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* Abstract. A chiral coupling is considered for the Skyrme model to a light scalar meson which
develops a classical component, eventually representing the scalar quark-anti-quark condensate of
the spontaneous breakdown of chiral symmetry, This scalar field leads to a modification in the
chiral radius which becomes a dynamical variable and tends to acquire values close to zero inside
the topological soliton. A chiral rotation of the scalar and pseudoscalar fields can lead to the linear
sigma model favoring the identification of the scalar field to the scalar sigma. The role of the scalar
field mass is discussed.

The Skyrmion model [1] is an effective model for the low energy QCD since it
exhibits some of the fundamental properties of the Quantum Chromodynamics in which
the baryon emerges as a topological soliton [2, 3] and it predicts observables close to
experimental data for the nucleon static properties [2]. Several attempts have been made
in order to improve its phenomenology including the coupling to the relevant vector
meson fields and also scalar fields representing gluons and quarks degrees of freedom in
anot very complete physical basis [4, 2]. There are some experimental evidences of light
scalar mesons in several processes including that with large width in the scalar isoscalar

" channel of the pion-pion scattering at energies of the order of 600 MeV [5, 6]. In spite
of the strong criticism on the idea of a g — § bound scalar state, new developments are
indicating it is not unreasonable [7]. Several works however claim other structures [8]. In
[9] it is argued that above a critical large color number, N, = 6, it is reasonable to expect
such (broad) state with crossing and unitary symmetries. In the present work we revisit
the problem of coupling the Skyrmion to a scalar field 7 (r) which may correspond to
chiral partner of the pion. This contribution is based on Reference [10] with a discussion
about the role of the scalar field mass.

The Lagrangian of the model coupled to a scalar meson and to a vector- isovector
massive ficld is given by:
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~ where all the parameters and couplings are those considered and discussed in [10] being
common in the literature. m in the pion mass term is model depedent ! The couplings
shown above respect scale invariance and the covariant derivative &, is to include
coupling to isovector fields (eventually with a chiral invariant fashion, with axial fields).

I particular: m = | the usual model is found, m = 4 this massive term becomes scale invariant [10].
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For the quadratic term the coupling shown above is implemented by the following chiral
transformation from the non linear sigma model: U(r) — mng (r). This model alone is

not stable however [10]. Different ways of obtaining the coupling to the scalar field in the
quartic Skyrme term were envisaged [10]. Firstly an ad hoc substitution of the constant
" 1/e by n*/(ef*) was considered. Secondly the modification of the chiral function in the
Skyrmion Lagragian was done like in the quadratic term. However, these replacements
yield scale non-invariant Lagrangian terms. The lack of stability was also checked by the
Derrick’s argument [10]. Concerning the non linear sigma model with the scalar field
alone, it is worth to remember that a chiral rotation of the non linear sigma model yields
the modified version of the linear sigma model as presented in the Lagrangian above
[11]. A seemingly more fundamental way of implementing this is the following [10].
The quartic stabilizing term can be obtained in the limit of very large isovector meson
mass by means of the KSFR relation in the usual Skyrmion model [12], when n(r) = fz
and the mass m% o< f2. With the coupling to the scalar field, from the equation of the

“vector meson we would have: mf) ~ ag’n? where a is a coefficient for the “gauged”
_kinetic term. Assuming everything is OK with this, there appear (scale non invariant)
new terms in the resulting "effective” Lagrangian and differential equations. These terms
make the numerical solutions less stable 2. Secondly, and more difficult to get rid of,
inside the topological soliton 11 < f or 1 << f. Therefore the KSFR should not to be
expected to work in the same way and the elimination of the vector fleld for the quartic
stabilizing term would not be allowed anymore, although there may occur a scaling
among the variables. Numerical calculation were done with the usual Skyrme term, by
assuming that the changes in the parameters due to the coupling to the n field cancel
each other allowing the use of the quartic Skyrme term with coupling ¢. Adopting the
hedgehog ansatz, for which 7 = #, we re-write the static lagrangian in terms of F and
then calculate the Euler- Lagrange equations. Boundary conditions are discussed in [10].
~ While there is a minor change in the function F(r) the condensate 7){r) becomes non
homogeneous reaching values close to zero inside the topological soliton (like a “hole™).
It can mean that the chiral symmetry is restored inside the nucleon. The nucleon masses
and observables obtained in this modified Skyrmion model were shown more extensively
discussed in [10] and will be discussed further elsewhere. For the lowest values of sigma
mass, 1)(r — 0) =~ 7 MeV. A zero value of 1(r — 0} does not seem to be reachable in
this model. We can partially understand the dependence of the solution close to the
~ origin {r = 0} on the sigma mass with the following argument. Given that the scalar
condensate N (r — =) — f; smoothly, we can consider that, for large #, its differential
equation [10] is written with variable 8(r) = f; — n(¥) > 0, with 8{(r = ec) = 0.Ina
linear approximation in 8(r) (for » — o), assuming a “decoupling” of the differential
equations, we find:

8 8(~2mdy +342),  8(r) = Cexp (£r(3u2 - 20%)3 ), 2)

2 There appears from both stability analysis which we have done (in numerical calculations and with
Derrick’s “dimensional” arguments) that scale invariance and the {consequent) stability of the solutions
may be related deeperly. The solutions become more unstable when scale invariance is broken beyond a
certain level which would depend on the free parameters {10].
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where C is a constant. Since the solution is real we choose the minus signal in the
exponential. For this we have the following condition: m%, < %u,zr, which corresponds

to a bound on the value of the scalar meson (sigma) mass for these stable solutions.

According to this, the parameter m%, could be positive although the spontaneously broken

symmetry potential would, in principle, require negative values. A further bound on
the scalar meson mass is given in {10] requiring the negativity of the energy density
of the (stable) spontaneously broken potential of the 7 field, my, ~ V3 > 0. These
two conditions shown above correspond to the bounds, respectively, of my > 0 and
m? > —3u2, a "negative"/imaginary mass bound (maybe an unstable state). With this
value and e = 5 the scalar condensate reaches n{r — 0) ~ 7 MeV. By considering a
Skyrmion in finite density of skyrmions we are lead to the following usual picture.
Provided that inside the baryons the quarks are deconfined and chiral symmetry is
not spontaneously broken the ("overall") order parameter (scalar condensate) tends to
be closer to zero as the baryonic density increases, and asymptotic freedom, already
valid inside the “holes”, starts to become predominant everywhere. The SU(3) x SU(3)
extended skyrmion with scalar mesons will be developped elsewhere.
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