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Abstract

1 Introduction

It is well known that the many modern physical theories are formulated as
- gauge theories, that is theories with first-class constraints (FCC) in the Hamil-
tonian formulation. Majority of the latter theories are perturbative theories
whose behavior is in essence determined by the quadratic part of the action and
nonquadratic part is, in a sense, "small”. Very often the constraint and gauge
structure of the complete theory and its quadratic approximation is the same.
Namely, constraints of the complete theory differ from linear constraints of the
quadratic theory by "small” nonlinear terms, such that does not change the
numbers of first-class and second-class constraints. The gauge transformations
of the complete theory and its quadratic approximation have the same number of
gauge parameters. The majority of properties of the complete gauge theory and
of its quadratic approximation are the same. However, to derive and to prove
these properties for a general gauge theory is sometimes a very complicated task.
At the same time simplifications due to the quadratic approximation, allow one
to represent simple derivations and illustrations of these properties. The aim of
the present work is to consider a general quadratic gauge theory and to prove for
such a theory a set of generic for any gauge theory properties. In particular, we
establish the relation between the constraint structure of the theory and strue-
ture of its gauge transformations, we prove the famous Dirac conjecture, and
‘identify definitions of physical functions as those which commute with first-class
constraints and those which are gauge invariant on extremals. To fulfill such
a program, we demonstrate the existence of so-called superspecial phase-space
_ variables (Sect. 2), in which the quadratic Hamiltonian action takes a simple
canonical form. On the base of such a representation, we analyze the functional
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arbitrariness in solutions of equations of motion of the quadratic gauge theory
(Sect. 3), and derive a general structure of symmetries analyzing the symmetry
equation (Sect. 4). In Sect. 5, we use these results to identify two definitions
of physical functions and, thus, to prove the Dirac conjecture.

2 Superspecial phase-space variables

In this Section we are going to demonstrate that there exist so-called superspe-
cial phase-space variables in which the total Hamiltonian for a general quadratic
gauge theory takes a simple canonical form.

First, we recall {2] that there exists a canonical transformation from the
initial phase-space variables 1 = (g,p) to the special phase-space variables ¢ =
(w, @, ) such that: The constraint surface is described by the equations {2 =
0. The variables {2 consist of two groups: @ = (P,U)}, where Ul are all the
SCC and P are all the FCC. At the same time P are momenta conjugate to
the coordinates ¢). Moreover, the special variables can be chosen such that
- Q= (2W, 00}, where Q1) are primary and 2> are secondary constraints.

Respectively, 0Q) . (fp(l)’U(l))’ 02.) o ('P(z...),U(z...)); »PE(P(I),P(Z..))’
U = (UL, UE), PO are primary FCC, P2+ are secondary FCC, UM are
primary SCC, U® are secondary SCC. The Hamiltonian action S of a general
-quadratic gauge theory has the following structure

Su ['19} - Sph [w] + Snon—ph [19] 3 ¥ = ('!9: A) )
Son 6] = [ [ty — Hon ()]

Snon—ph [¥] = f [PQ + Upvq - Htg]c;zl—ph (79)] dt, 1)
where
ngizi_ph — (Q(l)A+ Q{2)B +w0)tP(2) iy P(Q)DP(Q.)

and A, B, C,F and @ are some matrices (depending, in the general case, on
time). Note that the special variables (w, @, ) may be chosen in more than one
way. The equations of motion are

_98a _ § = {9, O}
f—zﬁ“°=¢{ G=0

where
H(l) = th + Hnon—ph

is the total Hamiltonian. In what follows we call I and O (I} the extremals.
‘We are going to demonstrate that the special phase-space variables can be
chosen such that the non-physical part of the total Hamiltonian (2) takes a




simple (canonical) form:

HO o = Hido + B, (3)

non—ph

where

Ny a—1
ng“lc%c = Z (Z QUiledplitlle) . )\%p(lla)) ,

a=1 \i=1

Héé)c — U(2)FU(2} n AUU(]') .

Here (Q,P) = (QUI®), PO | Ap = (M), a = 1,.,Ry, i =1,.,a, F
is a matrix, and ®,, is the number of the stages of the Dirac procedure that
is necessary to determine all the independent FCC. In what follows, we call
such special phase-space variables the superspecial phase-space variables. In the
superspecial phase-space variables, the consistency conditions for the primary
FCC PUe), g > 1, determine the secondary FCC P@®) and so on, creating
the a~chain of FCC as follows P(1a) — ple} _, ple) ... plala) gee the scheme
below,

P(lle) — ’}3{2EN>¢) — e ;D(Nx—lmx} — ‘P(Nxmx)
POR-D  , pEM-1) _, ..., Plte—1iy-1)

P, p@?
P

The consistency conditions for the constraints Pele), g =1, ..., R, do not create
any new constraints. Note that in the canonical form the non-physical part of
the total Hamiltonian does not depend on the coordinates Q(@l),

Below we represent the proof of the above assertion.

First we consider the term QAP+ from the Hamiltonian (2). Let
the momenta P() and the corresponding coordinates Q(Y) are labeled by the
Greek subscripts, whereas the momenta P(2-) and the corresponding coordi-
nates Q(3) are labeled by the Latin subscripts,

Q= (Q,(,l),Q,EZ"')), D — (P£1)=Pz£2"')) ‘

Suppose the defect of the rectangular matrix A*® is equal a (obviously [Q®] -
a < [@@)]). Then there exists a nontrivial zero vectors 2@y, & = 1,..a, of
the matrix A such that zE’&)A”b = 0. Let us construct a quadratic matrix

Z, = ||ZE/&)ZE/&)||, a=(&a), [5‘] < [b] ’

where the vectors z(z) have to provide the nonsingularity of the complete matrix
Z. Such vectors always exist. Then we perform the canonical transformation




(QW,PW) — (Q'W), PV, where Qi 2z = QY. Such a canonical transfor-
mation can be performed with the generating function of the form

W = Qi Z:PM. 4)
We denote

Q) = (A = QM. g = Q¥ PV = (PYIV, L) .

