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Abstract

A 8-local formulation of superfield Lagrangian quantization in non-Abelian hypergauges is pro-
posed on the basis of an extension of general reducible gauge theories to special superfield models with
a Grassmann parameter §. We solve the problem of describing the quantum action and the gauge
algebra of an L-stage-reducible superfield model in terms of a BRST charge for a formal dynamical
system with first-class constraints of (L -+ 1)-stage reducibility. Starting from 8-local functions of the
quantum and gauge-fixing actions, with an essential use of Darboux coordinates on the antisymplectic
manifold, we construct a superfield generating functionals of Green'’s functions, including the effective
action. We present two superfield forms of BRST transformations, considered as #-shifts along vec-
tor fields defined by Hamiltonian-like systems constructed in terms of the quantum and gauge-fixing
actions and an arbitrary #-local boson function, as well as via corresponding fermton functionals, in
terms of Poisson brackets with opposite Grassmann parities. The gauge independence of the S-matrix
is proved. The Ward identities are derived. Connection is established between the BV method [3], the
multilevel Batalin—Tyutin formalism [21], and an extension of the superfield quantization rules [6,7]
to the case of general coordinates.

1 Introduction

The construction of superfield versions of Hamiltonian [1,2] and Lagrangian {3] quantization methods
for gauge theories on the basis of the BRST symmetry principle [4] has been covered in a number of
papers [5-7]. These works are based on the use of nontrivial (represented by the operator D = 8y + 68;,
[D, D], = 28;) and trivial relations between the even ¢t and odd # components of supertime x = (¢, 0},
introduced in [8]. In [5-7], the geometric interpretation of BRST transformations is realized in the form
of special translations in superspace, which originally provided the basis for a superspace description of
quantum Yang-Mills type theories [10].

The study of superfield quantization is closely related to generalized Poisson sigma-models [11], de-
scribed from a superfield geometric viewpoint in [12}, and then developed algorithmically by Batalin and
Marnelius in [13]. The geometry of D = 2 supersymmetric sigma-models {14] with an arbitrary, N > 1,
number of Grassmann coordinates has been adapted to the classical and quantum description of D = 1
sigma-models by Hull, and, independently, to the construction of the partition function for N = 2, by
Gozzi et al [15]. Quantization with a single fermion supercharge, Q(¢, #), containing the BRST charge and
the unitarizing Hamiltonian [5], was recently extended to N = 2 (non-spacetime) supersymmetries [16],
and then, in [17], to the case of an arbitrary number of supercharges, Q*(, ¢, ...0M), k= 1,..,N,
depending on Grassmann variables #*, The superfield modification [18] of the procedure [5] reveals a
close interplay between the quantum action of the Batalin—Vilkovisky (BV) method [3] and the BRST
charge of the Batalin-Fradkin—Vilkovisky (BFV) method [1]. Finally, note that the superfield approach
is used in the description of second-class constrained systems as gauge models [19] as well as in the second
quantization of gauge theories [20].

The superfield Lagrangian partition function of [5] is derived from a Hamiltonian partition function
through functional integration over momenta. On the other hand, the quantization rules [6,7] present a
superfield modification of the BV method by including non-Abelian hypergauges [21]. The corresponding
hypergauge functions are introduced into a gauge-fixing action which obeys (following the ideas of [22])
the same generating equation that holds for the quantum action [6,7], except that the first-order operator
V in this equation is replaced by the first-order operator U. The operators V, U are crucial ingredients
of {6,7] from the viewpoint of a superspace interpretation of BRST transformations.

The formalism [6, 7} achieves a comparatively detailed analysis of the properties of superfield quanti-
zation (BRST invariance, S-matix gauge-independence). This analysis [6,7] is based on the structure of
solutions to the generating equations; however, a detailed correspondence between these soluticns and a
gauge model is not indicated. To achieve a better understanding of quantum properties based on solutions
of the superfield generating equations, it is natural to equip the method [6,7] with an ezplicit superfield
description of gauge algebra structure functions that determine a given model. So far, this problem has
remained unsolved. For instance, the definition of a classical action of superfields, A*(#) = A*+ A6, on a
superspace with coordinates (z*,6), x = 0, ..., D — 1, as an integral of a nontrivial odd density, £(A(z,9),
B, A(z,0),...;2,8) = L(z,0), is a problem for every given model. Here, by trivial densities £(z,8) we
understand those of the form

de:ch L(z,6) = fdeesg (A(8)) = So(A),
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where Sp(A) is a usual classical action.

A peculiarity of the generating functional of Green’s functions Z[®*] in [6] and of the vacuum func-
tional Z in [7] is the dependence of the gauge fermion ¥[®], and of the quantum action S[®,®*], on
the components A* of superfields 4(¢) in the multiplet (34, 8%)(8) = (¢* + A6, ¢%, — 8J4), where
the variables (¢A,¢vj“4,/\A,J A) constitute the complete set of variables of the BV method [3]. Another
feature of [6,7] is that the structure of superantifields &% (8) and the explicit form of Z[®*] allow one to
introduce, in a non-contradictory manner, although violating the superfield content of the variables,! an
effective action I', by using a Legendre transformation of In Z[®*) with respect to P; (§)3* (8),2

A §lnZ[8")
i (P (0)®5(6)’

-with the standard Ward identity (T',T") = 0 in terms of a superantibracket [6].

In this paper, we propose a local version of superfield Lagrangian quantization, in which we realize the
quantities of an initial classical theory in the framework of a 6-local superfield model (LSM). The idea of
LSM is to represent the objects of a gauge theory (classical action, generators of gauge transformations,
etc.) in terms of f-local functions, trivially related® to the spacetime coordinates. Using an analogy
with classical mechanics (or classical field theory), we reproduce the dynamics and gauge invariance (in
particular, BRST transformations) of the initial theory (the one with # = 0) in terms of #-local equations,
called Lagrangien and Hemiltonian systems (LS, HS) with a dynamical 4.4

On the basis of the proposed formalism, we solve the following problems:

1. We develop a dual description® of an arbitrary reducible LSM of Ref. [18] in the case of irreducible
gauge theories (with bosonic classical fields), in terms of a BRST charge related to a formal dynamical
system with first-class constraints of a higher stage of reducibility.

2. An HS constructed from f-local quantities, i.e., a quantum action, a gauge-fixing action, and
an arbitrary bosonic function, encodes, through a f-local antibracket, both anticanonical and BRST
transformations in terms of a universal set of equations underlying the gauge-independence of the §-
matrix. This set of equations is generated, in terms of an even superfield Poisson bracket, by a linear
combination of fermionic functionals corresponding to the above #-local quantities, e.g., the quantum and

" gauge-fixing actions and the bosonic function.

3. For the first time in the framework of superfield approach, we introduce a superfield effective action
(also in the case of non-Abelian hypergauges).

4. We extend the superfield quantization of Refs. [6,7] to the case of general coordinates on the
manifold of super(anti)fields and establish a relation with the proposed local quantization.

The paper is organized as follows. In Section 2, a Lagrangian formulation of an LSM is proposed
as an extension of a usual model of classical fields A%, i = 1,..,n = ny - n_, to a f-local theory,
defined on the odd tangent bundle ToaaMorL = HTMer = {AL, 0047}, T = 1,..N = Ny + N_S,

(ny,n_) < (N4,N_). The superfields (A, 8;.47)(6) are defined on the superspace M = M x B,
parameterized by (z*,6), where the spacetime coordinates z¥ € i C I include Lorentz vectors and

spinors of the superspace M. We investigate the superfield equations of motion, introduce the notions of
reducible general and special superfield gauge theories and apply Noether’s first theorem to #-translations.
Section 3 is devoted to the Hamiltonian formulation of an LSM, on the odd cotangent bundle T, Mcr, =
I ML = {AI ,A%}. Here, we establish a connection to the Lagrangian formalism and investigate the

T[R (8, 8%)] = 2 In 23"+ 0, (B (O)F50)] 24(0)} , 84(6) = ()

!By violation of the superfield content, we understand the fact that the derivative of Z[®*], which defines the ef-
fective action in a Legendre transformation, is calculated with respect to only one superfield component, namely, the
6-component of &3 (8), so that the resuiting effective action depends only on ¢ and ¢, which can be formally expressed
as Py (8) (24, 0%) (6) = (¢, 64)-

2Here, P1(8) and the operator 4/4 (PL(8)®%(8)) in (1) are, respectively, the projector from the system { P, (8) = d,o(1~

“88g) + 821889, a = 0,1} on the supermanifold with coordinates (#4, % }{8) and the superfield variational derivative with
respect to Py (8)®7 (8).

8By trivial relation to spacetime coordinates, we imply, in contrast to Hamiltonian formalism, that derivatives with
respect to the even ¢ and odd & component of supertime are taken independently.

