A N s . B )
STsw0 taz 89 38 N HgL

e L - s

| Instituto de Fisica
Universidade de Sao Paulo

DENSITY OPERATORS FOR
PARTICLES CREATED BY STRONG
BACKGROUNDS

S. P. Gavrilov; D. M. Gitman;

S

m——T &

J. L. Tomazelli

Publica¢do IF — 1592/2004

TUNIVERSIDADE DE SAO PAULO
Institto de Fisica
Cidade Universitiriz
Caixa Postal 66.318
05315-970 - Sfio Paulo ~ Brasil




Density operators for particles created
by strong backgrounds

S.P. Gavrilovt D.M. Gitman’ and J.L. Tomazelli}

Instituto de Fisica, Universidade de Sao Paulo,
Caixa Postal 66318-CEP, 05315-970 Sdo Paulo, S.P., Brazil

May 27, 2004

Abstract

In this work the Fock operator which represents the density matrix
for charged bosons and fermions in the presence of an arbitrary external
field is constructed in Furry ‘s representation. By introducing a unitary
operator which contains the complete information about the physical pro-
cesses occurring in the many-particle system described by a quadratic
Hamiltonian, the mean number of particles and antiparticles in the final
state is explicitly calculated. The one-particle distribution functions are
found and the developed formalism is applied to a number of physical
situations involving slowly varying external fields. Time and temperature
dependences of the integral mean numbers of created particles are also
discussed.

1 Introduction

The effect of particles creation from vacuum by an external field (vacuum insta-
bility in an external field) ranks among the most intriguing nonlinear phenomena,
in quantum theory. Its consideration is theoretically important, since it requires
one to go beyond the scope of the perturbation theory, and its experimental ob-
servation would verify the validity of the theory in the superstrong field domain.
The study of the effect began, in fact, in connection with the so-called Klein
[1] paradox, which revealed the possibility of electron penetration through an
arbitrary high barrier formed by an external field. Then Schwinger [2] had cal-
culated the vacuum-to-vacuum transition probability for the quantum spinor
field in an external constant electric field. It became clear that the effect can
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actually be observed as soon as the external field strength approaches the char-
acteristic value (critical field) E, = m?c3/|e|h ~ 1,3 - 10'® V/em. Although
a real possibility of creating such fields under laboratory conditions does not
exist at present, these fields can play a role in astrophysics, where the charac-
teristic values of electromagnetic fields and gravitational fields near black holes
are enormous. One can also mention that Coulomb fields of superheavy nu-
clei can create electron-positron pairs [3]. The particle creation effect for the
quantum spinor field in macroscopic electric-like external fields were considered
in detail by Narozhnyi and Nikishov (see the survey [4] and references therein)
and by other authors as well (see e.g. [5, 6] and references therein) and the
general formulation of QED in backgrounds violating the vacuum stability was
elaborated in [7]. Discussions on particle creation in various nonsingular grav-
itational backgrounds can be found in [8] and references therein. The problem
of the e*e~-pair production in strong laser beams is now discussed intensively
[9], and there exist recent experimental evidence of such an effect [10]. There
exist a number of problems that are closely related physically or technically to
the above vacuum instability problem, for example, phase transitions in field
theories, the problem of boundary conditions or topology influence on the vac-
uum, the problem of consistently constructing the vacuum in QCD and string
theories, multiple particles ereation, and so on.

Calculation of the particle creation in the black hole gravitational field was
first performed by Hawking [11] and then studied by numerous authors, see
e.g. [12] and references therein (the effect is important, in particular, for un-
derstanding of Early Universe dynamics). In this particular case, due to the
singularity of the black hole metric (for the existence of the horizon), one is
enforced to consider the density matrix of a partial amount of created particles.
It was discovered that such a density matrix describes a thermal distribution
with a specific temperature (Hawking temperature). One can find many other
examples when the particles creation in external gravitation fields (and due to a
nontrivial topology) can be described by means of an effective temperature {12]
(see also [13] and references therein). In the case of the black hole background
(and in similar backgrounds) the particle creation problem cannot be formu-
lated as a scattering problem by the analogy to the electric field background
case due to specific technical (probably not only technical but in fact principal)
difficulties related to the absence of the properly classified sets of solutions of the
Dirac {or another corresponding) wave equation. In what follows, we call such
background singular backgrounds. Namely, this circumstance does not allow
one to clarify completely until the moment the reason of the intriguing appear-
ance of the thermal distributions of particles created by singular backgrounds.
Is the appearance of the thermal distributions related to the specific external
backgrounds, or to the averaging over a part of the created particles, or to the
combination of both factors? What is the role of the initial state in this case? In
the works [15] the authors tried to answer these questions considering a quan-
tized field (spinor or scalar) placed in a nonsingular background that admits
the treatment of particle creation as a scattering problem. We have considered
both general backgrounds of such a kind as well as specific backgrounds like an




electric field that switches off at the initial and final time instants. Technically,
the density matrices of particles created from the initial vacuum state were
constructed averaging over all the created antiparticles. It was demonstrated
that such a density matrix is not thermal. Nevertheless, the thermal distribu-
tion appears if one transforms such a matrix to that in the gravitational case
using the equivalence principle. In such a way, the Hawking temperature can
be reproduced with accuracy of a factor, or exactly, if one takes into account
the vacuum polarization[6] effect. The attempt to study the dependence of the
particle density matrix on the choice of the initial states was made in [16]. A
formal expression for the density matrix of particles created by a nonsingular
external background from an arbitrary initial state was obtained by a functional
integration, but it was not sufficiently analyzed. Moreover, besides a few mis-
prints in the final expression, essencial details in its derivation are completely
omitted. For these reasons and due to the importance of the theme one finds
the occasion to return to the problem of the density matrix construction in the
present article, in order to clarify fundamental issues. The article is organized
as follows:

In section 2, we consider a formal derivation of density matrices of particles
created by external nonsingular backgrounds from an arbitrary initial state. To
this end, we introduce and study a penerating density operator for a quantized
field (for a system of particles and antiparticles). In principal, such an operator
allows one to derive density matrices of all the particles, or of a part of particles,
created by external backgrounds from different initial states. However, it is not
a simple technical task. In order to use the path integration methods to solve the
above problemns, we have obtained a normal form for such a generating density
operator. Using the normal form and the possibility of functional integration,
we have derived various density operators for created particles.

As an important technical result, in section 3 we find the generating func-
tional for the ensemble average at the final time instant for any possible initial
state and, by averaging over states of antiparticles, present a reduced generating
operator which describes the subsystem of particles; in particular, the simplest
one particle distribution functions are found in section 4. For this purpose,
some necessary notions of the generalized Furry representation for a quadratic
Hamiltonian system are presented in the Appendix, which contains all essential
technical details and trace formulas.

In sections 5 and 6, we apply the formulated formalism to a number of
the topical problems in slowly varying external fields: electric, chromoelectric
and metric of the expanding Friedmann-Robertson-Walker universe; we consider
the rnultiple particle creation through the distribution of the created particles
and find the thermal-like density matrix description of particles created from
the vacuum by a slowly varying electric-like field, then establishing a relation
between the corresponding distribution and the Hawking’s thermal distribution
of particles created by the static gravitational field of a black hole. Finally, we
discuss the time and temperature dependences of the integral mean numbers of
particles created in an external background field.