Thus, now the primary FCC read P PM) and the corresponding conjugate
coordinates are Q1Y) @{1), After the canonical transformation the total Hamil-
tonian H (Y = Hyy + Hyon—pn becomes

HO = th_l_Q(l)AhP(z...) +(Q(2'"}B+wC’)P(2'"} + P2 ppl2-)

where
A = (&) = Z34°", rank &' = max = [QU); b= (1,5) , det (4)"F #£0,

and via AP 4 AP we have denoted terms proportional to the primary
FCC. At the same time the functions A; and X absorb the time derivative of
" the generating function (4). Note that the coordinates QMY do not enter the
Hamiltonian H) (in fact, that was one of the aim of the above canonical
transformation) and therefore, the consistency conditions for the constraints -
PN do not create any new constraints,

{‘P(”l),H{l)} =0.
Consider the consistency conditions for the primary FCC A1)
{'P(l),H(l)} — _APE) g

- Since the rank of the matrix A’ is maximal, the combinations A’P(2) of the sec-
ondary FCC are independent. We can choose them as new momenta 72} which
are now second-stage FCC. To this end, we perform a canonical transformation
(QE), Py — (@3, P'(2+)) with the generating function

W = Q!(Q)A!P(Q...) + Qr(a...)AHP(z..) ) (6)

Here the rectangular matrix A” is chosen such that the quadratic matrix A =
[|A’A”|| is invertible, det A # 0. Thus, the new variables are

pH2..) — (Pr(z),p(s...)) Q) = (Qr(z),Qr(a...)) :
PR = 4P prded = (A”’P(Q“‘)) L Q) = Q@A
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In the new variables the Hamiltonian (5) reads

H(l) — th +Q(1)rpl(2) + (Q!(z...)Br +w01)rpf(2...) _|_rPf(2...)DhPr(2...)

The matrices B/, ', D', and F' differ from the ones B,C, D, and E due to
the variable transformation and absorb the time derivative of the generating
function (4). We note that the latter derivative does not modify the term
QM)

Separating explicitly terms proportional to P'(*) in the Egs. (7) and omitting
all the primes, we obtain

HO = Hop + (@ + 5,8, + 5,8, ) PO + (@B +wC)PE-)

: (8)

where & = (X,, E,) is the set of all the phase-space variables except QU QM)
and PUY, P, whereas 5,,5,,8,C,D, E, and F are some matrices.

Now we perform a canonical transformation {we do not transform the vari-
ables QUHIV, PUIYY with the generating function W,

W =P (U +5,85,+5,5,) + 5,5,
. Thus,
PO =P @ = QW 4 3.8, + 3,8, + O(PY), T’ = £+ O(PW).

In terms of the new variables, the Hamiltonian (8) takes the form (with primes
omitted and redefined functions Ap which absorb time derivative of the gener-
ating function)

where B,C,}, E, and F are some matrices.

At this stage of the procedure, we consider the term Q% BP3) from the
Hamiltonian (9). Let the variables QU1 P, Q) PP are numbered by the
Greek subscripts, whereas the variables Q) P(3~) are labeled by the Latin
subscripts (in the general case the number of these indices is different from the
one of the first stage of the procedure}. Suppose the defect of the rectangular
matrix B** is equal b {obviously [@®] —b < [Q(-]). Then there exists b
nontrivial zero vectors v(gy, & = 1, ..., b of the matrix B such that UE’&)B”’“ = 0.
Let us construct a quadratic matrix

Ve = ||UE}&)UE}&)” , a=(&a), [C_E} < [k]s




- where the vectors vy have to provide the nonsingularity of the complete matrix
V. Such vectors always exist. Then we perform a canonical transformation

QM. P, @ p@ _, ) p1), gD P2
Q@ = (@ = o, Q" = 4¥)
with the generating function
W =Q'Wypl 4 gAypa,

In the new variables the Hamiltonian (9} has the form (we omit all the primes
and redefine A)

HOY = By +(QW + QAP  §R ppG-) 4 (QB-IK + wC)yPE-)
(10)

where A = 4V ~!, B, K, C, D, E, and F are some matrices, in particular,
rank B = max = I:Q{Z)] < [73(3)] ]

Now we perform a canonical transformation ¢(2), P(1}, Q) p2) , GrQ) P11} '), P2
- with the generating function

W= (Qu) +Q@ A) P 4 Q@Dp@)
Thus we get:
P = B G0 = g0 4 Q@A P = P@ _ APD /@ = @) |

In terms of new variables, the Hamiltonian (10) takes the form (omitting all the
primes and redefining Ap)

v = Hyp + QURAPCR) L sPE) 4 G2 ppE-)

+ UG FUE-) £ 3 PUY 2P0 4 3P0 4, u®
The time derivative of the generating function is absorbed by the term AP,

Note that the variables Q(31®) do not enter the Hamiltonian and therefore,

the consistency conditions for the constraints P1?) do not create any new con-
straints. In addition, we remark that at this stage of the procedure, the primary

FCC are P, PAI2) and PO,
Consider the consistency conditions for the second-stage FCC P |

{75(2),H(1)} = —ppB-) =0,
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Since the rank of the matrix B is maximal, the combinations BP3) are inde-
pendent. We can choose them as new momenta P'(®) which are now third-stage
FCC. To this end, we perform a canonical transformation (Q), P8} —
(QG3+), P'3)) with the generating function

W = Q@ ppG-) 4 id-) gl Q§c3-.-) _ (Q(,), ](ﬁ ))

Here the rectangular matrix B’ is chosen such that the quadratic matrix A =
[|BB'|} is invertible, det A # 0. Thus, we obtain

PE) AP = (;D(’,ff),’,'?;c(,‘l"')) , ngg) _ B“"“’P;Es"'),
Q) = QE-IA1 = (@, Q) .