1By dynamical 8, we imply that this coordinate enters an LS or HS not as a parameter, but rather as part of a differential
operator g that describes the §-evolution of a system.

5 Dual description stands for the possibility of an interrelated description of a reducible gauge model, namely, a description
that relates the Lagrangian and Hamiltonian formalism (the latter understood in the sense of a formal dynamical systeimn).

811 denotes the exchange operation of the coordinates of a tangent fiber bundle TAM gy, over a configuration 4! into
the coordinates of the opposite Grassmann parity [23], and N4, N.. are the numbers of bosonic and fermionic fields,
among which there may be superfields corresponding to the ghosts of the minimal sector in the BV quantization scheme
(in condensed notations [24] used in this paper).




existence of a Noether integral, related to f-translations, that leads to the fulfillment of a #-local master
equation. The quantization rules are given in Section 4. As a first step, in Subsection 4.1, we transform
the reducibility relations of a special restricted LSM into a sequence of new gauge transformations for
the ghost superfields of the minimal sector. Together with the gauge transformations of the classical
superfields A!(#), extracted from A7 (8), the new gauge transformations are translated into a Hamiltonian
system related to the restricted HS. A requirement of superfield integrability for the resulting HS produces
a deformation of the #-local Hamiltonian in powers of the ghosts and superantifields of the minimal sector,
and leads to a quantum action, and, independently, to a gauge-fixing action (Subsection 4.3), subject to
different 8-local master equations. In Subsection 4.2, we construct the dual description of an LSM. In
Subsection 4.3, we define, in terms of the above-mentioned actions, a generating functional of Green’s
functions, Z(#), and an effective action, I'(#)}, using an invariant description of super(anti)fields on a
general antisymplectic manifold. An essential feature in introducing Z(#) and I'() is the choice of
Darboux coordinates (i, v*)(#) compatible with the properties of the quantum action. In Subsection 5.1,
on the basis of a component formulation of the local superfield quantization, we establish its connection
with the first-level formalism [21], with the BV scheme, and (in Subsection 5.2) with the proposed
extension of the superfield methed [6,7]. In Conclusion, we discuss the results of the present work.

In addition to DeWitt’s condensed notation [24], we partially use the conventions of Refs. [6, 7).
Besides, we distinguish between two types of superfield derivatives, namely, the right (left) variational
derivative 8y F/6®4(8) of a functional F with respect to superfields, 4(6), and the right (left) derivative
By F(8)/ 824(8) of a function F(@), for a fixed §, with respect to &4(f). Derivatives with respect to su-
per(anti)fields and their components are understood as right (left), for instance, §/6A*, or §/6®% (8), and
the corresponding left (right) derivatives are labelled by the subscript “/(»)”. For right-hand derivatives
with respect to A(8), with a fixed 8, we use the notation F,; (8) = 8F(8)/8.A(#). The §(6)-function
and integration over @ are given, respectively, by §(8) = & and left-hand differentiation over 6.

The rank of an even supermatrix with Zs-grading, e, is characterized by a pair of numbers 7 =
(m4,m_), where m, (m_) is the rank of the Bose-Bose (Fermi-Fermi) block of the supermatrix. With
respect to the same Grassmann parity £, we understand the dimension of a smooth supersurface, also
characterized by a pair of numbers, in the sense of the definition of a supermanifold in Ref. [25]. On these
pairs, we consider the operations of component addition, @+ % = {(my +n4,m. +n_), and comparison,

M=RES ML =04, M>A L (My >0y, m_>n_)or{(my >n_, my >n_).

2 Lagrangian Formulation

The basic objects of the Lagrangian formulation of an LSM are a Legrangian action Sp: IIT Mcy x {#}
— A1(#; R), being a C°°(IIT' Mgy, )-function with values in a real Grassmann algebra, A;(f;R), and a
(nonequivalent) functional Z[A], whose §-density is defined with accuracy up to an arbitrary function
F((A, 80 A)(9),8) € ker {0y}, E(f} =0,

ZIA] = 851(8), &(Z) = &(6) = (1,0,1), &(St) = 0. (2)

The values & = (ep,£7,8), € = &p + £, of Zy-grading, with the auxiliary components ¢, £p related to
the respective coordinates (zM , 6) of a superspace M, are defined on superfields .47(#), by the relation
gAY = ((ep)1,{ef)1,€1). Note that M may be realized as the quotient of a symmetry supergroup,
J = J x P, P = exp{iupg}, of the functional Z[A], where y, ps are, respectively, a nilpotent parameter
and a generator of #-shifts, where J is chosen as the spacetime SUSY group. The quantities ey, ep,
introduced in [26], are the respective Grassmann parities of the coordinates of representation spaces
of the supergroups J, P. The introduced objects allow one to achieve a correct incorporation of the
spin-statistic relation into operator guantization.

Among Si(#), Z[.A], invariant under the action of a J-superfield representation T restricted to P,
T|p, only Sz (¢) is nontrivially transformed with respect to the total representation T under A7(6) —

A1(6) = (T); )70 — p),
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Here, we have introduced the nilpotent operator (801 )(8) = 85 AL (€)81/OAL (@) = [85, U4 ()], U4 (8) =
PLAL(8)8, /047 (0).

5S1(8) = S (A(8), 804 (6),6) — S(6) = ~p [i‘l + Po(8)(6U:)(60)| S10). (3)




The dynamics of an LSM is encoded by the superfield Euler-Lagrange equations

51 Z[A] __[ & ¢

SAI(6) ~ |3AT(B) - (—l)sfagm Sr(d) = ﬁII(B)SL (&) =0, 4)

equivalent, in view of 83A47(6) = 0, to an LS, characterized by 2N formally second-order differential
equations in 8,

87 55,(6)
J 125 2 A " —
aB-A (B)B(BBAI(G))(?(BQ.AJ(Q)) =g A (9)(SL)IJ(9) =0,
' as:(8) . .\, [ 8 85c(8) asL@) | _
0:10) = 371y ~ OV | s amarey T YV 554y = )
The Lagrangian constraints ©1(8) = ©;(A(6), 89.A(0),6) restrict the setting of the Cauchy problem for
the LS and may be functionally dependent as first-order equations in 8.
Provided that there exists (at least locally) a supersurface £ C Mqy such that
0r1(8)|g = 0, dim = =M, rank||£4(81) [£5(61)SL(6:)(—1)°"]||5 6(6: - 0) =N - M, (6)

there exist M = M. + M_ independent identities:

SZ[A] 51 . .
f do A}(G])Riu(ﬂ;ﬁo) =0, Ry, (8;60) =1§ ((60)* 606 — 60)) R, (AB), 204(6),0). ()

The generators 7@54 (8;00) of general gauge transformations,
5, AL(6) = f d8oT2 Ly, (6:60)640 (B0), Z(E™) = 24y, Ao = 1,.., Mo = Moy + Mo-,

that leave Z[.4] invariant, are functionally dependent, under the assumption of locality and J-covariance,
provided that

5(6 — 60) = M < My,
%

> Rk, (6) (96)

k>0

rank

The dependence of 7?,540 (#;8o) implies the existence (on solutions of the LS) of proper zero-eigenvalue
_eigenvectors, Z‘:'ﬁf (A(Ba), 89, A(Ba), b0; 1), having a structure analogous to ’flﬁn {(8;80) in (7), which ex-
haust the zero-modes of the generators and are dependent in case

rank 5(90"91)=M"H{) <H1.

by

ZZ:C (80) (89,)"

As a result, the relations of dependence for eigenvectors which define a general L,-stage reducible LSM
are given by

/ a8 51020, 03 0) 200 (0, f 80 7(0') L2 (A, 06 A)(Barz),Oe2s8';6,)
M1 > Z(—l)kMs—k—z = rank sz: 2(8s5-2) 39 _2) (052 — 051},
k=0 k>0 5
— Ly e Ar _1 k
MLg = Z(—l) MLg—k—l =rank ZZ g 9[, -1 (ang_,) 6(9Lg—1 - QLQ),
k=0 k>0 5
B2 ) =84, + 24, +(1,0,1), 24740 _15600) = RL, (8-1360),
L7 (0-1,881) = KL (0-1,0'18)) = ~(~1)ErtDE DI (6 0_,:6y). 8)

fors=1,.. 00, Ag=1,..., Mg = My + M,_, M = M_,. For L, = 0, the LSM is an irreducible general
gouge theory. '
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In case an LSM can be presented as S;(6) = T (8s.A(8)) — S (A(#), 9), the functions ©(f) are given,
on the extended configuration space Mgy, x {8}, by the relations

