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Abstract

Cohomology spaces of the Poisson superalgebra realized on smooth Grassmann-valued fune-
tions with compact support on R? are investigated under suitable continuity restrictions on
cochains. The first and second cohomology spaces with trivial coefficients and the zeroth, first
and second cohomology spaces with coefficients in the adjoint representation of the Poisson
superalgebra are found for the case of a nondegenerate constant Poisson superbrackes.

The hope to construct the quantum mechanics on nontrivial manifolds is connected with
- geometrical or deformation quantization [1] - [4]. The functions on the phase space are
assoclated with the operators, and the product and the commutator of the operators are
described by associative *-product and *-commutator of the functions. These *-product and
*_commutator are the deformations of usual product and of usual Poisson bracket.

To find the deformations of Poisson superalgebra, one should calculate the second coho-
mology of the Poisson superalgebra.

In [6], the lower cohomologies (up to second) were calculated for the Poisson algebra
consisting of smooth complex-valued functions on R™. The pure Grassmanian case n = 0 is
considered in [7] and [8].

In [9], the lower cohomologies of the Poisson superalgebra in the trivial (up to third
cohomology) and adjoint representation {up to second cohomology) for the case n > 2
are calculated. It occurred that the case n = 2 needs a separate consideration and an
additional cohomologies arise in this case. The results of this consideration are presented
in this publication. In [10] the central extensions of the algebras considered in this paper is
considered.
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Let K be either R or C. We denote by D(R™) the space of smooth K-valued functions
with compact support on R™. This space is endowed by its standard topology: by definition,
a sequence ¢ € D(R™) converges to ¢ € D(R™) if 8y, converge uniformly to 8y for every
multi-index A, and the supports of all ; are contained in a fixed compact set. We set

Dy =DR™)®@G"-, E;; =C*R“)@G", Dj-=DR")’G",

where G"- is the Grassmann algebra with n_ generators and D'(R™+) is the space of con-
tinuous linear functionals on D(R™). The generators of the Grassmann algebra (resp., the

coordinates of the space R™) are denoted by €%, «=1,...,n_ (resp., 2", i =1,...,ny). We
shall also use collective variables 24 which are equal to x# for A =1,...,n, and are equal
to &4 "+ for A = ny +1,...,n4 +n_. The spaces D“- Eg;, and D’"- possess a natural

grading which is determined by that of the Grassmann algebra The parlty of an element
[ of these spaces is denoted by e(f). We alsoset e4 =0 for A=1,...,ny and g4 = 1 for
A=n.+1,...,n . +n_.

Let 8/82* and ¥l /82" be the operators of the left and right differentiation. The Poisson
bracket is defined by the relation

‘5 E)
U,92) = F(e)poq® s0m0(z) = —o(f, )16, F}(2), ()
where o(f,g) = (~1)5159) and the symplectic metric w4? = (—1)4°8wP4 is a constant

invertible matrix. For definiteness, we choose it in the form

w0 o
wAB: ( 0 /\aé‘aﬂ ) ’ /\O.'::l:la z:j:]-:"')n+a aaﬁ:1+n+:"':n—+n+
where w¥ is the canonical symplectic form (if K = C, then one can choose A, = 1). The
nondegeneracy of the matrix w?? implies, in particular, that n. is even. The Poisson

superbracket satisfies the Jacobi identity

o(f,m){f, {9, h}}(2) +cycle(f,g,h) =0, f,g,h € Ex,. (2)

By Poisson superalgebra, we mean the space D}~ with the Poisson bracket (1) on it. The
relations (1) and (2) show that this bracket indeed determines a Lie superalgebra structure
on D7~

The integral on D7~ is defined by the relation [ dz f(2) = [ge, dz [ d€ f(2), where the
integral on the Grassmann algebra is normed by the condition [ d¢ ¢! ...&7 = 1. Weidentify
G"- with its dual space G~ setting f(g) = [d¢ f(£)g(€), f.g € G™. Correspondingly,
D’”-, i.e., the space of continuous linear functlonals on Dy~ is identified with the space
ol (]R"”r) ® G™. As a rule, the value m(f) of a functional m € Dy’ on a test function
f € Dy will be written in the “integral” form: m(f) = [ dzm(z)f(z).

Let L be a Lie superalgebra acting in a Zg—graded space V' (the actionof f€E LonveV
will be denoted by f - v). The space Cp(L, V) of p-cochains consists of all multilinear super
anti-symmetric mappings from LP to V. The space C,(L, V) possesses a natural Z,-grading:
by definition, M, € C,(L, V) has the definite parity e(M,) if

E(Mp(fh . :fp)) = 5(Mp) +5(f1) + ..o e(fi)




for any f; € L with parities e(f;). The differential d) is defined to be the linear operator
from Cyp(L, V') to Cp1(L, V') such that

pt+l

d;;[Mp(fla ey fp-H) = Z(“1)j+£(fj)IE(f)h’j_‘l-I-E(fj)SMpfj ' Mp(fl: ety f?’} sy fp+1)—
=1
- Z(_1)j+€(fj)|s(f)li+1'j_lMp(fls ---fi—l: {fz: fj}: fz’+1: vaey fu::r': veey fp+1): (3)

i<

for any M, € C,(L,V) and fi,... fo41 € L having definite parities. Here the sign “means
that the argument is omitted and the notation

i

e(f)lig =D e(f)

=1

has been used. The differential dV is nilpotent (see [5]), i.e., dg HdX = 0 for any p =
0,1,.... The p-th cchomology space of the differential d;’ will be denoted by H%,. The second
cohomology space H2, in the adjoint representation is closely related to the problem of finding
formal deformations of the Lie bracket {-,-} of the form {f,gt = {f, g} + FB*{f, gl +....
The condition that {-,-} is a 2-cocycle is equivalent to the Jacobi identity for {-,-}. modulo
the h*-order terms.