In the new variables the Hamiltonian (10) has the form (omitting primes)

HY = By, + QUIDPERR) L GWED 1 G@pE 4 (QB-IK 4 wC)PE) 4 PB--

+PRDEYE) 4 g Py 4y PO 4, pld L 3AW 4 3, u®)

where K,C,D, E, and F' are some matrices.
Let us separate terms proportional to P} in this expression. Thus, we
:obtain

HU = Hyy, + QUAIPED 1 QPR 1 p) (G2 4 5,5, + 5,5, )

+ U@ Fy @ 4 2 PAL 4,2 4 3BM 4 AU (11)
where 54, 5,, K, C, D, E,and F are some matrices and 5 = (8¢, Ep) is the set of
all the phase-space variables except the ones Q1) P11 (1l 2) PaR), QM)
PO, QI P2 @ P,

Now we perform a canonical transformation (we do not transform the vari-
ables QUIN, pUID, o2} p112), ) HA) 22, P212)) with a generating
function

=P (D + 5,8, + 55, + 55,
Thus,
P = PR H@ = @ 4 8,Eq + SpEy +O(P¥), B =2+ 0(PP),

In terms of new variables, the Hamiltonian (11) takes the form (omitting all the
primes)

HD = Hop + QUIBDPRI2) 4 H2) (Q D+ R,%, +R,% ) +GRPE

+ U@ pye) oy pait) /\273(1|2) + AP 4 AU, (12)

)D’P(3.)




- where £ = (@@, P?) 5) = (£, 5p) and R, K,C, D, E, and F are some matri-
ces,
Let us perform a canonical transformation with a generating function

W =P (QU 4 R T + ByS,) + 55,
Thus,
PO = )| GO = GO 1 B3, + BT, +OBW), 5 = 5+ 0BW).

In terms of new variables, the Hamiltonian {12) takes the form (omitting all the
primes and redefining Ap)

HD = By + QUIDPER) | GOEE@ 4 GRp®)
+ U@ FYE-) 4 P 4, pAR) 4 J3PW £ r) (13)

where K,C, D, E,and F are some matrices.

The further transformations of the Hamiltonian (13) can be done using the
same kind of canonical transformations as were used above. In the end of the
procedure we arrive to the form (?7) for the non-physical part of the total
Hamiltonian.

Let us stress some important facts related to the canonical transformation
that was performed to reduce the total Hamiltonian to the form (77). _

First of all, one ought to note that the finally transformed variables w, ¢},
2, where (& = (P, U) (superspecial phase-space variables) still remain the special
phase-space canonical variables ¢ and possess all the corresponding properties of
such variables. Let us indicate below the final superspecial phase-space canon-
ical variables by primes and the initial special phase-space variables without
primes. One can see that

P =1P, PV =70pH

U'=U+0/P), v =y,
such that P’ are FCC, P are primary FCC, U’ are SCC, and U{ are primary
SCC. The physical variables do not change on the constraint surface, w — w =
w + O(P). One ought to stress that the superspecial variables PU%) coincide

with the FCC x{®) from the orthogonal constraint basis introduced in [4]. In
the general nonquadratic theory the relation is the following:

i) = plila) . 0 (99) . (14)
One can also see that in the superspecial phase-space variables, the non-

physical part of the Hamiltonian action can be written as:

Rx
Snon—ph = f {PAQ +Y_ PEIQU LyBuY | dt, (15)
i=1




where A and B are matrix first-order differential operators and
Q=(%, QU =1 .,a-1,a=1,.,8), U= {U).

It is important to stress that [Q] = [P}, due to the fact that [Ap] = [P(M].
One can see that there exist local operators A~ and B~ such that AA~1 =
A=A =1, BB~! = B~1B = 1. This assertion can be derived from the fact
that by the construction of the special phase-space variables, the equations of
motion that follow from the Hamiltonian action have the unique solution P = 0
and 4 = 0. Thus, the equations
531-1 6SH

—_— = AT = —_— = 3 =
55 =0 = ATP=0, TE=0— BU=0 (16)

must have only the solution P = 0 and &/ = 0. Let us represent A as
A:A(i) =a£+b,

where @ and b are some constant matrices, and consider solutions of the form
P(t) = e~ B¢ P(0), where E is a complex number. Thus, we obtain AT(E)P(0) =
0. The existence of the unique solution P{0} = 0 implies

VE: det A(E) #0. ()

On the other side det A(E) is a polynomial of E. Due to (17) such a polynomial
has no roots. That means that det A(F) = const = ¢. In turn, that implies that

A7H(E) = <A(EB),

where A(F) are the corresponding minors of the matrix A(E). The latter minors
.are finite order polynomials of . Thus, the operator

P 1 d
Al=Z -
cA (dt)

is a local operator. In the same manner, we can prove the existence of the local
operator B~" (to this aim it is convenient to reduce the Hamiltonian Hégc to

the canonical form as well, see below).

3 Functional arbitrariness in solutions of equa-
tions of motion
In theories with FCC equations of motion do not determine an unique trajectory

for any given initial data. Below we are going to study this problem for quadratic
gauge theories under consideration using the superspecial phase-space variables.




The equations of motion that follow from the action (1) and (2), with account
taken of (3), have the form:

w={w,Hpn}, =0, (18)

and .
Qte) = pY-

Qi) = Qlila).