81(0) = 5,1 (A(6),6) (-1} =0, (9)

being the usual extremals of the functional Sp(A) = 5 (A(0),0), corresponding to 8 = 0. In case & = (,
condition (6) and identities (7) take the usual form

rank ||,z (A(8),0))lls, =N = M, S,1 (A(6),6) Rok, (A(6),8) = 0, (10)
with linearly-dependent (for My > M) generators of special gauge transformations,
SA'(6) = Roly, (A(6),6) £5°(6),

with leave invariant only S(#), in contrast to T(#). The dependence of generators Rof‘lo (#), as well as of
their zero-eigenvalue eigenvectors ij (A(8),0), and so on, can also be expressed by special relations of

reducibility, for s = 1,..., L,, namely,
2T (A6), )24 (A(6),8) = S,y ()L (A(8),8), B(EAT) = Ea,_, +En,,
ZH7H8) = Raly, 8), L4777 (0) = KT (6) = —(—1)= KL (6). (11)

For M1, = Y52 (~1)*M 1, 41 = rank ”zji;‘l
theory of Lg-stage reducibility. The gauge algebra of such a theory is 8-locally embedded into the gauge
algebra of a general gauge theory with the functional Z[A] = 8p(T'(#) — S(6)), which implies the following
relation between the eigenvectors:

. relations (9)—(11) determine a special gouge

éﬁ:_l(A(Gs—l) aBs—l; Bs) = _5(93—1 - Bs)zj:_l(A(Gﬂ—l)#Gs—l)s (12)

and, besides, the fact that the structure functions of the gauge algebra of a special gauge theory may
depend on 85.A! (f) only parametrically. Note that an extended (as compared to {F,(8)}, a = 1,2)

. system of projectors onto C°(IIT Mcw) x {8}, {Fo(6),08/86,U,(8)}, selects from (11) two kinds of
gauge algebras: one with structure equations and functions S{.A(6)), Zj:'l (A(8)) not depending on § in
an explicit form, the other with the standard relations of the gauge algebra for a reducible model with the
quantities So(A), Za: ' (A4), in case § = 0, (ep)r = (ep)a, =0, 5 = 1,..., Ly, and under the assumption
of completeness of the reduced generators RY_(.A(8)) and eigenvectors 257~ (A(6)).

- An extension of a usual field theory to a §-local LSM permits one to apply Noether’s first theorem [27]
to the invariance of the density df Sy (#) with respect to global f-translations, as symmetry transformations
of the superfields A’(#) and coordinates (2,6), (A!,2¥,8) — (Af,zM,68 + p). By direct verification,
one establishes that the function

S5 (4, 8.4)(0),8) = = 2218

= WBEAI(B) —S.(8) (13)

is an LS integral of motion, i.e., a conserved quantity under the f-evolution, in case there holds the
equation

d
F55L (6) +2(3U+(8)) Sp.(6) =0 (14)
£'ISL=O
In contrast to its analogue in a f-local field theory, the energy E(t), the function Sg(f) is an LS integral
also in the case of an explicit dependence on 6. This fact takes place in case Sr(6) admits the structure

St (A, 00.A4)(9),6) = St (A, 80. A} (8) ~ 26 [85U (6)) S2,(6), (S7) = 0. (15}

'3 Hamiltonian Formulation

Independently, the LSM description can be formulated, without an Mcp-extension, in terms of a Hamil-
tonian action, being a C°(IIT* Mcp)-function, Sy : IT*Mcr % {0} = A1(8; R}, depending on super-
-antifields A}@) = (A} — 6Jr), included in the local coordinates of IIT*Mcy,: TE () = (AL, A}) (@),
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g(A}) = 8(A5) + (1,0,1). The equivalence of the Lagrangian and Hamiltonian formulations is guar-
anteed by the nondegeneracy of the supermatrix {|(S¥)rs(9)| in (5), in the framework of a Legendre
transformation of Sr{f) with respect to 85.47(6),

9S51(6)

Su(To(0),6) = 4O A'C) = S2(0). A10) = s,

(16)

where Sg (e (6),0) coincides with Sg(8) in terms of the IIT* Moy -coordinates.
" The dynamics of an LSM is given by a generalized Hemiltonian system of 3N first-order equations in
f, equivalent to the LS equations in (5), and expressed through a 8-local antibracket (-, « )g, namely,

- OTEL(8) = (TEL(8), 51 (8)),, ©F (Tcw(9),8) = O1(A(8), B A(TcL(6),6),8) =0,
FoFae = 0 OF  OF af
L7200 = B AT(6) BAT(6)  DALB) DAI(B)

(17)

- with the Hamiltonian constraints © (Do (6),8). The latter coincide with half of the equations of the

HS proper, due to transformations (16) and their consequences:
OF (Ton(8),8) = —85.A50) — Ser,r (8)(—1)". (18)

Formula (18) establishes the equivalence of an HS with a generalized HS, and, therefore, with an LS,
within the corresponding setting (@ = 0, k = CL) of the Cauchy problem for integral curves AL(8), I‘P (8)

(A,81.47) ) = (BT, 850 = (A7) Hi = By | g | (AL 0FA) o)

(we ignore the continuous part of the indices I). The equivalence between an HS and a generalized
HS holds due to the coincidence (mutual inclusion) of the corresponding sets of solutions. Indeed, the
solutions of an HS are included into those of a generalized HS by construction, while the reverse is valid
due to (18).

The HS is defined through a variational problem for a functional identical with Z[A],

Zults] = [ @8 | ST @ho(0)%TL0) - Sa(Tu().6)].
£90) = (TEO),19(9)) , WP @hbo(6) = 60, )

Definitions (9)-(11) remain the same for special gauge theories, while definitions (7), (8), in the case of
general gauge theories of L,-stage reducibility, are transformed by the rule

Zur i (T(Bom1), 80-15605) = 247" = (A(B5—1), 89,y ATk (Be=1),05-1),05-1585) , 5= 0y, Ly
(21)
From egs. (14), as well as from the validity of transformations (16) and of their consequence %(S L+

SH)(8) = 0, there follows the invariance of Sg(§) under f-shifts along arbitrary solutions I'F(#), or
equivalently, along an (ep,e}-odd vector field Q(F) = adSy(6) = (Su(#), - )¢. Thus,

5uSO)|5,(6) = 1 | 25 S(8) = (S (8), Su(@)),| = 0. 5,5(8) = uoSir(6) (22)

holds true, provided that Sg{f} can be presented, according to formula (14), in the form
Sp (T(6),8) = S (Tk(9)) + 6 ((Sk (Tx(8)) , Sk (Tr(8))), (23)

where 8U,(8)S5(6) = 1/2(Su(0), Su(8)), and SY (T'+(8)) is the Legendre transform of S%(6) defined
by (15).

If Sy (8), or SL(F), does not depend on 8 explicitly, then eq. (22), or (14), implies the fulfilment of
the equation (Sg{8), Sg(#))s =0, or (3T {8))SL(6)] Aoy = 0, which has no analogies in a #-local field
theory, and imposes the known condition [3] that SH(B) or Sp(8), be proper, although for an LSM at




the classical level. In this case, a f-superfield integrability” of the HS in (17) is guaranteed, due to the
standard properties of the antibracket, including the Jacobi identity:

@B)°TE(6) = & (TF6), (Su(Tx(0), SuTu(E)) o) o =0. (24)

This fact provides the validity on C®{IIT*Mqy % {#}) of the f-translation formula
0 .
5Ol = 1 35— 2050(0)) #(60) = s @), )

as well as the nilpotency of a BRST-like generator of §-shifts along Q(8), 5(8).
Depending on the realization of additional properties of a gauge theory (see Section 4), we shall
henceforth assume the fulfillments of the equation

A¥6)Su(®) = 0, A*©) = (-1 ke (0) (TF@), (TR0, ) - (26)
2 8/ ¢
Eq. (26) is equivalent to a vanishing divergence of the vector field Q(#), namely,
. o a

This condition holds trivially for the symplectic analogue of formula (27). The validity of the Hamiltonian
master eguation (SH(E)) Su(8)), = 0 for %SH(B) = ( justifies the interpretation of the equivalent
equation in (14), for £S5(8) = 0, (BsU+(6))SL(6)| ctsy,=o = 0, as a Lagrangian master equation.