We are using a convention of summation/integration over discrete/continuous




repeated indices and a compact notation where all summations/integrations are
suppresses, for example ¥»,Gnm = (¥G),,. In addition A = ¢ = 1 throughout
this paper.

2 Generating density operator

2.1 General

In what follows, we consider a quantized field 1(z) placed in a nonsingular
arbitrary external background. We do not specify the quantized field, namely,
it can be either bosonic or fermionic. In our consideration, we are going to take
the interaction with the background exactly, using the generalized Furry picture
[7] (see more details in the Appendix). In the backgrounds under consideration,
there always exist two complete sets of solutions (in-solutions ¢4 (z) and out-

- solutions 4, (z), { = £) of the corresponding classical wave equations for the

field 9(z). Solutions that are labeled by the upperseript ¢ = + (¢ = —) describe
particles (antiparticles) at an initial time instant x?n, and solutions that are
labeled by the subscript{ = + (¢ = —) describe particles (antiparticles) at a final
time instant z8,, . Here n stands for a set of all the corresponding quantum
numbers. In fact, we consider the quantum theory of noninteracting particles
and antiparticles among themselves, placed in an external background. In the
general case the vacuum of such a system is unstable under particle creation.

This effect is the main goal of our consideration.
Let us introduce the operator €} (J) which depends on the sources J = (Jf{f))
as follows

Q(J) = Nin exp {of‘(in) (a(+) - 1) a(in) + bf (in) (a(_) - 1) b(in)} . (1)

Here o{$) are diagonal matrices, a,(,% = 6anT(tC), and Ny, is the sign of the
normal ordering with respect to in-operators. One can see that {2 (J) is a gener-
ating operator for density operators (density matrices) of the quantum system
under consideration at the initial time instant z9,. In particular, specifying the
sources, we can obtain different density matrices for the initial state . Let us
consider the following examples:

Choosing all the sources to be zero (J = 0), we obtain the density operator
#{0) which describes the initial vacuum state |0,4n) (a(in)}0,in) = b(in)|0,in) =
(a pure state ). Namely,

p(0) = 2(0) = [0, in){0, in| (2)

is the projector on the initial vacuum state. The latter fact follows from the
well-known relation (first represented by F.Beresin [37])

Nexp{-4t4} = {0)(0], (4]0) =0),

which is valid for any set of creation and annihilation operators A¥ and A.

0)




The density operator 4 (ms,...,mar;n1,...,ny) of a pure initial state with
M paricles and N antiparicles (with the quantum numbers my,...,my and
ni,...,nn respectively) can be obtained from the generating operator (1) as
follows:

1 HM+NG) (J)
SIS ISR LI

(3)

ﬁ(mlv-":mM;nls-'wnN) =2z

J=0

The factor Z has to be calculated from the normalization condition trp=1.

The density operator (8) of the grand canonical ensemble of particles and
antiparticles in the initial state (further the temperature density operator) has
the form

p(B)=Z lexp { ~ ST EBORO (m)} ,EQ =5 (555). _ #(o) . @
on

where ££) are energies of particles (( = +) or antiparticles (( = —), §~! is the
temperature ©, by u{©) we denote chemical potentials, and by N (in) the
operators of perticle numbers in the initial state,

NED (in) = af (in)an(in) , NS (in) = b (in)ba(in) . (5)

Such a density operator can follows from the generating density operator (1) by
the following choice of the sourses J,

O = exp {-BO} . (©)

Namely,

() = Z-IQ(J)]J%EXP{_E,@} . (7)

The latter fact follows from the relation (see Eq. (81) proven in the Appendix)
exp {ATDA} = Nexp { A (e”? —1) A}, (8)
which is valid for any set of creation and annihilation operators At and 4 and

any matrix D.

2.2 Normal form of the generating density operator

Now, we are interested in obtaining the totally ordered form for 2. It is a
far from trivial problem and to do it we need the closed form (83) for Wick’s
theorem, given in Appendix. Let us adapt it to our problem, calculating an
explicit normal form for the expression

Y(A B) = e—I’J.Ba,g,:._:—a','fAl:uT




where A and B are quadratic matrices and there are two species of creation and
annihilation operators: a! and a for particles and b and b for antiparticles.
All of them can be either fermions or bosons. Applying (83} in Appendix to
Y{A, B) gives

_ O & | O ). _pBa,—atapt .
Y(A,B)—exp{-éa:*éa—lb+a—%a—bi}.e “e i ..

Calculating the derivatives with respect to & and b gives

O O\, (1B aiapt _ ot .
Ban Ba:rl} .exp{ bBa — o' Ab aABa}.. (9)

Y(A,B) = exp{

In order to finish the calculations it is effective to use a path integral repre-
. sentation. For the fermion case we use a path integral over anticommuting
(Grassmann) variables which is understood as Berezin's integral [37],

e K0 o det K fexp {METIX +atA+ Aa} Tdr*dA (10)
For the boson case we use a path integral over commuting variables (39],
eoTKa . det K1 - fexp {~¢* Ko + alp + p*a} Tdp*dy : (11)

‘Representing : e~*'45¢ ; ip (9) with the help of either the integral (10) or (11},
respectively, one can calculate the derivatives with respect to a and af. After
integrating one finally finds the normal form of ¥'(4, B),

Y(A,B) = det(l+xAB)" :exp{—alAita—b'A__b—ald bt —bA_,a}:,
Ay, = RAB(1+#AB)™', AT = kBA(1+kBA)™,
Ap (1+&xAB)"YA, A, =B(1+rAB)™", (12)

If

By using the formulas (81) in Appendix and (12) above, then applying suc-
cessively Wick’s theorem (83), we finally get
& (J("‘J, J("}) = |co?det (1 + KAB) ™" Nous (exp {—a'(out) (1 — D) aout)
—bt(out) (1 — D-) b(out) — o' (out)BTb (out) — blout)Ba(out)})

Dy = wHH) @ +8ABY T P (), DL =w(~|-) ol 1+ kB w(-|-),
B = w(—|-)aIB1+rAB) ™ of P (++)! + w (+ — |0)T,

A = oMB B=w(0]-4). (13)
- It is the principal general result. Due to the normal form representation in
(13), one can calculate the trace by using the effective path integral techniques

presented in Appendix (formulas (85) and (86)). The above constructed den-
sity operator contains the complete information of all possible physical processes




leading to a final configuration at a given initial temperature or at a given initial
pure state. Its structure also suggests a possible connection with a consistent
S-matrix operator in Fock space which describes the dynamical processes ocur-
ring in a many-body system in the presence of an external field described by a
quadratic Hamiltonian, in a real time formulation of finite temperature quantum
field theory as, for example, thermo field dynamics [40]. As another possible ap-
plication of the above formalism is the study of the behaviour of atomic bound
state systems at finite temperature, through the analysis of the corresponding
thermal field correlation functions and susceptibilities for the physical abserv-
ables [47].