Q(ila) = {Q(ila)’ Hoon—ph} = (19)

Olale) — gla=1la)

One can see that the equations (18) for the physical variables w and for §2
have a unique solution whenever initial data for these variables are given. There
exists a functional arbitrariness in solutions of the equations of motion (19) for
the variables () since these equations contain arbitrary functions of time Ap (£) .
One ought to note that the number of the variables @ is equal to the number
of all FCC and, in the general case, that nuwmber is larger than the number
of the arbitrary functions Ap (£). However, as will be seen below, due to the
specific structure of the equations, the "influence” of these arbitrary functions on
solutions for @) is very strong. That fact is extremely important for the physical
interpretation of the variables @ and for the general physical interpretation of
theories with FCC. The extent to which the variables () are affected by the
- arbitrary functions Ap () is described by the following proposition:

The equations of motion (19) for the variables @ are completely controllable!
by the functions Ap (7). In the case under consideration, that means that by a
. proper choice of the functions A% (¢) the equations (19) have a solution with the
properties

QUile) = 0, QUla Al ;-1 .. a4,
£ t=71
dsis, [PV
— 4 Ap — £& =0.1.... K 20
a5t |, Todt (y: $=0,1,.., K, (20)

where 7, AG®) Alia) 6&), and the integer K are arbitrary.

Due to simple structure of the equations of motion in superspecial phase-
space variables, the proof of the above assertion can be done in a constrictive
manner. Namely, we represent explicitly such a solution. It has the form

da.—'ch:a
dte—i !

Qlile) = i=1,..a,

if we chose
a*xXe
Ay = ——
P de

I¥or exact definition of the controlabilty see e.g. the book {7, 7].
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where X®(t) are arbitrary smooth functions, obeying the following boundary
conditions

d*Xe
pre t=0=0,s=0,...,K+a,
X = g’(—aa:fa)|t=r = Ale=sla) y 8=0,0,a—1,
dts t=T --E-WE ; = 6?3-&) y 8 == a,, ”_,K + a.
=7

‘For example, the functions X (¢) can be chosen to be:

a—1 1 K+a 1
X2 () = £(9) [Z T IR DF A s
8=0 " a=a

where f(t) is an arbitrary smooth function that is equal to zero and to one in
the neighborhoods of the points ¢ = 0 and ¢ = 7, respectively. An example of
such a function is given below

0, t<e,
f&) =4 The> U= re + gy €SES T,
1, t>71-¢,
; [ () — - [s14) =
Jim  fAE) =0, lim o fUE) =bos, s20. (21)

The proposition that was proved is crucial for the understanding of the
structure of theories with FCC (gauge theories) and for their physical interpre-
tation. The most remarkable fact is the following: The functional arbitrariness
in equations of motion of theories with FCC (gauge theories) is due to the unde-
termined Lagrange multipliers to the primary FCC. However, this arbitrariness
affects essentially more variables. In the special variables all the variables @
are controllable by the undetermined Lagrange multipliers. The number of ()
is equal to the number of all the FCC, and is greater than the number of the
Lagrange multipliers.

4 Symmetries

We recall that a finite transformation ¢ (¢) — ¢’ (¢) is called a symmetry of an
- action S if IF

L(Q)Q)"_)Lf(%Q):L(QaQ)_I_EEa

where F' is a local function. The finite symmetry transformations can be dis-
crete, continuous global, gauge ones, and trivial. Continuous global symme-
try transformations are parametrized by a set of time-independent parameters.
Continuous symmetry transformations are gauge transformations if they are
parametrized by some arbitrary functions of time, gauge parameters {in the
case of a field theory the gauge parameters depend on all space-time variables).

(22)
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‘We below consider only infinitesimal symmetry transformations ¢ — ¢+ 6¢. Any
such a transformation implies a conservation low (INether theorem):

@ 58

R 7 i = const. 2

7 &g 7 =5 (7 == const. on extremals, (23)
oL . , _dF

G—P—F,P—@ﬁq,é\L—- dt

The local function G is referred to as the conserved charge related to the sym-
metry &g of the action 5. The quantities ég, S, and G are related by the
equation (23). In what follows, we call this equation the symmetry equation.
The symmetry equation for the action Sy has the form

60—+ — =0. (24}

4.1 Trivial symmetries

For any action there exist trivial symmetry transformations,

op 08 :
a __ b
61;.-(] =[® 5_qb s (25)

N PR N
where U is an antisymmetric local operator, that is (UT) = —U® ., The

trivial symmetry transformations do not affect genuine trajectories.
Using the simple action structure in superspecial phase-space variables, we

can prove the following assertion: For theories with FCC, symmetries of the

Hamiltonian action that vanish on the extremals are trivial symmetries.

To prove this assertion let us consider the Hamiltonian action Sy (9), ¢ =
(#,A) of a theory with FCC in the superspecial phase-space variables ¥. The
equations of motion that follow from this action have the form

85u
U
6Su
60
85y
P
Note, that the exact solution of the equations (26) has the forml{ =P =0,Q =
X0 (Q(’:'i)) , where ¢/ is a local functions of the indicated arguments. Therefore,
the variables I/, P, and Q are auxiliary ones?. Excluding these variables from

=0=U=0
=0=P=0,

=0= Q= -A"'T, T= (TO1 = 5, QI . (26)

2Suppose an action Slg, y] contains two groups of coordinates g and g such that the coor-
dinates y can be expressed as local functions y = § (gl'l,1 < co) of g and their time derivatives
by the help of the equations §S/6y = 0. We call y the auxiliary coordinates. The action
Slg,y} and the reduced action S [g] = Slg, 7] lead to the same equations for the coordinates
q, see [5, 6]. The actions Slg,y] and S [g] are called the dynamicaly equivalent actions. One
can prove that there exists one to one correspondence (isomorphism) between the symmetry
classes of of the extended action. We call symmetries equivalent if they differ by a trivial
transformation.