4 Local Superfield Quantization

4.1 Superfield Quantum Action in Initial Coordinates
With the standard distribution of ghost number [3] for I'5 (8), gh(A3) = —1 — gh(AT) = —1, the choice

gh(d,8s) = (—1, 1) implying the absence of ghosts among 4!, and, in particular, the relations (ep); = 0,
consists in restricting an LSM (in both Lagrangian and Hamiltonian formulations) by the equations

(1 55 ) S5 @) = ©,0) (29)

Their solutions, given the existence of a potential term in Syr(1)(8), S(A(6),0) = S(A(6)), and the absence
in Sg(r)(#) of a dimensional constant with a nonzero ghost number, select from an LSM a standard field
theory model with a classical action Sp{A), in which the fields A’ are extended to .4%(). Then an
extended HS in (17) is transformed into a f-integrable system in IIT*Mq = {T5(6)} = {{(A% A})(6)},
with functions 8§ (A(9)) = ©,(A(#)),

o T (0) = (T§;(9),So(»4(3)))a, O (A(8)) = ~(—1)% So.: (A(6)). (29)

The restricted special gauge transformations 6.4%(8) = R}, (A(0)) £5°(0), E(£5°(F)) = €ay, with the
condition (ep)a, = 0, are embedded, under the substitution £5°(8) = dég (@) = C*(B)db, ap = 1,.
my = Mg— +Moy, into a Hamiltonian system with 2n equations for unknown I',(#), with the Hamlltoman
SP(Ta1, Co)(0) = (A Rob,, (A)C*)(6). A union of this system with the HS in (29), extended to 2(n +mq)
equations, has the form

GTR6) = (TI516), S7(0)) » Shy(0) = (So + SD)B), THy' = (T5, TF), T8 = (€*,Ca).  (30)

By virtue of (11), the function S(#) is invariant, modulo Sp,; (8), under special gauge transformations
of ghost superfields C*°(#), with arbitrary functions £5(8), (p)a, = 0, on the manifold M:

6C(0) = Z37 (A())¢1" (9), (2,8h)&r" (0) = (Zay +(1,0,1),1). ' (31)

"The notion of -superfield integrability is used by analogy with the treatment of Ref, [16].
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After the substitution £5*(¢) = défl(ﬁ) =% (Ndb, a; = 1,...,m1, and an enlargement of mg first-order
equations in #, with respect to the unknowns C*°(8) in transformations (31), to an HS of 2m; equations
with the Hamiltonian S1{A4,C§,Ci{(8) = (C},Z2°(A)C*)(8), we obtain a system of the form (30), written

for 8T5°(8). The enlargement of the union of the latter HS with egs. (30) formally coincides with the
system (30) under the replacement

TRy Sy = (T Shy) {Ffll]l] = (I I, I%* = (€™, C2,), Shy=Shy+ S%}

The iteration sequence related to a reformulation of the special gange transformations of ghosts
C*,...,C*-2, obtained from (possibly) enhanced?® relations (11), leads, for an L-stage-reducible restricted
LSM at the s-th step, with 0 < s < L and I') = '3, to invariance transformations of $571(8), modulo
Sosi (6), namely,

6C1(8) = Z5 (A()ES (0), (B, gh)E () = (Fa, +5(1,0,1),8), (eP)a, =0,

S{7H0) = (€, ZAC)6), () ST720) = 0,00 (52)

The substitution £3(8) = df:-“:’ #) = C*(A)d, as = 1,..., mg = Ms— + My, transforms special gauge
transformations (32) into m,_; equations with respect to unknown 85C%-* (8}, extended by the intro-
duction to an HS of superantifields C;__ (6):

BFTEE (0) = (U251 (9). 51(0)), 5 S3(6) = (Ca,_ 232~ (AYC™)(0), Doyt = (C™4,C5, ). (33)

Da—1"" 0

Having combined the system (33) with an HS of the same form, although with 85??2"_‘1’]' (6) and the
Hamiltonian Sf’l}_l(ﬁ) = (S0 + 3525 S1)(8), and having written the result for 2 (n + 3.5_, m,) equations

with 5§, (8) = (S[slTl + 8§)(9), we obtain, by induction, the following HS:

L
FTE1(6) = (rf’_gl ©). % (a))g , 551(6) = SoAW®)) + 3 (Ch,_ BZ1(A)C™)B) - (34)

5=0

The function Sﬁ] (@), obeying the condition of a proper f-local solution of the classical master equa-

tion [3], with the antibracket extended in HT*Mk={FfE]’3 (8) = TE(0)=(34, @4 )(@), Ax = n +

Ef:o my, k=min}, is a solution with accuracy up to O(C%*), modulo Sy,;. The integrability of the
HS in (34) is guaranteed by a double deformation of the function szi] (8): first in powers of @7 (#), and
then in powers of C*(#), in the framework of the existence theorem [28] for the classical master equation

in the minimal sector:

. d o .
((Swe(Ce(®), S rTe@)y =0, (#1835 ) Suu(Tu(@) = (6.0,0), k=min.  (35)
The proposed superfield algorithm for constructing the function Sgmn (#) may be considered as a super-
field version of the Koszul-Tate complex resolution [29]. We remind that the enlargement of Sgmin(8) to
Sur(Te(8)), Sur(@) = Semin(0) + 2?:0 > 5r=0{Clier, Bg )(6), being a proper solution [3] in IT*M;, =
{T®1,

TR (0) = (Fhmin 3, B, Chig, 1 Bug }(0), ' = 0,...,8, 5=0,...,L,

(ga gh)c:f’ (8) = (505_. + (S + 1)(110’ 1):23' —§— 1) = (E'A gh)Bs’ (B) + ((1: g, 1)» _1)}

(we assume henceforth k = ext, and take into account that, (£, gh)®% (8) = —((1,0,1),1)— (&, gh)®4+(8))
with the pyramids of ghosts and Nakanishi-Lautrup superfields, and with a deformation in the Planck

8From gh{A’) = 0 in eqs. (28), with (¢p)a, = {ep)r =0, § = 0, ..., Lg, it follows that the values of 771, 7, may he both
larger and smaller than the corresponding values M, M, in contrast to the values of @, N. Indeed, for a restricted LSM,
the presence of additional gauge symmetries is possible; therefore, we suppose that (possibly) enhanced sets of restricted
functions Rok, (8), Za:™*(#) exhaust, correspondingly, on the surface So,; (§) = 0, the zero-modes of both the Hessian
So,ij (#) and zﬁ;‘:f (#). As a consequence, this implies that the final stage of reducibility for a restricted model L is different
from Lg. :



constant fi, determines the quantum action S§(I'(8), i), e.g., in case of an Abelian hypergauge defined
a3 an anticanonical phase transformation:

oT(2(9))

7O - PO = (#40),95,0) - TEG

) : SH(0),5) = Y Sy (Th(8), ). (36)
The functions (S§,Suk)(0, %) obey egs. (26), (35) in case the A-deformation of Symin(8) is their so-
lution. It is well-known that this choice of equations ensures the integrability of a non-equivalent
HS, constructed from S}, S, as well as the anticanonical character, preserving the volume element
dvi(6) =11, dI'*(8), of this change of variables, related to a f-shift, by a constant parameter y, along
the corresponding HS solutions. In its turn, the quantum master equation

A¥(8) exp [%E(B,h}] =0, E € {S§, S} (37)

determines a non-integrable HS, with the corresponding anticanonical change of variables preserving
dVi(0) = exp [(i/ k) E(8, h)] dVi(6). It is the latter nonintegrable HS with the Hamiltonian Siy(4, k) that
is crucial, for § = 0, in the BV formalism. This HS determines on IIT* Ay, a @-local, but not nilpotent,
generator of BRST transformations, §(¥)(#), which is associated with its #-nonintegrable consequence

o  a.8%e.n o

8 (@%,23,) (0) = ((2*(0),55(6,R)),,0), 3V (6) = 56" %%, (8) 084 (8)’

(38)

4.2 Duality between the BV and BFV Superfield Quantities

An embedding of a restricted LSM gauge algebra, by the action Simin(6) and eq. (35), into the gauge
algebra of a general gauge theory in Lagrangian formalism, see egs. (7)-(12), can be effectively realized
by means of dual functional analogues, with the opposite (ep,e)}-parity, of the action and antibracket,
“following, in part, the approach of Refs. [12,18]. To this end, we consider the functional

Zy[Tk) = —0sSar(9), (8,8h) 2 = ((1,0,1},1)

on the supermanifold IIT'(XIT*My) = {(T%", 8T%*)(6), k = min} with natural, (ep,&)-even, symplectic
and odd Poisson structures. These structures define an (ep,e)-even functional { -, - } with canonical pairs
{(@%,8,%%,), (Be@fk,fbj‘,‘k)}(ﬂ), and {ep,&)-odd 6-local, (-, _)l(gr,,,agrk)’ Poisson brackets. The latter
act on the superalgebra C°°(TI7' (IT7* M) x §) and provide the lifting of the antibrackets (-, -)g, defined
on IIT*My. For arbitrary functionals F;[T'y] = 8y F; (T, 8aTk)(6), ), i = 1,2, we have the following
representation and correspondence between the Poisson brackets of opposite Grassmann grading:

