Verlag,
Berlin 1968)

[5] 8.P. Gavrilov, D.M. Gitman, A.A. Smirnov, and B.L. Voronov, Dirac
fermions in a magnetic-solenoid field, hep-th/0308093; to be published in
”Progress in Mathematical Physics Research” (2004)

[6] R. Jackiw and V.P. Nair, Phys.Rev. D48 (1991)19335?

[7] M.G. Alford, J. March-Russel, and F. Wilczek, Nucl. Phys. B328 (1989)
140

(8] D.M. Gitman and A.L. Shelepin, Int. J. Theor. Phys. 40 (2001) 603

[9] R.Fresneda, S. Gavrilov, D. Gitman, and P. Moshin, Quantization of (2+1)-
spinning porticles and bifermionic constraint problem, to be published in
Class. Quant. Grav. (2004)