'To show an example of application of expression (13) note that the in~vacuum
projection operator has a quite simple form in terms of the out-operators of
creation and annihilation,

Q) = |eof* Mow (exp { —a'(out)a(out) — bt (out)b(out)
~af (outyw (+ — |0) bt (out) — blout)w (+ — [0) a,(out)}) . (14)
This expression is interesting in itself since it gives us an explicit example of a
density matrix for a pure state which is not a state with a well-defined number
of particles, this is a kind of a generalized coherent state (squeezed state) [41].
- Using this formula and selecting the function F, for example, as a projection
operator on a quantum state with M pairs of particles and antiparticles at the

final time instant one can write the probability of creating these pairs from
vacuum.

3 Density matrices

Suppose the density matrix of an initial state is 4, and suppose the physical
quantity F at the final time instant is given by the operator function

F = F (at(out), a{out), bt (out), blout)) .
Then its mean value at the final time instant is given by the formula
(Fy=trF'p. (15)
For any operator A the trace can be calculated in the Fock space as follows

A= > 3 (MINYT U ({m}y, , {n) y5in) AT ({m},, , {0}y 1in),

M,N=0{m}{n}
U ({m}ps {n}yiin) =al, (in}...al, (in)bl, (in)...bL  (in)[0,in >  (16)
To do it one needs to express all the out-operators of creation and annihilation

in the function F' via the in-operators of particle creation and annihilation,
using Bogolyubov transformations (67), and then to find the normal form with




respect to the in-operators of creation and annihilation for each given function
F independently. It does not work if one is interested in a behavior of the
functional (F) in general.

We can propose a better way to do the trace calculations. Let us consider
another basis of the Fock space using the unitary transformation (73),

T ({mlps{n}yiin) = VU ({{m}y,{n}y;out), (17)
U ({m}ys, {n}yiout) = a:fnl(out)...aLM(out)bLI(out)...b;fw(out)|0,out>.

Then the trace (16) can be transformed to the following form

oo :

trd= > > (MIN)TTO({m},,, {n}y;out) AT ({m},,, {n}y ;out).

M,N=0{m}{r} ki

) (18)

We do not need to do anything special with the operator function £ in the such a

representation. Of course, all above mentioned problem in expressing one kind

of creation and annihilation operators via the another ones and proceeding

the re-ordering in the generating operator 5 still remains. We can solve this

problem for the given expression of the operator (1). First, we find the necessary

expression of § via the out-operators of creation and annihilation due to the
unitary transformation (73) as follows,

9 (J ). (‘)) = VANous exp [af (out) (a("') - 1) a(out) + bf (out) (a(_) - 1) b(out)] v,
(19)

where Ny () is the normal ordering operator with respect to the out-operators

and V is defined by (74).

We see that the state of the system at the final time instant contains both
particles and antiparticles due to pair creation by the external field indepen-
dently of the initial state composition. On the other hand, a typical case occurs
when the physical quantity /' only is related to either the particle (+) or the
antiparticle (-) subsystems in the final time instant. The corresponding op-
erators Iy are functions of either operators a'(out} and a(out) or b(out) and
b(out), A

Fy. = Fy (al(out), alout)) , F_ = F_ (bt (out), bout)) . (20}

In this case we can average over the states of one of the subsystems and obtain a
description in terms of the density matrix defined for the remaining subsysterm.
Let us present the state vector W ({m},,; ,{n} ; out) as following

U ({m} s An}pysout) = ({m},, ;out) ® T{{n}y;out),
U, ({m}y;out) = afm {out) ... a.}LnM (out)|0, out >,
Oy ({n}y;out) = bl (out)...b%, (out)]0,out >p, (21)

where the relation |0, out >= |0, out >, ®|0, out >} is used. Then

< Fy >=trytr_Fop, (22)




where the traces over the subsystem states are

teed = DY (MN)TIUL ({m}y sout) AT, ({m} s out),

M=0 {m}

S S (MG ({m) g sout) AT (Imbygsout). (23)

M=0 {m}

H

tr_A

Let us define the reduced generating operators of the corresponding density
matrices 5+ of the remaining subsystems as

Oa = tra (24)
Then one can rewrite (22) in the form
< Fy >=trafypy, (25)

Even though the initial state is the vacuum, the matrix ps. describes a mixed
state. In this case pi is called the density matrix of particles/antiparticles
created in the external field. Sometimes, the use of the such a density matrix
becomes a prime necessity. For example, in the problem of quantum particle
creation in the strong gravitation field of a black hole [11, 12], the density
matrix of particles created outside the black hole comes into play, due to the
impossibilty of observing those part of the created particles that appear behind
the event horizon. In an external electromagnetic field the necessity of the such
a description may arise in the case where the particle detectors are located in a
region which can only be reached by one kind of charged particles. The density
matrice of particles created by an external electromagnetic field from the vacuum
was studied in [15] (by using an explicit decomposition of the in-vacuum state
|0, én > via the complete set of the out-states ¥ ({m},, , {n}y ; out)) and in [16]
(by the functional method).

Due to the special path integral techniques presented in Appendix and the
above obtained representation (13}, we can find an explicit expression for the
reduced generating operators {14 in the general case described by the generating
operator 2. Calculating the traces in (24) by using formulas (85) for fermions
and (86) for bosons we get

Qp = Z7'Wou (exp {—a'(out) (1 — K ) a{out)}),

Q- = ZZ Wour (exp {—b' (out) (1 — K_) blout)}),
Zi' = |eo|*det (1 4+ xAB)" det (1 4 kD3)",

Ky = Di+B'(1+sDI)™"B. (26)

1. Selecting all J&) =0 in (26) we have

Ki=w({+—-[0w(t+—-[0), Zz' = o], (27)




obtaining the density matrix of particles created by an external field from the
vacuum, g4 = Qi| . The result agrees with that obtained in [16, 13].

2. Having a pure quantum state with either a particle or a antiparticle at
the initial time instant in (26) we get

Zpm0 = :ﬁi) — [a!(out)w (+1+)], 4% [0 (414} afout)]
mo | J=0
zpom = 2o (== bt (out)],,, 2° [bloutyw (- )]
0757 |5 =l I [ L.
: 8%
Z" = 5| =8 e e )
+ 075 |, 1 b ]mm
= [aftoutyw (+ = 10)w (=1=)7] 7 [w(-|-)w(+ - 0) atout)]
zpme = 20 =% |w (+]+) w (+]+)
aJr(n+) o [ J

~ (ot oty (+ ~ [0) w (+14)7] 22 [ (+)Tw (+ = [0) bout)]

where the generating formula (2) is used. Here and only in this example, we are
not using the convention of summation over repeated m.

3. Selecting JI9 = e~ B i (26) we get the particle/antiparticle density
matrix describing the final state of the evolution for the initial thermodynamic
equilibrium in an external field. First attempt [16] to find such a density matrix
was not complstely satisfactory.