_ dF 0 8,5 d1F3 _ (T'x,08x)
(.7} = f [Wk(e) @ @A) T | ARORO,
(F1(8), Fo(8)) %™ = [(Lay 1) £74% Fy — (L34 F1) LYy, Fa) (6), (39)

where the Fuler-Lagrange superfield derivative, e.g., with respect to @ (@), for fixed 8, £*4%(6), has
the form £*4%(0) = 8/0% (B} — (—1)°4 718y - 8/ (8p®%, (8)).
By construction, the functional Zy is nilpotent:

(Ze, 2} = f d0(Su £(0), Stz (6))s = 0, k = min, (40)

and, due to the absence of the time coordinate, is formally related to the BRST charge of a dynamical sys-
tem with first-class constraints [1]. Indeed, after identifying the fields (T, 8,1 )(0) with the phase-space
coordinates of the minimal sector, canonical with respect to the {ep,&)-even brackets in the framework
of the BFV method (1] for first-class constrained systems of (L + 1)-stage reducibility,

(6,3} = (A, 8041)0), (C4,Pa,} = ((85C%1,C%), (Cx,_,, BC3.) ) (O),
A = (063_1,0!3), 8= 01 '":La (CAL+17PAL+1) = (agCaL:c:!L) (0)1 ) . (41)




the functional 7 takes the form

L4-1
Zi[Tk) = Tag(@:P)C% + Y P4, Z4: 7 (9)C4 + O(C?). (42)

8=1

The constraints T'4,(g,p) and the set of (L -+ 1)-stage-reducible eigenvectors Z4e 4.7 '(g) are defined -
through the gauge algebra structure functions of the original L-stage-reducible restricted LSM in the
enhanced egs. (11) — by the relations {“T” stands for transposition)

Tao(@:P) = (S0, (9), —piRoly (@), 247" (a) = diag (2’3::5, Z&‘:”) (4),

T T .
s=1,..L, (242,) (@ = (22,0)" (), (43)
BTN = Te L (gp), s= 1,0 L4, 2t = Ty, Ly P =,
L3 = diag (L5022, £307), £ = L3551 =0, L879(ap) = (CDYPpikd (o). (44)

L1
Formulae (39)-(44) generalize, to the case of arbltrary reducible theories, the results of Ref. [18], con-
cerning a dual description (for g; = €4, = L = 0) of the quantum action and classical master equation
by means of a nilpotent BRST charge.

A comparison of the superfields C; (6), s' = 0, ..., s, selected from the non-minimal configuration space
of an L-stage-reducible LSM, with and the coordinates C’ﬁ" selected from the non-minimal phase space
of the corresponding (L + 1)-stage-reducible dynamical system [1] — and with the rest of the variables
(Cha, Big, B )(8), identical, by the rule (41), to the respective ghost momenta Py 4,, Lagrangian
multipliers Ay 4, and their conjugate momenta wﬁ’ in [1} - shows the only embedding of TIT(IIT™* Mexs)
into the phase space of the BFV method. Indeed, for the coordinates C’(;1 AL gh((’l{{1 By = L -2, there
exists no pre-image among (Cg*, 8pC%*)(0), because the ghost number spectrum for the latter variables
is bounded from below, by the value

min gh(C3°,85C% ) = gh(Co*) = —L — 1.

As a consequence, the nilpotent functional Zg[T'y] = —85Suk(6), k = ext, is embedded into the complete
BRST charge constructed by the prescriptions of Ref. [1].

It should be noted that the systems constructed with respect to the Hamiltonians Sk (I'(8), i} and
Sur(8), £ = min, ext, are equivalently described by dual fermion functionals Z,[T'x] and Z¥[[] =
—8pSE(T(8), k), in terms of even Poisson brackets, for instance,

BFTP () = (I7(8), Sp('(6), k), = — {T7(6), 2™ (L1} . (45)

Thereby, BRST transformations in Lagrangian formalism with Abelian hypergauges can be encoded by
a formal BRST charge, Z¥[T), related to Zx[Tx], k¥ = ext, by means of a phase canonical transformation
with the (p,e)-even phase F'Y[®]=0,¥($(0)),

Z¥[T] = 7" Z,[Ty], ad F¥ = {FY,} . (46)

The problem of including the restricted LSM gauge algebra into that of the initial general gauge theory,
defined by relations (2), (7}, (8) — given the assumption that an additional gauge invariance does not
appear in deriving the former model from the latter, i.e., s < M, and, therefore, L < L,, cf. footnote
4 — is solved with the help of a nilpotent functional defined on HT(HT*Mk)={(I‘kP’° , 5‘9ka W), I‘f k(@) =

(rggL,cA= j;s) #), s =0,1,..., Ly, k= MIN}, namely,

Ly
L] = Z[A]+Z([d95 1d0,C_ (Bsmr ) 427 (Bomr; )0 (B,) (— 1) Aem1 +0
§=0
+O(CAe)) = [ d0Sri. (Tr, 8aT1)(8),6) . (47)

Note that the representation of solutions to the generating equation {Zk, Zk} = ( as expansions in

powers of superfields 4 - introduced as simple ghosts %+ although used for a description of a general
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gauge algebra — can be controlled by an additional generalized ghost number, ghy, ghg(fk) = 0, coinciding
with the standard ghost number only in the sector of (®4Mm, &% 1(0), for (ep)a, = (ep)r = 0, and
having the spectrum

gho(AT,CA) = (0,1+8), ghy(Bly,,p,) = —1 ~ ghy (24), ghy(6,8) = (0,0).

Conditions (28), applied to Szx(8) and to {ep)a, = (ep)1 = 0,8 =0, ..., Ly, select from Zj, the functional
Zy in (42), so that an {ep,&)-even O-density Srx(f) lifts the function Sgi(d) € CPMT™* Mmin) to
Co(IIT(IT* Mumin) % 8). In general, Spi(6) does not satisfy the generalized master equation (35) with
antibracket {39} acting on C®(XIT(IIT™* Mmin) x 8),

(S£i(0), Sp(8)F+%Te) = F (T, 8T1)(6),8), F(6) € ker{B5}, k = MIN. (48)

4.3 Local Quantization

Leaving aside the realization of a reducible LSM on IIT* M ayy, we now suppose that the model is described

by a quantum action, W (6,1} = W (6), defined on an arbitrary antisymplectic manifold A without

connection, dimA = dmIT* My = @ + (n-,n4) + Efﬁo(Qr + 3)(\, + (my_,mp.))}, with local

coordinates I'P(f) and a density function p(I'(d)). A local antibracket, an invariant volume element,
du(F(8)), and a nilpotent second-order operator, AN (6), are defined with the help of an (ep,e)-0dd

Poisson bivector, wP?(T'(8)) = (I'*(8), I"?(G))’g{, namely,

du(0(6)) = pTO)T6), A¥(6) = 1170y 0) (0),0 00), 1Y) . (49)

The definition of a generating functional of Green’s functions, Z {(8yp*, 0*, Opp, I)(8)) = Z(0), as a
path integral, for a fixed 4, is possible, within perturbation theory, by introducing on A the Darboux
coordinates, I?(8) = (¢*, ¢2)(6), in a vicinity of solutions of the equations 8W (8)/8T?(#) = 0, so that,

‘p=1 and wP(8) = antidiag(—4d;, ;). The function

26) = [0 au (F0)) exo {i/m [W (F0),) + X (5," - 0" X)) W
— ((8093)@" + Pa0p9" — LA%)(0)]} (50)
depends on an extended set of sources,

(3999;a 590'131@)(9) = ("Ja.a/\aaIOa + Ilae)a
(é’, gh).aﬁ'(p; = (E’ gh)Iﬂo + ((13 0, 1)a 1) = (ga _gh)‘Pa,

to the superflelds (2, ¢k, A%)(8), where A%(8) = (Ag + A{0) are Lagrangian multipliers to independent
non-Abelian hypergauges, see [21],

L
Go(T(®)),a=1,... k=n+>_(2r+3)m,, b=k +k_,

r=0

rank |8Ga(9)/00%(0) || sw jor=g=o = L { = 1+ + I =k.

The functions G,(I'(9)), (£,gh)G. = (£,gh)l,, determine a boundary condition for the gauge-fixing
action, X (8) = X ((T, A\, A*){(6), h),

0 X (O)/ON(O) ]+ oo = Galh),

defined on the direct sum Ny = N GIIT*K of the manifolds A and IIT*K = {(A%, A2)(9)}. Hypergauges
in involution, {Ga(8),Gs(8))} = G.(B)US,(I'(8)), obey different types of unimodularity relations [21],
depending on a set of equations for which X (€) may be a solution, independently from W(#), in terms of
the antibracket (-, -)g = (-, )3 + (-, - )¥ and the operator A(f) = (AY + AX)(8), trivially lifted from
N to J\ftot: ’

1) (E(8), E(6))s = 0, A(B)E®) = 0; 2) A(6) exp [%E(G)] =0, E € {W,X}. (51)
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The functions G4 (f), assumed to be solvable with respect to ¢*(#), determine a Lagrangian surface,
Ay = {(¢*, A)(6)} C Mo, on which the restriction X (6)| A, Is non-degenerate. Given this, integration
over ($*,1)(#) in eq. (50) determines a function, for 85 = I, = 0, whose restriction to the Lagrangian
surface A = {¢(#)} C N is also non-degenerate.