12




~ the action Sy, we obtain a dynamically equivalent action Sy [w, Q(’;'i}]. Taking
into account that if = P =0 = = 0, and the relation (77), we obtain

S [w, Q(“i)] = Sttly—po,gmy = Spn ] - @7

- Let a transformation 89 vanishing on the extremals is a symmetry of the
action Sy . Consider the reduced transformation dw, §QU4,

(Swa SQ(ili}) = 579|u=?=0,g=¢ ’

Obviously, the reduced transformation vanishes on extremals of the reduced
action Sy and is a symmetry transformation of the action Sy. That implies

(il4)
5&) ésph 6Q(1 _ (ﬁésph)
Sw ’

where 71 and # are some local operators. The transformation 8w is obviously

- the symmetry transformation of the nonsingular action Sy, and in addition,
this symmetry transformation vanishes on its extremals. One can prove that
such a symmetry is always trivial one and, therefore, /i is antisymmetric. Thus,
the complete transformation 8w, §Q¥ can be represented in the form

S ) . f 8u . (ﬁz _ﬁT)
’ | B | x={(" .
( 5Q( ( o ) i 0

Obviously, here M is an antisymmetric matrix.

Finally, the transformation 8w, §Q9) is a trivial symmetry of the action
Sy. That implies that the extended transformation 89 is a. trivial symmetry of
the action Sg.

4.2 Gauge symmetries

Below, we are going to prove the following assertions:

In theories with FCC there exist nontrivial symmetries 4 of the Hamiltonian
action Sy that are gauge transformations, These symmetries are parametrized
by the gauge parameters v. The latter parameters are arbitrary functions of
time ¢, moreover, they can be arbitrary local functions of % = (¥, A).

'The corresponding conserved charge (the gauge charge) is a local function
G = G(P, V“]), which vanishes on the extremals. The gauge charge has the
following decomposition with respect to the FCC:

Wye—1 Ry
G= Zv( yplele) 4 Z; E;Ic,ap(zla} (28)
= a=r

Here Cj, (v} are some local functions, which can be determined from the

symmetry equation in an algebraic way, and v = (1)), V@) = (V(”c';‘)) , 4=

13




1,...,Ny. Here v, are gauge parameters related to the FCC in a chain with the
number a. The number of the gauge parameters 1) is equal to the number of
the FCC in the chain a. The index p, labels constraints (and gauge parameters)
‘inside the chain.

The total number of the gauge parameters is equal to the number of the
primary FCC. The total number of the independent gauge parameters together
with their time derivatives that enter essentially in the gauge charge is equal to
the number of all the FCC,

The gauge charge is the generating function for the variations 69 of the

" phase-space variables,

50 = {6,G} . (29)

The variations §)y are zero and A% = v([Z])

To prove the above assertion, we consider the symmetry equation (23) for
the case under consideration. Taking into account the action structure {1,3)
and the anticipated form of the gauge charge (28) and of the variations §¥, we
may rewrite this equation as follows:

Ny Ry
HG -3 % {’P(”“'), G} =UWexy +3 srp P, (30)
a=1 a=1
where
- é) a
= [m+1]
HG {G,H}+(at+u 6lm)G’
Nx a—1
H= th(w) + ZZQ(?’.|&):P(1Z+1|G) + U(2)FU(2) i (31)
a=1i=1

The following commutation relations hoid true
{'p(ila),H} = Pl 1 R — 1, a =i L, Ry,
{’P(“'”),H} =0,i=1,..,8,; {P,Q} =0.

The equation (30) implies the following equations for the functions Cj), and the
variations 8

0 o
(i+1je) (ile) [m+1] i
Z Z [ L +P (8 +v v [m])] C’sla

i=1 a=i+1
n pr(aia)y( y=UWsxy + Z’P(”“)ci)\“ : (32)
a=1 a=1

Considermg Eg. (32) on the constraint surface P = 0, 4 = 1,...,R, — 1,
& = 4,.,R, UML) = 0, we can choose Cy LR, = Py - Substltutlng th.lS
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Ch, —1jn, Into Eq. (32), we get

Ry=2 My 3 5
Y |ttt 4 plie) (.__. 4+ plme] )] Ci
i=1 a=i+l N ay[m]

Ry —1 R,
+ P(Nx—lmx)y][?i + Z Py = UDAy + Zp(lh)a)‘%. (33)
a=1 a=1

Considering the equation (33) on the constraint surface PUl%) = 0,7 =1, ..., N, —
2, = ’.’:, cery NX’ U(l) = 0, we choose CNX—2|NX—1 - y(Nx—l): CNX_2'NX = V(Nx) .
One can see that in the same manner, we determine all the Cj, to be

Cia =t i=1, Ry =1L, a =i+ 1,0, Ry (34)

Thus, in the case under consideration, the gauge charge has the following form

Rx Ry

G=33 wleriptia, (35)

i=1 a=i

The form of the variations 69 follows from (29),
sQUia) — ygj)“”'], b =80=0. (36)

Thereafter all the Cy), are known, the variations §A can be determined from
Eq. (32),

Ay =0, 63 =vf2) . _ (37)

Thus, the assertion is justified.

5 Structure of arbitrary symmetry

Analyzing the symmetry equation, we are going to prove that:
Any symmetry §¢ and & of the action Sy can be presented as the sum of
three type of symmetries

59\ [ 69 bq0 b4
(¢)-(&)(g)(&) o
such that:

The set 6% and G, is a global symmetry, canonical for the phase-space
variables ¢. All the variations §. and the corresponding conserved charge G,
are either identically zero or do not vanish on the extremals.

The set 6,2 and G is a particular gauge transformation given by Eqs. (35),
(36), and (37) with specific fixed gauge parameters (i.e. specific fixed forms of
the functions v = 7 (¢, 71, Al)} that are either identically zero or do not vanish
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on the extremals. In the latter case, the corresponding conserved charge Gy
vanishes on the extremals, whereas the variations 63 do not.

The set &, and Gty is & trivial symmetry. All the variations 8,9 and the
corresponding conserved charge Gy vanish on the extremals. The charge Gy
depends on the extremals as Gy, = O (I 2) .

Below we present a constructive way to find the components of the decom-
position (38).