4 Distribution functions

Note that matrices K+ in (26) are not diagonal in general case. Then, it is
useful to define the following partition functions,

Zy (5,.7) = Z-|_-1t'r+Nout (GXP {—CET(OUt) (1 — IK+) a(out)}) ,

Z.(7,5) = ZZ'r-Now (exp {—bl(out) (1~ IK_)blout)}),  (28)
where the matrix elements I, = Smn + Jmin, Jm and j, represent some new
sources, and the normalization condition Z, (0,0) = 1 holds. One can easily

calculate the traces in (28) by using the formulas (85) and (86) accordingly to
statistics and get

Ze(G,5) = Z7 exp {kiIn (1 + IK()],, ) - (29)
Let us consider the one-particle distributions
RGY = g, {al (out)am(out)py }

R() tr_ {b],(out)bm (out)p.. } . (30)
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The diagonal matrix elements of R(¢) represent the mean number of particles
and antiparticles in the mode m at the final time instant

NE(out) = RE), n=m. (31)

Using Wick’s theorem one can rewrite (30) as the traces of the normal ordered
operators,

R = try {al (out)py [Krafout)],},
R = tr- {bl(out)p [K_blout)],,} (32)

The expressions (32} can be found from the partition functions (28) by the
formula 8 &

€ = Z _~ Z.(= .
Then, from (29), we get the one-particle distributions in terms of the K, ma-
trices given in (26), as follows

K
R — { ¢ 33
nm (1 HKC) n M ( )

=fj=0 "

This form for the matrix R() is preferred when one needs to have the explicit
expression via the elementary probability amplitudes (70).
Frequently, it is preferred to express the matrix R©) via the one-particle
distribution function at the initial time instant,
Ri(in) = tr{al, (in)am(in)p}
RGl(in) = tr (b (in)bm(in)p} . (34)

It is clear that R&%(m) = JnmN,(,f)(z'n), where
-1
NP (in) = (1/38 + n) (35)
is the generating function for mean number of particles/antiparticles in the

mode m at the initial time instant. To express the R($) via the R(¢)(in) one
can represent the first ones as the following

RM) = & {aL(out)am(out)ﬁ},
R = tr {bL(out)bm(out)ﬁ}.

Then, using the canonical transformations (67) and calculating the traces one
finds the desired expression,

BT = G () RYGn)G (1) +6 (*11) [1 = sRO(m)] 6 (1),
RO = GO RO im)G (-I7) +G (T]4) [l—nR‘+)(in)]G(+l")(36)

11




As a special case of the vacuum initial state, one has from (36) the well-known
expressions [7] for the distributions of the particles and antiparticles created by
an external field,

R =[G (H-)G ()], RGO =[G(T1+) G ()]s n=m. (37)
Note that solving relation (33) with respect to the matrix K¢ we get

ROT

With relations (36) and (38) we have the expressions of the matrix densities
(26) via the initial distribution R(¥(in). For that case we can rewrite Z in

terms of the K¢ as
Z; =exp {s[In{1 +K¢),.. )

5 Quasiconstant fields

Let us discuss some applications of the presented general formalism. Supposing
that the states can be specified by eigenvalues of the integrals of motion (the
same for particles and antiparticles) we have that all the matrices G (C|C') are
diagonal, and the mean numbers (37) of the particles and antiparticles created
from the vacuum are the same, R4’ = RS = RZ. In this case the distri-
butions are considerably simplified. It is the case where we have, for example,
an uniform external field. Then from the formulas (31}, (36}, (37} and the uni-
tarity relations (65) the mean number of (anti)particles in the mode m at the
final time instant is

N (out) = (1 — xRg) N in) + RE (1 - nN.,(n‘C)(in)) . (39)

If the initial state is different from the vacuum, the distribution of the (anti}particles
created is defined by the difference

NEQer — NGO (out) — N (in). (40)
Thus we have NG = N§ = Ny and
Ng = Bey [1— 5 (N§P(in) + NSO (i) )| (41)

It is clear that only for fermions {x = 41} N can change sign as a function
of the initial distributions. The mean number of (anti)particles in the mode
m is conserved in an external field disturbing a vacuum stability (RS # 0)
if N,g{")(in) + N,Sq,_)(in) = 1. For bosons (¥ = —1) the mean number of
(anti)particles in the final state always grows in such a field since N&7 > 0.
Note that the presence of a matter in the initial state increases the mean num-

ber of the bosons created, N27. At large N (in) the increment of bosons, N¢T,

12
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;

is many times more than the mean number of the bosons created from vacuum,
Rg". Nevertheless, the relative increment is a decreasing function of the initial
distributions,

NE 1

CNPny+ NSy " NS in) = NS @n) |

Let us consider examples with quasiconstant uniform field creating pairs. For
simplicity sake assume that any other external fields are absent. Then states
are specified by continuous quantum numbers of momentum projections p and
spin projections r = =1 (for bosons it is formally assumed a value r = 0), From
now on we will assume that the standard volume regularization is used, so that
d(p — p’) ~ bp p for the condition of normalization. Thus we have the set of
discrete quantum mumbers m = (p,r).

5.1 Electric field

The state of the quantum systerm in question is far-from-equilibrium due to the
influence of the time dependent potential of an electric field. On the other hand
it is well known that the distribution of pairs created from the vacuum by a
constant electric fleld, RS, is parametrized by only one parameter and, in this
sense, can be compared with a thermal distribution. Nevertheless, the problem
of time dependence exists and must be discussed. Let us remind that, in a
physically correct statement of the problem, we only refer to a quasiconstant
electric field which is effectively acting during a finite time. In order to analyze
the time dependence of particle creation effects let us consider the two quasi-
constant examples of a uniform electric field. This field is nonstationary, but
with a constant direction in space. Then one can always direct it along the z°
axis. The charge of the particle is ¢ and its mass is M. Let us first consider the
case wihere the strength E(z%) has the form

0, 2%erI
E(z)=< E, 2%eII (42)
0, az%elll,

where the time intervals are: I = (—o00,#1), II = [t1,8], III = (ta,+o00),
ta —t1 =T, ta = —#;, with ¢F > 0. Thus, in fact, we consider a constant
electric field E, which is acting during finite time 7. Further we will call it a
T-constant field. The corresponding potential A;(z°) can be chosen in the form

Etq, 20 el
As(@®) =4 Es0 o0ell
Ets, eIl

If the time T is sufficiently large: qET/2 » 1, +/qET/2 » A, and
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gET/2 > |ps|, then the distribution function RY is [6]

1+278 1+273 T
1+O([ 3 :|)+O(|:§—l])}1 - qEES&s—K.

(43)

R =g~

where K is a given number K >> 14 A and

_M*+pi

4E y PL = (pl:p2= 0): 1= (:FqET/2 _pS)/\/q_E—‘ (44)

A
The distribution R for large longitudinal momenta |ps| decreases, and for
|ps| >> ¢ET/2 it rapidly decreases rapidly according to the power law R =

o ([z\/&l_ 2]3). The latter expression allows one to consider the limit T — oo
at, any given p. In this limit the distribution function takes the simple form

RS = g™ (45)

and coincides with the expressions obtained in the constant electric field [4].
One can see that the stabilization of the distribution function in the asymptotic
form (45) for finite longitudinal momenta is reached at T >> T}, where Ty =
(14 X)/+/qE. The characteristic time T is called stabilization time. It is clear
that the effect can actually be observed as soon as the external field strength
approaches the characteristic value (critical field) E, = M?*/|q}.