In view of the properties of (W, X')(8), one can define an effective action, I'(6) = T(p, ¢*, 850, I)(8),
introduced in the usual manner, i.e., by means of a Legendre transformation of Z(f) with respect to

. 36":0:(9)1 5 551 Z(Q)
T = = ") 00 a(g) = —m St D2V 52
(6) i In Z(Q) + ((69(,0&)(,0 ))(9)1 @ (9) i 6(66(,0;(9)) ( )
The analysis of the properties of (Z,T)(#) is based on the following #-nonintegrable Hamiltonian-like
system, which contains an arbitrary (ep,€)-even C (Nyot)-function, R(#) = R ((f‘, A, X)), ﬁ,), with a
vanishing ghost number:

TP (8) = A T1(8) (f»p(g),T(G)R(G)) g |

GGA*(8) = 2R THO)(X(6), T(O)R(8))g|yr o »
3 (s Aa) () = 0, (53)

)
AT=0

where the function 7 ((f,,\, X)), n) = T(f) has the form T'(8) = exp [(i/k) (W — X)(8)]. Let us list
the properties of (Z,T)(#}.

1. The integrand in (50) is invariant, for de¢™ = 85 = I = 0, with respect to the superfield BRST
transformations

Tior(6) = (O, A A)0) — (Fiow + 8uTrot ) (9), 8,uT100(8) = (95 For)

M (54)

tot

having the form of §-shifts by a constant parameter p, along an arbitrary solution Iy (8) of the system
(53), or, equivalently, along a vector field determined by the r.h.s. of {53), for R{f) = 1. Here, the
arguments of (W, X)(#) are the same as in definition (50). The above statement can be verified with the
help of the identities

0r X (6)[OF (O)x+—p = Or (X (0)|5-0)/OF (), F = (T, X).

“Notice that the system (53), for R(#) = const, has the integral (W + X)(#), in case W and X obey the
first system in (51).
2. The vacuum function Zx (8) = Z(0, ¢*,0,0){6) is gauge-independent in changing X (¢} by an action
(X -+ AX)(8) which obeys the same system in (51) that is valid for X () and conforms to the condition
of nondegeneracy on the surface A,. Indeed, from this hypothesis it follows that the variation AX ()
obeys a linearized equation with a nilpotent operator Q;(X), j = 1,2,

Q5 (X)AX(6) =0, Q;(X) = ad X(0) — §;2(iRA(S)), (55)

where j is identical to the number that labels the system in egs. (51) for which X (#) is a solution. Using
the fact that solutions X (8) of every system in (51) are proper, one can prove, by analogy with the
theorems of Ref. [30], that the cohomologies of the operator Q;(X)} on functions f(T'yo(9)) € C™(Niat),
vanishing for Ty, (8} = 0, are trivial. Hence, the general solution of eq. (55) has the form

AX(9) = GOAY®), (e, ) AY®) = (1,0,D.-L0), AV (Olr =0, (0

with a certain AY (#). Now, having performed in Zxax(#) a change of variables related to a #-shift by
a constant y, corresponding to the system (53), and choosing '

OR(B) = AY(H),

we find Zx,ax(8) = Zx(#) and conclude that the S-matrix is gauge-independent, in view of the equiv-
alence theorem [31]°,

YProperties 1, 2 of Zx (6)]p~=p are valid for arbitrary p(6), T'?(8) on the manifold N
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The above proof shows that the system (53) encodes, due to the convention (54), the BRST trans-
formations for R(#) = const (without contributions from Z®), and, at the same time, the continuous
anticanonical transformations in an infinitesimal form, with a scalar fermionic generating function, R(8)u,
for an arbitrary R(#) and a constant x.

Equivalently, following the ideas of Subsection 4.2, the above characteristics of the generating func-
tional of Green’s functions can be derived from a Hamiltonian-like system, presented in terms of a
superfield even Poisson bracket in general coordinates (see footnote 9),

857(0) = - {7(0), 2V [F] - (2% +ihZP)Fuol} _,

FpA*(0) = -2 {Aa(9)= Z¥[0] - (2% + mZR)[f‘mt]}A*:o '

% (622 0) =0, o0
with a linear combination of fermionic functionals, corresponding to the above actions, and a bosonic

function, by the rule
ZP[Dior) = 89 E(Tsat(0), 1), B € {W, X, R}, (58)

If the actions (W, X)(#) obey the first system in (51), then the functionals Z%, ZX, formally playing the

role of the usual and geuge-fizing BRST charges, are nilpotent with respect to the even Poisson bracket
e,y ={-, TN 4 {.) AITK, Here, for instance, the first bracket in the sum is defined on arbitrary

functionals over IITA x {8}, via a 6-local extension of the odd bracket (-, -)JT in (39), as follows:

(B, 5™ = [ 9 (06N gt = 000, FaODFT,
(R0, FONF™ = (LRI TONLF6), BT = B (T, 00,0, (59)

where £4(8) is the left-hand Euler-Lagrange superfield derivative with respect to I'?(6)°

Therefore, as in the case of the HS in (45), we arrive at the interpretation of the BRST transformations,
for a gauge theory with non-Abelian hypergauges in Lagrangian formalism, in terms of the formal “BRST
charges” ZW, ZX, as well as in terms of the functional Z¥ and the even Poisson bracket!!. The system
(57) encodes the BRST transformations, for Z® = 0, and, at the same time, the BRST and continuous
canonical transformations with the bosonic generating functional Z®y, for an arbitrary Z# and a constant

fb-
3. The functions (Z,I')(#) obey the Ward identities

QEZ@) i & ( o O, h O *) _
aggaa(ﬁ) 0 + Ia(B)a/\*(e m@(@gcp )73h6(39¢) ", ; BI’A vimo Z(8) =0, (60)
8 8 d ., T K
H—1 bc I 4 i T _ (4 {1 *
La( ax*(e ("” T e Naare) ~age) ¢ ar T e ) voo
(r(e) @)~ =0, (61)

with the notation I} (6) = 52 5275 T(6), T (9)(T' 1) () = 6, °. Namely, in the symmetric form
of the above identities, we have extended the standard set of sources dp¢%(0) used in the definition of
the generating functional of Green’s functions in Abelian hypergauges.

Identities (60) and (61) follow from the corresponding system in (51) for (W, X}(#). For instance,
making the functional averaging of the second system in (51), for X (8},

[ 40(£@) 000 [ W - @u1)o - 52056 + 13 )

<{a@ew |3X (@o - aa0m]} =0 (62)

AT =0

10The antibracket (-, - )JF7N commdmg, for N = TIT My, with (-, )(F’“ PsT) 1 = ext, in (39) [ifts the operator AV in
{49) to the nilpotent operator ATTN on ¢ (TITA x {#}), defined exactly as /_\N (), although in terms of the antibracket

{59).
UThe construction of the latter bracket is different from that of [5], where an odd superfield Poisson bracket was derived
from a {,)-local even bracket; however, it is similar to the construction of Ref, [18], see egs. (27).
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and integrating by parts in (62), with allowance for (8/8p* + 8/8*)X(68) = 0, we obtain eq. (60).
Identities (60) and (61) take the standard form for 85y = I,(§) = § = 0, although in the case of
non-Abelian hypergauges.

In the special case of Abelian hypergauges, G4 ((&, *)(8)) = ®%(8) — 9% (B(6))/984(8) = 0, related
to the change of variables (36), for (i, ¢, W) =(2,2", Snext)s 8,;@ =14 =0 (locally, N = IIT™ My},
the object Z(8y®*, *)(f) takes the form

2@, 0) = [ dnexs { § [SHXO. - (2r20940] }. (63)

A @-local BRST transformation for .EE (Bo®*, ®*) () is given, for an HS defined on IIT™ My with the
Hamiltonian SF (6, 5) and a solution I'(#), by the change of variables

I?(8) — IVP(8) = exp [MSN‘W (9)] TP(8), s (9) = = _ adS%(9, k). (64)
Transformatlon (64) with a constant g is anticanonical, with Ber|f%;%9)-|l = Be ||a—§é7)é;l|| =1, if

S5(8, 1) is subject to the first system in (51).
The obvious permutation rule of the functional integral, e(d®(6)) = 0,

o [ 4207 (@,57)6),0) = [ aa0) | 5+ @VIO] 7). 2V 6) = 0930 g0
yields, for 58] In Z(8) = (8, 8% 8584)(8) — 85T(8), the following relations:
802 O)lrqp) = (GV2)(O)Z(68) = 0, GT(O)|r(p) = (L)), TTEN), = 0. (63)

When deriving egs. (65), we have taken into account that the functional averaging of the HS with respect
to Z(6), ['(#) has the form

1)z = (F27 STk ~0850) ), G5T7) = (TP O).F(@ON, = 05@), (60

(3
without the sign of average in (65) for I'(#) and T'?(6). Expressions (65) relate the explicit form of the

Ward identities, in a theory with Abelian hypergauges, to the invariance of the generating functional of
Green’s functions with respect to the superfield BRST transformations.

