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Abstract

The linear sigma model at finite baryonic density with a massive vector meson is investigated
considering that all the bosonic fields develop non zero expected classical values corresponding to
dynamical symmetry breakings. The ground state stability condition is analyzed with particular
prescriptions. A modified equation for the classical field of the vector meson is proposed with its

respective solution. General properties of nuclear matter are reproduced.
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1 Introduction

Quantum Cromodynamics (QCD) has intrincated color non abelian and flavor structures and strong
coupling constants at low energies being therefore very difficult to obtain exact solutions. Besides lattice
calculations effective models are developed such that the main properties and symimetries are respected
for the energy range of interest [1, 2]. In the vacuum, the lightest strong interacting particles are known
to respect, approximatély at least, chiral symmetry SUL(2) x SUg(2) which is spontaneously broken
down to SU(2) [1, 2, 3]. Pions, whose masses are small in the hadronic scale, are viewed as the (quasi)
Goldstone bosons of such spontaneous. symmetry breaking (SSB) (2, 4]. The vacuum is expected to .
acquire a non trivial structure due to the formation of scalar quark-anti quark condensate < gg >, the
order parameter. The emergence of condensates in the ground state from a SSB must appear in an exact ~
calculation, they rearrange the properties of the theory [2, 5]. These features can be taken into account
via sigma models which, in the linear realization, implement chiral symmetry with two spin zero fields:
the (pseudo-scalars) pions and the (scalar) sigma [3]. At finite density, QCD is known, and expected,
to have a very complex phase diagram with the appearance of other condensates at very hi.gh densities
~ (color superconductive phase). With different approaches finite density effective models at finite density
have been extensively studied including for nuclear models for infinite matter and nuclei, at the normal
and high densities [6, 7, 9, 10]. Although some authors have claimed that the non linear realization is the
one Nature has chosen for finite density systems [6] there are actually several indications that the linear
realization can be good also due to the recent investigations on the light scalar mesons [10, 11, 12, 13, 7]
and those arguments may not be completely correct. In this work the O(N) Linear Sigma Model (LSM)
~ at finite baryonic density is investigated with a massive vector meson. Particular prescriptions for the
stability condition considered which solve the field equations. All the mesons in the model are considered
to develop classical counterparts breaking spontaneously the symmétries. The pion field whose expectedﬂ
value is called pion condensate although it is not the same investigated previously [14]. The numerical

investigation of the results will be presented elsewhere [7].




2 Linear sigma model at finite density calculations

The Lagrangian density of the Linear Sigma Model for nucleons N(x), sigma and pions (o, 7) coupled
to a massive vector meson V, is given by:

L = N(x) (iv,D* — gslo + iys7.7)) N{x) + % (Opo.0"0 + 0,7 .0 ) +
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a covariant derivative is used: D* m O —igy V# and the kinetic tensor is: F* = V¥ -9"V¥. gy, gg and
)\ are the coupling constants and the chiral radius v = f; in the vacuum. The coupling of the temporal
component of the vector meson to the baryons is equivalent to the redefinition of a chemical potential.
The pion mass breaks the chiral symmetry explicitly by the term L, = co, where ¢ m2 by imposing
low energy theorems [2]. This does not have great relévance for our original results.” Classical components
{condensates) for all the mesonic fields are considered and solutions for the respective equations are found.
In this work the whole baryon masses come from the the coupling to the scalar mesonic field by the Higgs
mechanism (M* = ggo). Considering an explicit mass term for the baryons in the Lagrangian due to
the gluonic content does not change the original results of this work. This would lead to an in medium
mass: M" = M 4 ggF.

The baryon (nucleon) field is quantized in terms of creation and annihilation operators and the Dirac
equation with the coupling to the bsonic classical fields is solved. Its wave function can be written as
superposition of spinor (), isospinor () and coordinate components u(p), v{p). The baryonic degrees

of freedom remain in the densities: baryonic, scalar and pseudo-scalar densities (pg, ps and pps). We will

~ not explicitly evaluate here all these quantities. The fermionic density can be approximatedly written in

terms of the nucleon momentum at the Fermi surface, kg, as usually considered [6]:

krp g3 kp 43
pf=4f_ %MH%—(M*)Z, pB=4/ (gﬂf;. | 2)

These expressions correspond o an approximation since the contribution of the classical vector fields

were not considered. This will be shown elsewhere {7].
The Euler-Lagrange equations for the static and homogeneous system define the minimum of the

potential for the (classical) fields, ”condensates”. The following set of equations is obtained:

d d . :
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We have therefore that:

d
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The ratio of the scalar and pseudo scalar densities settle the ratio of the respective condensates.