Let us consider another example of a quasiconstant electric field. This field
switches on and off adiabatically at z° — oo, and is quasiconstant at finite
times. In this case, the function F(z°) has the following form

E(z") = E cosh™2 (z—o) . (46)

The corresponding nonzero potential is
. 0 o
As(z") = aE tanh -

We will call it adiabatic field. The distribution function was found in [4]. We
only consider a large o parameter, & >> (14 v/A)/+/gE. Then the distribution
function RZ} for fermions and bosons have a form,

Ry, = exp {-ma(w} + w- — 2qEa)}, (4

where wy = /M?+p? + (p3 FgEa)?. Let us take small longitudinal mo-
menta [ps} << ¢Ee«, so that
} . (48)

2
cr : D3
Ry = exp{—'fr)\ |:1+ (m)

14




Considering the limit & — oo, one gets the formula (45), which means that the
effects of switching on and off are not essential at large times and finite longitu-
dinal momenta. For large longitudinal momenta |p3| >> gEa, the distribution
function are exponentially small,

Ry, = exp{—2ra(|ps| - gEa)} . (49)

The stabilization of the distribution function in the adiabatic field in the
asymptotic form (45) comes for longitudinal momenta |ps| << ¢FEa at & >> ayg,
ag = (1 + v/X)/+/gE. For large o the adiabatic field varies slowly and nearly
coincides with the constant one in the time interval |a:°| < o. Then o is
a characteristic time of the stabilization in this field. Thus, the stabilization
time op in the adiabatic fleld differs from the corresponding time Ty in the T-
constant field, and one can believe that the stabilization process depends on the
switching effects. In the case E/E. < 1, which corresponds to ) > 1, one can see
the stabilization comes quicker for the adiabatic field than for the T-constant
one (ag < Tp), i.e. the quantum system is less affected by the adiabatic form of
switching. If E/E, > 1, there exists a domain of the transversal momenta p,.
where A < 1. In this case, the stabilization times in both cases are the same,
ag ~ Tp ~ 1/+/qFE, so that for any F the relation oy < Tp holds. We see that
for T >> Ty the effects of switching on and off are negligible. By comparing the
distribution function for the T-constant and adiabatic fields one can interpret
Tg = +/A/gE as the time of pair formation. A semiclassical consideration
confirms this interpretation. Thus, a virtual particle with initial zero energy
gets from the electric field by the time TOJe the energy /M2 +p J_Q necessary for
the materialization. It is easy to see that the time T is always either less than
the stabilization times Tp, o or equal to them.

5.2 Effective temperature parameter

Using the obtained Y density matrix description we can establish a relation
between the distribution of pairs created from the vacuum by a slowly varying
electric-like field and the Hawking’s thermal distribution of particles created by
the static gravitational field of a black hole. Due to the time dependence of the
potential A3(z?), which defines the quasiconstant (slowly varying for relatively
large period of time T') electric field, the level of the vacuum energy changes
with time. Taking into account such a shift of the vacuum energy in those states
which remain vacuum states, the universal form of the distribution function was
found [6],

R =exp {—21r§} ) (50)

where 2w is the work which the external field accomplishes for the creation of a
pair in a given state. The corresponding work with respect to a particle is w,

1
W= "2" [pﬂ (tf) + o (ti) + Aﬁ'ua.c} 1
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where po(ts} and po(t;) are the particle energies at the final time instant t5
and at the initial time instant ¢;, correspondingly, and Ac,q, is a contribution
due to an evolution shift of the vacuum energy. The quantity g is the classical
acceleration of a particle in the final time instant. For the quasiconstant electric
field one has

po(trs) = /M2+D3 + (0a — qdalts )2,
Acvss = —laAs(t) ~ aAs(ts)].

In the case of the T-constant field t;;; = £7/2 and As(ts;) = £ET/2.
Then, due to the conditions of the stabilization T >> Tp and ips| < ¢ET/2,

one finds \aE N - 5
=g =, g= =2 (51)
_ 2p0(ty) T nfty) T
The adiabatic field for the finite period of time T from t; = —T/2 to iy = T/2
coincides with the T-constant field if condition T/2a < 1 holds. For T >> Ty
the effects of switching on and off are negligible. Then it is natural we have the
same result (51) for w and g.

It is of interest to compare the particle creation in external electromagnetic
fields and in external fields of a different nature, for example, in external gravi-
tational fields. To this end one can use the results obtained in the quasiconstant
electric fields and in the static gravitational fields. The latter problem was con-
sidered first by Hawking [11] who, in particular, calculated the distribution of
particles created by the static gravitational field of a black hole with mass M
in a specific thermal environment providing equilibrium,

-1

R = [exp {Qwi} + ﬁ',:| , (52)
9}

where w is the energy of the created particle , which are supposed to be de-

pendent on a complete set of quantum numbers m, and gy = Qﬁi, rg being

the gravitational radius, so that gz is free falling acceleration at this radius.
This spectrum was interpreted as a Planck distribution with the temperature
01y = 5%~ (kp is the Boltzmann constant). As before x = 41 for fermions
and k = —1 for bosons. It is also known [45] that an observer, which is moving
with a constant acceleration g¢x) (with respect to its proper time), will probably
register in the Minkowski vacuum some particles (Rindler particles). However,
there is another opinion (see [46]) that the existence of the Unruh effect is an
open problem. The mean numbers of Rindler bosons have the same Planck
form (52) (with x = —1), where one has to replace gzy by 9(r), 50 that the
correspondent temperature is f(zy = ;S:’ One can find many other examples
where the particle creation in external quamstatlc gravitation fields (and due to

a nontrivial topology) can be described by means of an effective temperature

[8]- .
In the case of a quasistatic gravitation field the evolution shift of the vac-
uum energy is Aeyq. = 0 s0 that one identifies the work w, we have introduced,
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with the energy of a particle in formula (52). Thus we see that the distribu-
tion (50) is, in fact, the Boltzmann one with the temperature 8 = ﬂgﬁE having
literally the Hawking form. It is a direct consequence of the equivalence prin-
ciple since we can compare equations of motion for a classical particle in a
constant electric field dm/dz® = ¢E with the ones in the static gravitational
field dm/dz® = wg. In the latter, w is the total energy of the test particle and g
is the three-dimensional gravitational field strength vector. Let us discuss now
the possible origin of the differences in the electrodynamical and gravitational
formulas. First of all, formula (52) is derived in the formalism of the stationary
scattering theory, where it is not necessary to take separately into account a
shift of the vacuum level. In this case the energy of the created particle may
coincide with the corresponding work of the field. Second, the different form of
the thermal distributions (Boltzmann, Planck) can be stipulated by essentially
different situations in both cases. We believe that in the gravitational problems
the Planck distribution arises necessarily due to the horizon of events formation
(there is a boundary of the domain of the Hamiltonian), that is, due to the con-
dition in which the space domain of the particle vacuum and the antiparticle
vacuum are not the same. On the other hand, the final state can be treated as an
equilibrium state. In contrast, in the uniform electric field we deal in fact with
both the particle vacuum and the antiparticle vacuum defined over all space,
that is, these space domains coincide. In this case, the mixed state of particles
(antiparticles) described by the p§ ( 4°) density matrix can be represented as
a pure state in an extended phase space where the space domains for both the
particle vacuum and the antiparticle vacnum are the same, and is the state of a
far-from-equilibrium system. In the strict sense, the Boltzmann distribution of
the relativistic particles created is not but thermal-like (the relativistic thermal
distribution is, of course, the Planck one ). However, at w/g << 1 the Boltz-
mann spectrum closely approximates the Planck’s one. In this case, one can
believe that the form (50) for the distribution function of created particles is
universal and applicable to any theory with quasiconstant external fields.