5 Connections between Lagrangian Quantizations

5.1 Component Formulation and its Relation to Batalin—Vilkovisky, Batalin—
Tyutin and Superfield Methods

The relation of the objects and quantities of -local quantization in the Lagrangian and Hamiltonian
formulations of an LSM with the conventional description of gauge field theory is established through
a component representation of the variables I[N (), Iy (0), L(8), T (6) = TG + I9}0, k = tot,
under the restriction = 0, for instance, (M, Nk, L) = (M, Nilseo = {T% k} Ins). The extraction of
a standard field model from a classical formulation of a genera gauge theory is realized, in addition to
6 = 0, by different kinds of eliminating the functions 5.4 (8}, A%{(8), and those superfields among A’ (8)
which contain functions with an incorrect spin-statistics relation, ep(Af) # 0. A first possibility of such
elimination is given by the conditions gh(A") = —1 — gh(A4}) = 0, {ep); = 0, and (gh, 8/08) Sr.(z)(8) =
(0,0), mentioned in Subsection 4.1.

A second possibility is related to the superfield BRST transformations of Yang-Mills type theories
[10,32, 33], for which, a Lagrangian classical action Spym(8) = St (A Dy A, ﬁ,Dg.A") (F) is defined in

terms of generahzed Yang-Mills superfields, AB”( ), AB® = (A4#2,C%), s = 1,...,r, and matter superfields,
Alz) = (5, T, o7, o+9)(2) - with spinor, ¥4, ¥°, 8, ¢ = 1,..., k1, and splnless of, ot foo=1,.., ks,
superfields — defined on the superspace M = Rl 3 x P {z = (z#,8}}, and taking values, respectively,
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in the adjoint and vector representation spaces of an r-parametric Lie group. The action Spym(f) can
be written as

Suxu() = [ d's [iggcsgcﬂ*’(ml)sﬁ~i@*vaB;w“~“v‘B erIVER £ MA)| (), (67)

with an A(z)-local gauge-invariant polynomial M(A), containing no derivatives with respect to z%. In
expression (67), we have introduced the superfield strength Gpo®=i[Dp, Do) =8p A% — (—1)°5°¢ g A +
FEr AL AL, 8g = (84, 8) and the following covariant derivatives, expressed through the matrix elements

of the Hermitian generators [' = diag (T“ T, ""‘) of the corresponding Lie algebra:

(D, V85, VB3, Vi) = 88 (6,55,07,01) + (£, —i(T¥)5, —i(r*)§, —i(7*)}) A% (68)

where the coupling constant is absorbed into the completely antisymmetric structure coefficients fu*8,
We have also used a generalization of Dirac’s matrices, v2 = (v#,7%), ¥¥ = (#")t = £14, with a
Grassmann scalar £. The Z-grading and ghost number are nonvanishing for the superfields (¥, ¥,?),
namely, (¥, T) = (0,1,1), &(C*) = (1,0,1), gh(C*) = 1. The functional Z[A, A] = 85Srym(8) is invariant
under the infinitesimal general gauge transformations

8 AT0) = 8,(4%51 A)(2) = - [ o (DPH(a) ()T A1 D) 6z - 200 ), (69
with arbltra,ry bosomc (24, = 0) functions £*(z) on M, and with functionally-independent genera-
tors R 1.(0,80) = RY (A(z),2,20). The condensed indices I, Ag of the theory in question, (I;.Ag) =

((B,s,d,¢ f,h,x); (t .’L'g)) conform to the relations, N > @, M =, (1, M) = (Mg, My), in case
= (4r + 2ka, v + 8k1), M = (r,0), Ai=N - (0,7),

- which hold for a reduced theory with the action Sym(6) = St (.A, 0, JI,O) (6) on Mg = {A#¢, A}(2)*2,
in view of special horizontality conditions for the strength Gpc® and certain subsidiary conditions for the
matter superfields A(z) in [10,32],

Guo*(2) = Gu* (2), (Vo] W9, VlT, Vale! , Vil#?) (2) = (0,0,0,0). (70)

To extract a standard component model defined on Me|y_, from a Hamiltonian LSM description, it
is sufficient to eliminate, for # = 0, the antifields A} (§) of a Yang-Mills type theory, by analogy with the
prescription (70), i.e., by taking into account the relation between A%(6) and 85.47(6): see Section 3 and

. the final remarks (see item A) in the Conclusion.

For the restricted LSM used in the Feynman rules of Section 4, the reduction to the model in the

framework of the multilevel formalism of Ref. [21] is provided by the conditions

0 =0, Oppy = By =g = 1o = 0. (71)

In this case, the first-level functional integral Z(') and its symmetry transformations [21], with the
notation Aj, instead of 7%, for Lagrangian multipliers in [21],

70 = f dodToM (To) exp {% (W(To) + Ga (ro))\g)} ,
6TE = (T, —W + Gu)o)p,
535 = (—USNA(=1)% + HRVEA + 26R)°G° )

under the identification {p,w??)([y) = (M, EP7)(Iy), implying the coi_ncidénce of (-, )olp—q and A(0}
with their counterparts of [21], coincide with Zx (O)E 50 and with the BRST transformations ,lates

(having the opposite signs), generated by the system (53) for R(#) = 1. This coincidence is guaranteed
by the choice of X(6) in the form

X&) = {Ga(I‘))\“ AL [ & (TIAPAC(=1)% — iRV2(T)A® — (ih)zé'“([‘)] } (6) + o(A*), (72)

12For # = 0, the functional Sym(0) = Sgym coincides with the corresponding classical action of [35].
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where (V,2,G%)(8), together with (U3, G,)(8), define the unimodularity relations [21). The relation to
the generating functional of Green's function Z[J, ¢*] of the BV method [3] is evident after identifying
Z (8p®*, ®*) (0) = Z[J, "] in (63), where the action S} (I‘g,h) in (36) satisfies eq. (37).

. The following aspect of the restriction § = 0 consists in the representation of an arbitrary function
F@O)=F ((I‘ OT)(8),0) € C(IITA x {6}) by a functional F[I'] of the superfield methods [6,7) (in
case [P = (&4, &%), see the Introduction)

FIT] = f d6F(6) = F (T(0), 8T, 0) = F(To,T1) . (73)

Formula (73) implies, in the first place, the independence of F[I'] from 85T?(#) = ', in case F(f) =
F(I{8,8). Secoudly, it is fundamental in establishing a relation between the #-local antzbracket (-, )3
and operator AV (8), acting on C°° (N x {#}), with a generalization, to the case of arbitrary (T, w7, p)(6),
of the flat functional operations (-, -), A of Refs. [6,7), coinciding with their representations in the BV
~ method, for I” = (34, &%), wP!(I'(§)) = antidiag (—6@,5§), p(8) = 1, and for a different odd Poisson

bivector, & (I'(),8") = (1 + §'89)wP?(#). The correspondence follows from
8- F(Lo) 8:G(Lo) _

F@9ON ],y = el o) X5 = (PTGl
(P, G =0 | gidon (a0 2L | (-ayeens, (79
AN(8) }"(B e = AV (0)F(To) = AV FITY,

¥ = 3000 [ M@, 0) (020,001 (7)) )| (75)

where (p[L],@pe(0',6)) = (p(L'o), 86w,y (8)) and
f do"am (96" Yioaq (8", 6) = 687,

When establishing the correspondence with the operations (-, +), A of [6,7] in (74), (75), we have used
a relation between the superfield and component derivatives:

81/8TP(6) = (~1)°") (66,/6TF — 61/6TT), T = (M, —(=1)*4J).