5.0.1 Constructing the global canonical part of a symmetry

Supposing that &7 and @ is a symmetry, and taking into account the structure
of the total Hamiltonian in the case under consideration, we can write the
symmetry equation (77) as follows

4G _

SOE T ~ UWENy — ApsUWD — PWgrp + = =0 (39)

i
549

Let us denote via 879, G’; the corresponding zero-order terms in the decompo-
sition of the quantities §¢, G with respect to the extremals J. Then

( 29 ) _ ( 879(n, ) + O(J) ) , (40)

I=(Q,J)=O( ) J=(Z, Av), I=1§‘—{19,H}—{19,P(1)})\p,

G‘.'I(na )\';[g) + B (w, )\y;])‘][m] " O(JE)

Then we rewrite the equation (39) retaining only the terms of zero and first
order with respect to the extremals J. Thus, we obtain

8,9E7T — PW6Ap = ~HG, + {PW, G’J} Ap + 2 {UD, G}
+{8,Gy} BT = J™ A By 4+ 3p { PO, B} I ~ B 1 O(@)
(41)

Here, the contributions from the terms U WAy and §Ap U are accumulated
in the term O(£2]), and the operator H is defined by

— 8 im0
HF_{F’H}+(8t+’\ NG F. (42)

Analyzing terms with the extremals JI™ (beginning with the highest deriv-
ative) in Eq. (41), we can see that all B,, = 0. Considering then terms propor-
tional to Z in Eq. {41}, we get for the variation §;9 the expression

649 = {9,G} + O().
Then, with account taken of the relations

50 = O(1) = 6,0 = 0(Q) = {2,G4} +0(%),
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. we can see that

(@65} =0@. @3
One can check that {P, G';} is the first-class function, which means that
{P,Gy} = O0(P)+0(Q%). (44)

" Considering the remaining terms in Eq. (41), we get the equation
PWsAp = HG, + Mp {’P(l), Gj,} +0(Q2), (45)

which relates §;A» and G7}.
This equation (45) allows us to study the function G in more detail. To
this aim, we rewrite this equation (taking into account (42) and (44)) as

i}

(G HY + (—H%Z"“] 0

gt 8 Ag"]

) " =O0(P}+0(0%).

Analyzing terms with the Lagrange multipliers )&“ ] (beginning with the highest
derivative) in this equation, we can see that these multipliers may enter only
the terms that vanish on the constraint surface. For example, considering terms
with the highest derivative A,E,f{ 1 in the latter equation, we get

G, :

—=d 2 — L M- 2
6)\%"’] =0(P)+0(¥°) = G = G4(--- A5" ™) + O(P) + O(Q?).

In the same manner we finally obtain: G, = Gy(#) + O(P) + O(02). With
account taken of Eqgs. (43) and (44) this implies:

{U,Gs}=0(@), {P,Gs} = O(P) + 0(2?).

Thus, the above consideration allows us to represent a refined version of the
representation (40)

69 {9,Gs + BpP} +0(I)
e | | sa009, M) + 0(7)
G G+ BpP + O(I?)

where Bp = Bp(¥, /\.E.l,]), and the function G ;(1%) obeys the relations
{Gr, U} =0(), {G1,P} = O(P)+0(Q?), {Gs, H} = O(P)+O(Q*). (47)

We select from the function GG; a part Gy that does not vanish on the
constraint surface,

Gy =gw)+ g (w,QQ+0(R) . (48)
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Due to the relation (47), the function g (w,Q) in (48) is zero, and, moreover,
0 () =0 (P)+0(Q?). We define Gy (9) as

Gr{9) =g(w). (49)

Then
G1(8) = G1(9) + G1(¥9), G1(¥) = O(P) + O(Q?).

Therefore, in virtue of (47),
G = G(¥) + O(P) + 0(I?),
HGr =0, {U,G) ={P,G} =0. (50)
Now we define the variations 6;_15‘ as

619 = {4,Gr} = 6w = {w,Gr} , 6:1Q =6P=6U=0,
Sray = 61hp =0. - (51)

The set §;¢, G is an exact symmetry of the action Sy. In what follows this
symmetry is dencted as

018 = 6.8 = {09,G.}, 61A=6A=0, Gy =G.=gw).
5.0.2 Constructing the gauge and trivial parts of a symmetry
At this step we represent a symmetry &9, G as
§9 =604+ 6.8, G=G,+G,». (52)

Since 8.9, G, is a symmetry, it is obvious that §,.9, G, is a symmetry as well.
By the help of Egs. (47), we can verify that the following relations hold true

Rp Np
Gr=3">" Kia (0,@, M) PU9) +0 (),
z;:) a:;
s =33 {m P} Ky (w, Q) 00D, (53)
i=1 a=i

where K are some LF.
In turn, let us represent the symmetry &9, G in the following form

6.8 = 659 + 69, G = Gy + Gz, (54)

where the set 859, G5 is the gauge transformation given by Egs. (?7), (29), and
(??) with specific fixed values of the gauge parameters,

Vi = 7 (t,n, ,\[“) = Ky (w, Q,,\E.}) , (55)
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that either are identically zero or do not vanish on the constraint surface. This
implies:
Gy =0(P)+0(I*), 89 = {9,Gs} . (56)

One ought to stress that by the construction, the functions Kj); (and therefore
the gauge transformations) are identically zero whenever they vanish on the
constraint surface.

It follows the from Eqgs. (53) that 6,9, G\, is a symmetry with the charge
of the form

Hp—1 Rp
Gu=GL+0(IY), Gh= Y D Kia (@A) PO,
i=1 a=iti

Below we will see that 8.9, Gy is a trivial symmetry. Let us write for the
symmetry ¢, G the decomposition of the form (40), taking into account
that B, = O(Q)),

( 504 ) _ | 69w, Q,28) + 0() 57)
Gix L (0 + O, Gy =Gl +0(Q3) )

All the relations that take place for the quantities §;¢, Gy hold true for the
quantities &, %, Gi,; as well. In particular, the charge G}, obeys the equation

- POSA = Bt dp {PU, Gi }+0(02), idp = 8 1o = Brsdp+0O(Q),

(68)
which is similar to the one {45). The equation (58) implies the following equation
for the LI Ky, a =i+ 1,...,Rp:

Np—1 Np
$ 3 (P9 Ay + Ky PEH1) = PO+ 0(0).
i=1 a=i+1

Considering this equation on the constraint surface 2071 = 0, we obtain

Knp—unppmpmp) =0(Q) = HKypoape =0.