5.3 Metric field

An important example of stabilization of the distribution function of created
pairs can be presented in the context of a cosmological model which can be
reformulated as a quasiconstant field model. Let us consider massive scalar and
spinor fields in the expanding Friedmann-Robertson-Walker (FRW) universe
with a scale factor (7} obeying (in terms of the conformal time n) Q3%(5) =
b*n%+a?. Such a scale factor corresponds to the expanding radiation-dominated
FRW Universe. In terms of the physical time ¢ the corresponding metric may
be written as follows:

ds® = dt* — Q*(t)(dz® + dy® + d2?) , (53)
where for small times |¢] < a2/, Q%(t) ~ a?[1 + (bt/a?)?], and for large times
t] > a®/b, Q2(t) ~ 2b|t| (see [43]). Making a conformal transformation, we
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are led to quantum electrodynamics in a flat background with time coordinate
7% = n, but with a time-dependent mass (QED-§) theory), M Q(n). That is,
the term M Q(n) can be treated as a time dependent potential well. On the
other side the term bMxz° can be treated as an electric-like field potential from
extradimensions for a theory with mass aM, where bM plays the role of gF.
The distribution function for fermions and bosoans created at 23 = T/2 from the
in-vacuum at z$ = —7'/2 has the form [42, 43, 44]

R =™, X = (a*M? +p?) /bM, (54)

when the time T' = 3 — z¥ is large enough: VEM T3> 1, VBMT > A
Another example of a thermal distribution of created particles can also be
presented in the context of the FRW cosmological model. Following the analysis
in [6] and using the above interpretation of bMz? (see details in [44]) we can
rewrite (54) in the Boltzmann distribution form (50) with
w2t o2
= ITT
. Here the quantity g is calculated as the extradimensional classical acceleration
of a particle in the final time instant. In 3+ 1 dimensions g is the specific power
at the final time instant,
1 dpg _ bM

M dg;o pO (.BU:T/2 ’

where pg = /M2Q2(z%) + p?2. Thus we see that the effective temperature of
particles created due to expansion of the FEW Universe is ¢ = 'ﬁ?ﬁ;‘g, i.e,, the
same ag in the case of quantum electrodynamics in the T-constant electric field.

5.4 Multiple particle creation

As we noted in the introduction, the typical scenario with an application of
the Schwinger mechanism in the modern QFT is the chromoelectric flux tube
model [24]. In this model, if further interactions are absent, the back reaction
of created pairs induces mean field and plasma oscillations [27]. Depending on
details of the model, its stage and the field strength, both the pair production at
finite temperature and at the zero temperature can be relevant (see e.g 28, 25]).
The consideration of various time scales in the heavy-ion collisions shows that
the time scale of the stabilization Ty is far less than the period of the mean field
and plasma oscillations. Thus, it may be reasonable to neglect the dynamic
backreaction effects and thermalization, and to determinate the pair production
distribution at zero temperature but in the presence of the pairs created at the
previous stages. In other words, we can consider the pair creation from the
initial generalized coherent state given by the distribution of particles previously
created. The formula (41) is relevant in this analysis..
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Starting from the initial vacuum state one has N2 = RS, Then, at the
end of the first stage, when the mean field is depleted for the first time, the
distribution of particles (it is equal for antiparticles) is

NGY = Re,

During the second stage, the direction of the mean field is opposite to the field
direction at the first stage. Due to the condition of stabilization it is of no
importance since the RS is an even function of ¢F. Thus, when the mean field
is depleted for the second time, using (41) one has the relation

N@® = RZ + (1 - 2RI N,
and at the end of the n stage
N = RET + (1 — 28R NP1,

Consequently, the total number of the particles created at the end of the n stage
is

n—1
N& = RS (1-26RE)

i=0
We have this result if the created particles do not leave the area of the acting
field. To take into account a possible loss of particles due to the interaction,
movement etec. we assume that the total number of particles in the initial state
of the n stage is less than the N1 number of particles created at the end of
the n— 1 stage and is YN{"~1), where ¥ < 1 is a loss factor. Then the modified
relation is

NP == Rer 4 (1 — 26RETY ANE—1), (55)
and we finally have
n—1
N& = RZ S "4 (1—26RY . (56)

=0
Supposing that « is a constant, one can calculate the sum in (56):

l — ‘i3
N = R;:-lmﬁ- r=n(l - 25R°T). (57)

For fermions x = +1 then N3 < 1. The energy dissipation after a period of
oscillation is estimated (for real parameters of heavy-ion collisions) not to being
large so that the damping is small and the number of oscillation can be quite
large; the damping decreases with an increasing field stength. If the number of

cycles is sufficiently large we get the limiting Planck-like distribution (see the
interpretation of A in terms of characteristic temperature in subsection 6.2)

n 1 1
NE = m =
™ Ty (T-2sRg)  (1—7) e+ a2y/(1—7)

(68)
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In other words, the system reaches a quasiequilibrium state. For bosons k = —1
then NV grows. This is a resonance phenomenon and the increase can be
either limited or unlimited depending on the factor . The increase is limited
as long as r < 1. In this case formula (58) is valid for bosons, as well. We see
that the back reaction induced plasma oscillations can reach a quasistationary
form specified by the quasithermal distribution both for fermions and bosons.

6 Time-depending rates at finite temperature

We are ready now to present explicitly, for example, the mean number of
(anti)particles in the mode m (with the finite longitudinal momenta, |ps] <
VaE (\/qET/2 -K ) } for the final state of evolution in a quasiconstant field

from the initial thermodynamic equilibrium, N{$ (in) = (eBm + m)—l, at equal
chemical potentials pH=p) =y, (4 < M for bosons),

N (out) = (B~ + k) ™" + e~ (tanh (Ep/2))" (59)

where Ep, = S (em — ), &m = \/M2 +p? + (7r3)2, 73 = p3 + ¢ET/2, and we
mean that X is given by (44) for the electric field and by X from (54) for the
FRW universe. This result for the electric field coincides with one obtained in
[16]. Due to the effect of stabilization it seems that a time dependence of the
final distributions in question is absent. However, the integral mean numbers
vary as long as a quasiconstant field acts.