In the case of Poisson algebra, the problem of finding deformations can hardly be solved
in such a general setting, and additional restrictions on cochains (apart from linearity and
anti-symmetry) are usually imposed. In some papers on deformation quantization it is
supposed that the kernels of n-th order deformations {-,-}, are bidifferential operators. In
the present paper, this requirement is replaced by the much weaker condition that cochains
should be separately continuous multilinear mappings. It will be shown that this gives rise
to additional cohomologies. We study the cohomologies of the Poisson algebra D7 in the
following representations:

1. The trivial representation: V =K, f-a = 0 for any f € D37 and a € K. The
space Cp(D],K) consists of separately continuous anti-symmetric multilinear forms
on (D} ). The cohomology spaces and the differentials will be denoted by Hf, and
dlr respectively.

2.V :'D;,’f; and f-m = {f,m} forany f € D}~ apd m € D'~ The space Cp(Dy7, D)
consists of separately continuous anti-symmetric multilinear mappings from (D’;J—r)? to
D7-. The continuity of M € Cp(Dy;7, Dy~ ) means that the (p + 1)-form

ny?

Fore s foer) = f L M(fi, . £) () fora(2)

on (Dg; )Pt is separately continuous. The cohomology spaces will be denoted by H?,.

3. V=Ep- and f-m = {f,m} forevery f € D7~ and m € Ej.. The space (D7, Ex)
is the subspace of Cy(Dy;,Dy\) consisting of mappings taking values in ER-. The

cohomology spaces will be denoted by H.




4. The adjoint representation: V =Dy~ and f-g = {f, g} for any f, g € Dy;. The space

Cp(Di7, Dy ) is the subspace of Cp(Dj7, Diy-) consisting of mappings taking values

ni? !

in D7-. The cohomology spaces and the differentials will be denoted by H?; and dgd
respectively.

For the representations 2 and 3, we shall denote the differentials by the same symbol dgd
as in the adjoint representation. Note that in the case of the trivial representation, K
is considered as a graded space whose odd subspace is trivial. We shall call p-cocycles

M}, . ..M;“ independent if they give rise to linearly independent elements in H?. For a
multilinear form M, taking values in D37, ER-, or D'~ we write Mp(z|f1,..., fp) instead
of more cumbersome [AM,(f1,. .., fo)l(z).

‘Below we assume that n, = 2.
The results of the work are given by the following three theorems.
Theorem 1.

1.
2,

HL ~K; the linear form M;(f) = f & J dz f(z) is the nontrivial cocycle.
Let bilinear forms Mj and M7 be defined by the relations

Mt =55, Mg = [deA (P00 01,022 p)), pgeDi
0z 0z

If n_ is even and n_ # 6, then H2 = 0;
if n_ = 6, then A, ~ K and the form M? is a nontrivial cocycle;

Cif n_ is odd, then HZ =~ K and the form A} is a nontrivial cocycle.

Theorem 2.

1.
2.

3.

HY, ~ HY ~K; the function Mp(2) =1 is a nontrivial cocycle.

HY, o~ Hi ~ K?; independent nontrivial cocycles are given by
1 7 2 1 a0
My(zfy=Ff, Mi(=|f)= 1=35%"52 f(2).

Let the bilinear mappings M}, M2, M3, M} and M} from (D5™)? to E5~ be defined
by the relations

b 3
MiElf) = f(2) (ggwAB%) o),
Mi(2lf,9) = fg,
M3Gl,0) = GMR(IS) — olf,6)FME(elg),
Mielfo) = [t (Lo - ot7.0% 8 ).
ML) = Aldafe) - Alalfdhg)  2~1)408,(2)A(zlg) + 28(s1)oag(2)

3 7 (2) (70a9()) — (100 (+4047(2)) § (2),




e o de,
where A(z|f) “ J dud(zy — u1)8(zg — up) f(u) and f (2) = [déy..dén_f(2).
If n_ is even and n_ 5 6 and n_ # 0, then HE, ~ HZ ~ K? and the cochains MJ and
M3 are independent nontrivial cocycles;
if n_ =0, then Hf, ~ Hf ~ K and the cochains M}, M and Mj are independent
nontrivial cocycles;
if n.. = 6, then HE, ~ HE ~ K? and the cochains M3, M3, and M§ are independent
nontrivial cocycles;

if n_ is odd and n_ # 1, then H, ~ HE =~ K* and the cochains M3, M2 and M} are
independent nontrivial cocycles;

if n_ =1, then H2, ~ HE ~ K* and the cochains M3, M2, M3 and M} are independent
nontrivial cocycles.

Theorem 3.

].. Hgd = O.

2. Let Vi be the one-dimensional subspace of C; (D5, D3~) generated by the cocycle M2
defined in Theorem 2. Then there is a natural isomorphism V; @ (E3~/D5™) o~ HY,
taking (M1,T) € Vi & (E}~ /D) to the cohomology class determined by the cocycle
My (2| f) + {t(2), f(2)}, where t € E5~ belongs to the equivalence class T

3. Let V3 be the two-dimensional subspace of Cy(Dg~, D5~ ) generated by the cocycles M}
and M7 defined in Theorem 2. Then there is a natural isomorphism V, @ (Ej~ /D}~)
HZ, taking (M, T) € Vo @ (E3~/D3") to the cohomology class determined by the
cocycle

My(2)f, 9) — {t(2), F(2)}3 + o (£, 9){(2), 9(2)} ],

where t € E5~ belongs to the equivalence class T
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