Substituting the expression for Ky, 1|x, into Eq. (58), and considering the re-
sulting equation on the constraint surface §2(-* =2} = 0, we obtain K Rp—2Rp =
0, and so on. Thus, we can see that all Ky, =0, a=1+1,...,Rp, and therefore

Gy = O(I?). (59)
Then it follows from Eq. (58)
PO Ap = O(Q2) => 8. Ap = O(2) = s hp = O(I).

By the construction, the transformation 8;,; is completely similar to the one
d7. Therefore, the relation {47) holds true for this transformation and implies:

Seeg® = {8, GL} + O (Q) = O(), busdu = O(R).
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Therefore
e = O(I). (60)

The relations (59) and (60) prove that the symmetry 6,9, Gy, is trivial.

We note in addition, that the reduction of symmetry variations éw on the
extremals are global canonical symmetries of the physical action with the con-
served charge that is the reduction of the complete conserved charge on the
extremals (the Egs. (77) take place).

Any global canonical symmetry pnw, g{w) (here g{w) is the corresponding
conserved charge) of the physical action is nontrivial global symmetry 6.9, G,
of the Hamiltonian action Sy.

6 Physical functions

First of all we recall general understanding which physics may be described in
terms of gauge theories {2]. Let the time evolution of a classical system is given
by genuine trajectories  (¢) in the configuration space, the latier are solutions of
the equations of motion of the theory. On the other side the state of the classical
system at any given time instant ¢ is characterized by the set ¥l (), I > 0 at this
time instant, i.e. by a point in the jet space. The trajectory in the configuration
space creates a trajectory in the jet space. The latter trajectory can be called
the trajectory of system states. We call two trajectories in the configuration
space intersecting if the corresponding trajectories in the jet space intersect at
a time instant. Using such a terminology and results of the Sect. III, one can
say that intersecting trajectories do exist in gauge theories . On the other side,
we believe that for classical systems one can introduce the notion of the system
physical state at each time instant, such that there exist a causal evolution of
the physical states in time. Namely, once a physical state is given at a certain
time, at all cther times the physical states are determined in a unique way.
All the physical quantities are single-valued functions of the physical state at a
given time instant. The physical state is completely determined as soon as all
possible physical quantities at this time are given. Thus, on the first glance,
there is a disagreement between the causal evolution of the physical states and
the absence of the causal evolution of trajectories in the jet space for gauge
theories. To eliminate this discrepancy and to be able describe consistently
clagsical systems by the help of gauge theories, one can resort the following
natural interpretation:

a) Physical states of a classical system and, therefore all local physical quan-
tities are determined uniquely by points of genuine trajectories in the jet space.

b) All the functions that are used to describe physical quantities must coin-
cide at equal-time points of genuine intersecting trajectories in the jet space.

The item (b} ensures independence of the physical quantities of the arbitrari-
ness inherent in solutions of a gauge theory and reconciles the item (a) with the
causal development of the physical states in time. The item (b) imposes limita-
tions on the possible form of these functions. The local functions that obey the
item (b} are called physical functions. Suppose the local functions A,y (K‘,[l]) be

20




physical. This implies that for two arbitrary genuine intersecting trajectories x

and x' the equality
Apn () = Agn (1) (61)

helds true at any time instant,

Let us consider physical local functions in the Hamiltonian formulation and
in special phase-space variables ¥. Taking into account the equations of motion
(7?) and Q = 0, we may conclude that any physical local functions of the form
App, (911) can be represented as follows

Aok (19[‘]) o (w Q, )\[”) +0 (‘53 ) . (62)

Now it easy to establish restrictions on the functions ayy that follow from the
condition (61) of physicality. To this end, we recall that there exist two genuine
intersecting at ¢ = ( trajectories ¥ and ¥’ such that at the time instant ¢ they

differ by the values of the variables ¢ and A!},’ only, having the same w. Namely,

90 = (Q ),
8 (&) = (Q+8Q, W + M) | (63)

. where all the quantities @, ,\gﬂ, 66, and 6/\2.1 are arbitrary given. The existence
of such intersecting trajectories follows from the above consideration. The re-
lation (61) taken for such two intersecting trajectories implies for the function

Gphy
won (@ (),Q M) = an (w(),Q+5Q, M +8) . (69

Because of the arbitrariness of the quantities ¢}, )\ , 6@, and 6)\!,;,], we obtain
from the equation (64)

dapn _ Gapn

80 8)\['!] =0= Qph = Gph (Ld) (65)

Therefore, physical local functions of the form Ay, (9%} can be represented as

follows 55
Aon (1) = e )+ 0 (52 ) - (66)

In terms of the initial phase-space variables n = (1, A), 17 = (¢,p), any physical
local functions of the form Ay, (719) has the structure '

Aan (1) = o ) +0 (52 (67)

It follows from (66) that bearing in mind that the set of constraints P is equiv-
alent to all FCC y () in the initial phase-space variables, the set of constraints
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Q is equivalent to all the initial constraints ® (n) , one can write the physicality
conditions for the functions ey (7):

3a,ph

oQ

We are going to call conditions (67) and (68) the physicality condition in the
Hamiltonian sense. Fxaetly in such a sense one has to understand the usual
assertion that physical functions must commute with first-class constraints on
extremals. In fact, that is these condition of physicality which usually is called
the Dirac conjecture.

On the other hand, a consideration in the Lagrangian formulation implies
that physical functions must be gauge invariant on the extremals, see e.g. [2].
Such a condition of physicality we call the physicality condition in the La-
grangian sense. Below, we are going to demonstrate equivalence of these two
conditions.