It is of interest to establish some general behaviour of the integra! mean
numbers of created particles when the effects of switching on and off are negligi-
ble. As shown above, we can satisfy this condition selecting the action time T of
the T-constant field (T" >> Tp) as an effective period of pair creation. We mean
that, in general, the final time instant, ¢y, and the initial time instant, #;, are
so selected that a quasiconstant field is closely approximated by the T-constant
field for a period from ¢; to tf, and ¢ty —¢; =T

Let us estimate the sum over the longitudinal momentum ps of N2, which
is the mean number of particles created with all possible p3 values. In or-
der to treat the integral mean numbers we go over to the continuum, Ep —

%3‘ f dp, where V is the space volume. As above, at T >> Ty, R is qua-
siconstant in the range |ps| < vqE (vgET/2— K) and decreases rapidly for
lpal > vgE (VGET/2+ K). The contribution to the integral from the region

VeF (\/qET/Z — K) < |psl < 9E (\/qET/Z + K) is less then 2+/qE XK. Then,
one can conclude that the integral density distribution of particles created with
all possible p3 is finite and can be presented as

%] gET/2
r = Gyt | V= [" [ 6+ VaBO(E)
nm(8) = (sanh (Bn/2))" (60
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From (60) one can estimate the density distribution of the particle production

rate,
dn;:. T qEV —rA
a7 - (271')3 ”m(ﬁ)Im:qETE : (61)

We have (¢ET)? > M2+ p? according to the condition of the stabilization.
Then, low temperature and high temperature limits for the production rate are
only defined by the final longitudinal kinetic momentum gET and the tempera-
ture © relation: S¢ET > 1 and B¢ET <« 1, respectively. For simplicity, assume
that ¢ T > u. Considering these lmits one has for the temperature dependent
term in (61) that

nm(ﬁ)|11'3=qET = 11— QKSHIBQ'ET’ ﬁqET >> 1,
HM(i@)Iﬂa:qET = [ﬁqET/Z}”, ﬁqET <1

We see that at high temperatures the rate ir%‘,-i is time dependent: it is much
lower than the zero temperature value but increasing for fermions and rather
higher than the zero temperature value but decreasing for bosons. Consequently,
the frequently used notion of a number of particles created per unit of time
makes sense only at low temperatures and in this limit it coincides with the zero
temperature value of the production rate. We consider two temperature limits
for the integral distribution density (60): low temperatures at G{e) —u) > 1,
gL =+ M?24+p _LE ,» when all the energies of the particles created in the modes
with a given p, are rather higher than the temperature ©, and high temper-
atures at 3gFET <« 1, when all the energies of the particles created are much
lower than the temperature ©,

ngy . = Tﬁ [\/q_ETe"”‘ + 0O (K)] , k=%1, BleL—p) > 1,
e _ VBgE A L _
B = Ty |¢BT?/2+ 0 (VaBT)| ™, k= +1, BET < 1,
o _ VVIE[ 4 . ‘ B
K e [W In (\/ET/K) e"™ +0 (K)] , f=—1, BgET 462)

The result at low temperatures is not different from the zero temperature result
[6] within the accuracy of the analysis. Integrating expresions (62) over py
one finds the total number of particles created at low temperature and high
temperature limits, respectively:

2
ner = o2 VUEN T s gor s,

(2m)°
32
A %e—wﬂlz/q}ﬂ’ K;E‘i‘l, ﬁqET<<l,
T
VgEIn(/qET
N L‘zr;‘(aﬁq—)e‘“w”‘g, k=1, fET <1,  (63)
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where the summation over r = £1 is carried out for the fermions, and only the
leading T dependent terms are shown. From (62),(63) we can see that the values
of the integral mean numbers for fermions at high temperatures are much lower
than the corresponding values at low temperatures, For bosons, the integral
mean numbers at high temperatures are rather higher than the corresponding
values at low temperatures.

As mentioned in the introduction, thermally influenced pair production in a
constant electric field has been searched via several approaches with extremely
contrary results, varying from the absence of the creation to values of the
fermion production rate higher than the rate at the zero temperature. Now
we are ready to discuss such contradictions. As shown above, the initial ther-
mal distribution affects the number of states in which pairs are created by the
quasiconstant field. Hence, the pair production exists at any temperature and,
in particular, the fermion production rate cannot be higher than the rate at
the zero temperature by no way. Note that our calculations are based on the
generalized Furry representation elaborated especially for the case of vacuum
instabilty in accordance with basic principles of quantum field theory. On the
other hand, all conclusions in [25, 31, 33, 34] about the pair production rate
or/and the mean numbers of pairs created at non-zero temperatures are based
on either the standard real-time or imaginary-time one-loop effective actions.
However, such formalisms do not work in the presence of unstable modes. The
real part of the standard effective action describes effects of a vacuum polar-
ization and has nothing to say about the time dependent conduction current
of created pairs. For example, it can be seen at the zero temperature. In this
case the information about pair creation comes from the imaginary part of the
standard effective action. The extension of real-time techniques for finite tem-
perature quantum electrodynamics with unstable vacuum was presented in [36].
In this article one can see that the relevant Green functions in a constant elec-
tric field are quite different from the standard proper-time representation given
by Schwinger. Then, the relevant real-time one-loop effective action must be
different from the standard one!. The standard imaginary-time formalism was
derived under the assumption of thermal equilibrium and the appearance of a
contradiction with Pauli exclusion principle shows that the attempts of the gen-
eralization to a far-from-equilibrium system failed. The functional Schrédinger
picture used in [32] to calculate the N" at high temperatures seems relevant.
Its asymptotic expressions for N°" at high temperatures agree with ours in (63).

7 Summary

For a quadratic Hamiltonian system in an time dependent external field pair
creating we presented an effective calculation method and find the generating
functional for the ensemble average at final time instant for any possible initial
state, both pure and mixed. Averaging over the states of one of the subsystems
(particles or antiparticles) we obtained a description in terms of the density

I'We will present the relevant real-time one-loop effective action anywhere.
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matrix defined for the remaining subsystem. We found the one-particle dis-
tribution functions and applied the formulated formalism to a number of the
topical problems in slowly varying external fields: electric, chromoelectric, and
metric of the expanding Friedmann-Robertson-Walker universe, We considered
the multiple particle creation from the generalized coherent state presented by
the distribution of particles previously created and found that the back reac-
tion induced plasma oscillations can reach a quasistationary form specified by
the quasithermal distribution; we also found the thermal-like density matrix de-
scription of particles created from the vacuum by a slowly varying electric-like
field, establishing a relation between the corresponding distribution and Hawk-
ing’s thermal distribution of particles created by the static gravittional field of
a black hole. Finally, we discussed the time and temperature dependence of the
integral mean numbers of created particles and found the correct expression at
high temperatures.
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Appendix
Canonical transformations between in- and out-operators

L. One can find decomposition coefficients G (C]‘:') of the out-solutions in the in-

solutions, and vice versa, for the one-particle equations of motion in the presence
of external fields (from now on we will as a rule drop the suffices of quantum
numbers),

‘() @G (+1°) + 5 _p(@)C (=) |
@ = TP@)G(Fl) +6 @G (Tl), (=4 (64)

: N
The matrices G (glC ) =G (C |¢) obey the following relations,

G (") G ()" + 4G (1) @ () = (€D,

UM e +ret) e =0,

G e +wa (M) a () =0 (65)
where I is the unit matrix and s = +1 for fermions and k = —1 for bosons,
respectively. Relations (65) can be derived from the orthonormality relations
for ¢ and (9.