The sigma and pion masses are given by:

#%=,\'(37-r2+52-u2)+§, u = (35" + 72 — o), (5)
For the vacuum 7 == 0 an.d & = v leading to a zero pion if ¢ = 0 in agreement with the Goldstone theorem.
However at finite density 7 # 0 yielding a strong density dependence of the masses at finite density due.
to the dependence of the condensates on the densities.
The total averaged energy density can be writtenras:

1 Ao '
H =p;+gvVopr — Em%/VUQ + Z(OQ + 72— )2, (6)

The dynamical equation for the vector meson was calculated considering the fact that the baryonic
densities do depend on V. Although this 18 obtained from the solution of the Dirac equation this full
solution will not be calculated here. Instead, It will be assumed that pp = pp[Vp] without any previously
determined form. Only the component spatial component Vj is considered. If we consider the other
components V; # 0 the equations are slightly changed, but the conclusions remain valid with another
coupled equation. The modified vector meson equation is therefore obtained by the variation of the
energy density with respect to its classical field. It is given by: '

dpp 21r '
qv (PB + W d%) my Vg = 0. N (7)

3 Ground state stability and remarks

The stability equation is faced, in the following, as a dynamical equation whose solutions are found within

a particular prescription such that the main properties of a (bound) finite density system are consistently

described. The stability condition of the system can be written as: gﬂ—?; = pﬂs < (0 at pp = pp, where pg

is the stable density and H is given by expression (6). To guarantec that this expression is satisfied we

consider some prescriptions for the dependence of its dynamical variables on the baryonic density. This



equation is considered to be equivalent to the following ones:

dpy _ Pr
dPB P
'ﬂ'g —v?) (82 + 7 - 0?) (8)
dpg - PB '
any Ry
dpp pB
In this last expression Hy = gvVops — sm% V7 is the energy density with contributions of the vector

meson. This last expression is equivalent to the modified equation {7) which is solved below.
From the first of the differential equations (8) it is found an expression for p; as a function of the
baryonic density (py = ps(pp)) which is in excellent agreement with that resulting from the integration

of the usual expression (2) for densities close to pp. It is given by:
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where B is a constant to be adjusted numerically. None of these expressions , (2) or (9), are exact because

, | ©

the coupling to Vp introduces relevant modifications [7].
From the second expression in (8) there appears a solution which can be defining a symmetry radius

in the medium: _
(32 + 72 —v%) = C\/pB. (10)

In this expression C is a constant to be determined from the parameters of the model [7]. Therefore in

2

the vacuum: &2 = v? = f2 as discussed above.

The condensate equations (3), for & and # can be written as:

2dp 2d
o -2 oy, 40pf —2 =2 oy 40PF 11
(G2 + 72— 0¥ + Y75 ~0, (7#°+7° U)+)\dﬁ2_0' (11)

These equations have an isomorfism. A solution for the two condensate equations can be found considering

(1)

that py is a function of these fields independently. This yields py = p}’(5) and py = pgcz)(ﬁ') and by

inverting these expressions 5(py) and 7 (py). Eliminating p; from one solution into the other the following

approximated value for the pion condensate is found (if |7?] << »?):
o 5.2(5.2 _ ,52)

= ma (12)

In these solutions, as well as in others more exact, @2 may be either positive or negative.



Finally, considering the equation of Vj - expression (7) - as a differential equation of the baryonic

density pp as a function of Vj the following solution is obtained:

miy ’

Valen) =

where Cy is a constant. This constant will be the only contribution of the vector meson sector to the
energy density Hy = Cypp. It has negative sign to keep V4 real. In the lir_nit of zero density: Vp — 0.
This is consistent with the assumptibn of equivalence of the redefinition of ¥y and the introduction of
the chemical potential. It is seen that the baryonic density generates a non zero value of Vg - which can ]
be viewed as a condensate. This may be another dynamical symmetry breaking. From this we see that
the mass of the vector meson is proportional to the density, i.e., it is an in medium effect. This seems t0
suggest the existence of other QCD condensate(s) at finite density. |
From the coupling of pions to fermions in the Lagrangian, the non zero pion condensate will induce
a difference between the in medium baryonic isospin states (which can be the neutron and proton). The
neutron and proton effective masses have the following form: M* = g,(6 + FoM ), where M is dependent
on their spins, being therefore non-degenerated. This non trivial solution corresponds to a non invariant
ground state under an isospin transformation, although the Lagrangian is symmetric. Different baryonié
masses generate different densities leading to an asymmetry [8]. Zero energy (Goldstone) collective modes
are therefore expected to occur. Several collective modes identified to zero-sound like excitations have
been found in nuclear matter calculations with non relativistic calculations [15]. The behavior of the
properties of the model, such as masses, with density are in qualitative agreement with ideias developped
in other works [10] and these aspects will be addressed elsewhere. The present model will be considered
for the description of hadronic (nuclear} matter properties and eventually of nuclei elsewhere [7]. These

properties depend strongly on the values and signs of the coupling constants gg and A.
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