Let a local functions A = A ({nll) be physical in the Hamiltonian sense.
Consider its gauge variation §.4. Such a variation has the form with account
taken of (67)

= 0(Q) = {aph, x} =0 () . (68)

A = ba(n)+0 (‘Siﬁ) . (69)

Here we have used the fact that gauge variations of extremals are proportional
to extremals. Let us consider §¢ taking into account (29) and (28). Then one
easily see that

§a = {a,G} = O ({a, x})+o(‘53nﬂ) .

Taking into account (68), we obtain that gauge variation of a physical functions
are proportional to extremals,

§A=0 (557*‘) (70)

Let now a local functions A = A () be physical in the Lagrangian sense,
i.e. it obeys Eq. (70). One can always to represent the function in the form

1 65y
A= fln,rp )+O(6n).

The condition (70} implies:

Mmax Bf %
{f,G}+ T; oA o( = ) : (71)

Let us consider terms with highest time-derivatives of the gauge parameters in
the left-hand side of (71). Taking into account that A% = v, see (37), and
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. the fact that (G contains only the time derivatives ) , 1 < @), such terms have

the form:
Ny

Z i_.y[a‘f'mmaxi
A .
p 8A;')[mmnx]
These terms have to be proportional to the extremals, which implies

o o)
ozt =0 o

Similarly, we can verify that the function f does not contain any A on the
extremals, i.e.

Fm ) = a(n) +0 (%fnﬂ) -

Therefore,

A=qa(n)+0 (%%Ii) : (72)

Considering the equation (70) for the function (?7), we obtain

e S 68y
i b—i
0.6 =33 {a P} -0 (22),

i=1 b=t

which implies {due to the independence of Véb""])
; 55,
eyl L
{a,P } o ( 5 ) o(®).

This completes the proof of the equivalence of the two definitions of physical
functions.

7 Conclusion

Below we summarize the main conclusions.

Any continuos symmetry transformation can be represented as a sum of
three kind of symmetries, global, gauge, and trivial one. If the global part of
a symmetry and the corresponding canonical charge are not identically zeros,
they do not vanish on extremals. One ought to say that this separation is
not non-unique. In particular, the determination of the canonical charge from
the corresponding equation and thus the determination of the canonical part
of & symmetry transformation is then ambiguous. However, one can see the
ambiguity in the canonical part of a symmetry transformation is always a sum
of a gauge and a trivial transformation. The gauge part of a symmetry does not
vanish on extremals, but the gauge charge vanishes on the extremals. We stress
that the gauge charge necessary contains a part that vanish linearly on the FCC,
and the rest part of the gauge charge vanishes quadratically on extremals. The
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trivial part of any symmetry vanish on extremals and the corresponding charge
vanishes quadratically on extremals.

The reduction of global symmetry transformations on extremals are global
canonical symmetries of the physical action with the conserved charge that is
the reduction of the complete conserved charge on the extremals.

Any global symmetry of the physical action is a global symmetry of the
complete Hamiltonian action.

The gauge transformations, taken on extremals, transform only the nonphys-
ical variables @ and Ap.

Now one can see that do not exist other gauge transformations that cannot
be represented in the form (28). That follows from the structure of arbitrary
symmetry transformation represented above. Namely, as was demonstrated,
any symmetry transformation with the charge that vanishes on extremals is a
sum of the particular gauge transformation and of a trivial transformation.

The gauge charge contains time derivatives of the gauge parameters when-
ever there exist secondary FCC.

In the same manner as was done in Sect. II, one can demonstrate that there
exist a choice of superspecial phase-space variables that includes already the
. variables U/ and which simplifies significantly the Hamiltonian Hégc Namely,
at such a choice the variables U have the following structure U = (V'; u), where
both V andu are sets of pairs of conjugate coordinates and momenta. The
variables from these sets are divided into groups according to stages of the
Dirac procedure and organized in chains (labeled by the index a). The variables
V consist of coordinates © and conjugate momenta II. Namely:

V = (002, glilZe+l), [(i2a) 11(i2etl)y 1 <0 <R,/2,i=1,..,a, s=1,2,
1 a
w=(u, ulsh).

The variables u{") are primary constraints (constraints of the first stage); the
variables u(2¢1) are 9a+1—stage constraints; the variables I1¢128} and T1C%e+1)
are i-stage constraints; the variables ©(#23) are 2g — (i — 1)-stage constraints;
the variables ©(#22+1) are 2a 4+ 1 — (i — 1)-stage constraints.

The variables are divided in chains with even and odd numbers. Variables
in the chains with even numbers 2a are labeled by the index p, , in the chains
with odd numbers 1, 2a + 1 are labeled by the index (, &, and by the index s.
The number of the mdlces pe and ¢, v, can be equal to zero.

In the variables V,u the Hamiltonian Hécc takes the following form:
Hs(ég = hodd + h'even + )\{l)u(l) s . ,:

a1
heven — Z (Z @(i§2a}n(i+1|20) e aZﬁ(@(i]Za))? + A(2G)H(1|20)) ;

a=1 \i=1

a—1
Proad = Z (Z EURa+(i+t2at]) 4 o) @lal2atl)y(2a+1) 4 A(2a,+1)n(1|2a+1)) , E
a=1- \i=1 ‘ :
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where o 3 0 are some numbers. Certainly, there is a summation over the indices
p, v, and ¢, in particular o, (0029)2 =37 a0 (B2,

In the refined superspecial phase-space variables, the consistency conditions
that starts with the primary SCC determine all the corresponding Lagrange

multipliers AV, A(28), and A2e*+1) to be zero, see the scheme of constraint chains

below
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Finally, one ought to mention that we have demonstrated (using some nat-
ural suppositions) the equivalence of two definitions of physicality, one defini-
tion of physical functions in the Lagrangian formulation as those that are gauge
invariant on extremals and another one in the Hamiltonian formulation that
demands physical functions to commute with FCC (Dirac conjecture).
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