Let us define af(in), b(in), an(in), bu(in) as creation and annihilation
operators of in-particles and in-antiparticles respectively and af,(out),bl, (out),
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an{out), by(out) as the ones of out-particles and out-antiparticles,

~

V(@) = afin) +9(2) +b'(in) (),

¥ (2) af(in) +¢' () + b(in) ~¢1 (),

¥ (z) afout) *9(x) + b1 (out) ~i(z),

P(z) = al(out) T9!(z) + blout) ~¥'(z), (66)
From (66} one has the canonical transformations between in- and out- creation
and annihilation operators (called Bogolyubov transformations) as follows:
afout) = G (T|+) alin) + G (*|-) bt (in),
bt (out) = G (7 |4) alin) + G (7]-) b (in),
at(out) = al(in)G (4]*) + b(in)G (|1,
blout) = ol (in)G (+|7) + b(in)G {=|7), (67)

and
a(in) = G(4+|1)aout) + G (4+!7) b'{out),
Biiin) = G(-|*)alout) + G (-|7) b (out),
al(in) al(out)G )G (Fl1) + b{out)G (7 |4),
bin) = a'(out)G (*|-) + blout)G (71-), (68)

We suppose this canonical transformations are proper transformations, that is,

the condition
G (-[Y) & (-[*) < o0 (69)

I

holds.
All the information about the processes of particle creation, annihilation,
and scattering in an external field (without radiative corrections) can be ex-

tracted from the matrices G (glcf) [7], expressing the elementary probability
amplitudes,

W () = W (ﬁiﬁi) =c; <0, out |am (out)al, (in)| 0,in >= G1 (+|+)mn
w(~|-)pm = 3 <0,o0ut b ( cra,u’;)bir (in)]0,in >= G~1 1<) s
w0 = +),, = &t <0,0ut|bf(inaf,(in)] 0,in >

= - [G-l 1) G ) = 5[ (1M 67 (4]
o1 < 0, out |am (out)by (0ut)| 0, in >

— K[Et (G, =~ [6 (1) 67 ()],

where the in-vacuum and out-vacuum are defined by

I}

W (+ = 10},

a(in)|0,in > = b(in)|0,in >=0,
a{out)|0, out > = b(out)|0, out >= 0, (71)
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and a vacuum-vacuum transition amplitude is
¢y =< 0, out|0,in > . (72)

The proper linear canonical transformations (68) can be represented as a unitary
transformation [7]

a}(m) aT(out)
bl (4 b 7
a&ﬁ% = aT%z:jt)) vi (73)
b(in) b{out)

where V1= V-1,
V = exp(—kal(outhw (+ - 0) bt (out)) exp (—rb(out) Inw (—|-) bt (out))
exp (af(out) Inw (+|+) a(out)) exp (—bout)w (0] — +) alout)). (74)
Using this expression, one can easily find

ey =< 0,0ut|V|0, out >= exp (—strlnw (—|-)). (75)

Some operator relations

II. Let A}, and A, be a set of creation and annihilation operators. Consider the
operator function

F(s) = e*A'DA (76)
where D = D, is & matrix, and s is a real parameter. At the same time
this operator function can be defined as a solution of the following differential
equation

gz;_gs) = ATDAF(s), (77

with the initial condition F(0) = 1. Using the well-known formula,
e9AIDA 4 osATDA _ 00D f s AF(5) = F(s)e*P A, (78)

which hold true both for bosonic and fermionic cases, we may rewrite the equa-
tion (77) as follows

dFd—S) = ATF(s)DeP A. (79)
Now one can easily see that the equation (79) has a solution
F(s) =N [exp {AT (e°? — 1) A}], (80)

where A is the symbol of the normal ordering. Both operators (76} and (80)
obey the same equation and the same initial condition F(0) = 1. Thus, we
justify the formula

exp {ATDA} = Nexp {AT (eD —1} A}, (81)

which hold true both for bosonic and fermionic cases.
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Wick’s Theorem

IIT. The vacuum projection operator Py = |0 >< 0| can be written in the normal
form,

0>< 0 =: e (82)
represented first by F.Berezin [37]. To see this note that the equations

aPy =0, Paat =0, Bpl0>= 0>

hold for this operator. By using Wick's theorem one can verify that the operator
:e™®'% ; gatisfies these equations.

IV. It is very effective to use Wick’s theorem in a closed form [38]. Let us
consider a T-ordering product of the number of creation and annihilation opera-
tors al (¢} and a,,(#') depending on the formal ordering of the ” time” parameter
t, where ¢ # /. This parameter ¢ is only needed for ordering and is omitted
after realization of the procedure, af,(t) = al, and a,,(t') = a, for all ¢ and ¢'.
The vaccuum {0 > is defined by the condition a,|0 >= 0 for all n. According to
cancnical commutation relations of the operators a;fl and G, the vacuum mean
value for the T-ordering pair of a},() and a,,(¢') is

Amn (1) =< 0|Tam(t )al (£)|0 >= 67mn© (' ~1).

In this case, the T-product can be expressed in the normal form by using the
following functional form (Wick’s theorem),

Tal, (t1) ... al  (EN)amy (£1) -+ g (1)

_ or ! i T . t / !
= exp { f Sam@y S (08 57 5 dtdt} tal (t1) - ah () Gmy (2)) . - Gma, (E14B3)

Theorem (83) is valid both for fermions and bosons.

Trace formulas

V. The trace of a normal product of creation and annihilation operators can be
calculated by using the following path integral representation. Let : X (af, a) :
be a normal product of creation and annihilation operators e and af. The trace
in the Fock space,

o0
tr{: X {al,a) :} = Z Z:(M’!)_1 < O0l@myy -+ Gmy 0 X (a,0) ral, .. al,, 0>,

M=0{m}
can be represented as the following vacuum mean value,

tr {: X (a%,0) :} =< 0|7 : X (al,0) : eatnal(t)|g > (84)
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where a = a (t), a' = a (¢}, and #; > ¢ > #;. Let us consider the fermion case.
Using the path integral representation (10), one can rewrite (84) as

tr{: X (af,a) i} =< 0|fexp {A+Xa(tf)}: X (a*,a) i exp {a’f (t:) A} TdA*dAJ0 >

Then one uses Wick’s theorem where three kind of a pairing appear:

8 & o 8 5 o
. t . - LA SN W
tr{: X (al,a):} = exP{Ba(tf)Baf—’_aaaaf(ti) Ba(tf)aa’f(tz-)}

< 0: fexp {X2+Xalty) +al () A} X (af,a) : HdA*dA0 >

Calculating the derivatives with respect to a(t;) and af(#;), one finds the con-
venient representation for the trace of the operator : X (af,a) i in the fermion
case,

o 6; 1) al
' ; ) _ r Yl o
tr{: X (a,a) i} = eXp{aa(tf)aaf+3aaaT(ti)}

< 0 / exp {2X°A + A*a (ty) +af (t:) A} X (at, a) : TIIX*dAJO(85)

For the boson case, starting from the path integral representation (11) and
following in a similar way what was used for fermions, one finds

8 o 8 @
e X ()} = ooty ]

< 0|: /exp {e*a(ts) +al (t:) ¢} X (af,a) : Mdp*dyp|0(86)
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