In general coordinates, the action of the sum and difference of the operators 8p(Vy & Uy )}V (0), reduced,
in the case N = IIT* M. |p_q, tO

Bo(Va F U4)(0) = 0p 24 (6)0/8%3 (6) + 8y2(6)8,/0%(9),
is identical to the action of the generalized sum and difference of the functional analogies V, U in [6]:

8 (Vi — (- UL N () F(9)],_ = (Si(e) FO) ¥ jpo = (V — LUV FIT], £ = 1,2,

SH8) = (BeT7 )b (T(B))TU(B), why () = (—1) T THEE (5), ;Q(G)Ewm(ﬂ),
(V — (—10)N = (s4r7], - YW, st{r] = 84(0) = 8y {I?( e)ag,ag[ ,6,60T2(eN]},
5y(0,8") = —(=1)reTEANGE (97, 6) = 66'wt (8'), (2,gh) (SH(8)) = (G,0). (76)

The quantities §*(8) and S[I'] play the role of the symmetric Sp(2)-tensor Sg (e,d = 1,2) and anti-
Hamiltonian Sq of Ref. [34], which determine (through extended antlbrackets) the first-order operators of
the modified triplectic algebra. In this case, the additional functions w? (8), @ (6’ #") may be considered
as quantities that define another non-antisymplectic (non- R1emann1an) nondegenerate structure on .
The #-local functional operators {AY, VV /N 1(6) anticommute for a fixed 8,

B, EN(0))s =0, 1,7=1,2,3, (Er, Ba, Bs) = (A, V,U), (77)
provided that S*(#), or S*[I], is subject to
(846),5°0))) =0, AY®)S'(6) =0, t,u=1,2. | (78)
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Relations (78), which hold, due to eqs. (74)-(77), also for functional objects (i.e., those without 8-
dependence), follow from the well-known properties of the antibracket (bilinearity, graded antisymmetry,
Leibniz rule, Jocobi identity), and from the rule of the generation of the antibracket by the operator
AN (6). The system (78) specifies the geometry of A" by restricting the choice of both quantities wpq(ﬂ)

@h,(8,8"). Notice that a solution of egs. (78) always exists, e.g., W, (0) = antidiag (6 s (= )‘5‘3).

5.2 Superfield Functional Quantization in General Coordinates

Let us consider a generalization of the vacuum functional of the superfield method [6, 7], namely,

Z¥ = f du[T)g™ [ exp {% (W' + X' + 5,52) [1"]} : (79)

where s iz an arbitrary real number; W', X' are the quantum and gauge-fixing actions, defined on N
and subJect to the equations

E(W" WON YW =AM W, %(X’, XW rux' =inavNx, (80)
while the integration measure and the weight functional ¢V [I'] have the form
dy|T'] = p[L)dT, dT’ = dTodly, ¢V [0] = 6(VI(6)). (81)

n (81), we have introduced a two-parametric set, U (t, »), V (¢, ), of anti-commuting generalized oper-
ators,

U = S-11(STT), Y, V = a8, )Y, (52

satisfying, together with AV, the algebra (77) — for arbitrary real numbers sz, whose choice fixes the
form of Z¥, — as well as equations (80) and the boundary conditions for W' and X'.
The basic properties of the functional Z)J‘{, are analogous to those of 1, 2 for Z(8) in (50), encoded by
a Hamiltonian-like system with an arbitrary functional R[I, (&,gh) R = (0,0),

BT?(6) = -T r)Ire(8), TITIRYY, TII) = exp [ﬁ (W — X' +m8%)]. (83)

For instance, the superfield BRST transformations, §,[7(6) = 85T7(@)u, for Z¥, are derived from (80),
for R = 1, and from the additional equations

i N
P (agr (@pq(ﬂ,ﬂ’)%) I - X xlSl) =0 §,(VI?(#) =0, (84)

providing the BRST invariance of ¢V. In order to be valid for any gauge theory with an admissible action,
eqs. (84) impose strong restrictions on the quantities o’bpq(ﬂ ¢'), and, therefore, on the geometry of A.

For example, the constant functions &’ (8,') belong to the set of solutions to egs. (84). However, more
generally, we do not restrict the consideration to this special case, assuming that eqs. (84) are fulﬁlled
for any W', X"
Setting
(40, %, 9, 0%, (6,8)) = (1, (84, 8%),1,06'antiding (55, (~1)'6%)) , (85)

we obtain
((V,U)F,8%) = ((V, -U)F(-1),8,(253%)(8)) . {86}

where (V,U) = (—1)548y (— 7% (6)890/%% (), ®*(6)050: /684 (6)), according to [6], and, therefore, we
arrive at the coincidence of Z¥,, and, besides, of equations (80) and BRST transformations, that follow
from (83) in case R = 1, respectively, with the vacuum functional Z, '

Z= [ dBdB* 50 ®* (8)) exp {g (W[, 8*] + X[®, 3*] + 8y (25 94)) } ,
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~ and with the equations (W, X) = (W', X"), 1/2(W, W) + VW = (RAW, 1/2(X, X) - UX = ihAX and
BRST symmetry transformations [7] for Z (having the opposite signs in the r.h.s.)

5A(8) = uUFA () + (34(6), X — W, 585(6) = uV5(9) + (F4(6), X - W)p.

- In particular, choosing the action X in terms of the gauge fermion W[®] = ¥[¢, A], X[®, &*] = U¥[Q),
 first realized in [6], we arrive at the generating functional of Green'’s functions Z[®*] used in Section 1 in

order to determine the superfield effective action in Abelian hypergauges.
The maximal correspondence of the functional Zx(0)] p3=0 1D (50) with Z4, follows, in the first place,

from the representation (1/2)(1 + (—1)%)s¢S? for the functional 5,52, so that the redefined actions
W = W'+ %xts*, X=X+ %(—1)%5* (87)

obey eqs. (80), without the operators V and I{. Second, let the actions W (8) in (50) and W[, as
well as the quantities X (6)|,._, in (50} and X"[[], be related by formula (73). Third, the solvability
of the hypergauges G,[I'] with respect to the fields ¢}(#), on condition that A%(f) = 85¢*(#), implies,
together with the previous restriction, a linear dependence of X"[I'] on A%(#), and its independence from
Op¢; (). Next, the structure of the generating equation for X"'[I'], as well as the second system for X (4)
in (51), having consequently the form (72), and, finally, the fact that the corresponding systems (83),
(53), encoding the BRST transformations, coincide with each other, require the commutativity of G, [T
and the triviality of the unimodularity relations, ie., ANG, = Ve = G® = 0. Finally, the measure
du[T)gV in (79) is identical to ol,u(l"(t?))a','/\(@)|lg _p in (50) with the ch01ce of ¢ as ¢V = §(Bsp*(8)). The
latter choice can be realized by (%t, ,(0,0')) = (1,60 antidiag(sy, (—1)!67)) .

6 Conclusion

Let summarize the main results of the present work: _

1. We have proposed a f-local description of an arbitrary reducible superfield model, as a natural
extension of a standard gauge field theory, defined on a configuration space Maly_, of classical superfields
A, o a superfield theory defined on extended cotangent, IIT* M x {8}, and tangent, 1T M x {8}, odd
_bundles in the respective Hamiltonian and Lagrangian formulations. It is shown that the conservation,
under the #-evolution, of the Hamiltonian action Sy ((A4, 4*)(#),8), being an odd analogue of the energy
SE ((A, 85.4)(8),9), is equivalent, due to Noether’s first theorem, to the Lagrangian (Hamiltonian) master
equation, i.e., the Lagrangian (Hamiltonian) system for superfield extensions of the usual extremals.

2. Using non-Abelian hyperganges, we have constructed a 8-local superfield formulation of Lagrangian
quantization of a reducible gaupe model, selected from a general superfield model by conditions of the
explicit #-independence of the classical action and the vanishing of ghost number and auxiliary Grassmann
parity {associated with 8) for the action and .4!(f). In particular, we have proposed a new superfield
‘algorithm for constructing a first approximation to the quantum action in powers of ghosts of the minimal
sector, on the basis of interpreting the reducibility relations as special gauge transformations of ghosts,
transformed in an HS with the Hamiltonian chosen as the quantum action. To investigate the properties of
BRST invariance and gauge-independence in a superfield form, for the introduced generating functionals
of Green’s functions (including the effective action), we have used two eguivalent Hamiltonian-like systems.
The first system is defined by a 6-local antibracket, in terms of a quantum action, a gauge-fixing action,
and an arbitrary ¢-local boson function, while the second (dual) system is defined by an even Poisson
bracket, in terms of fermion functionals corresponding to the ahove functions. The two systems permit one
to describe the BRST transformations and the continmous {anti)canonical transformations in a manner
analogous to the the relation between these transformations in the superfield Hamiltonian formalism [5].
We emphasize that, as a basis for the local quantization, we have intensely used the first-level formalism
of [21], whose central ingredient is the vacuum functional (however, without recourse to the gauge-fixing
action in an explicit form).

3. We have considered the problem of a dual description of L-stage-reducible gauge theory, in terms
of a BRST charge for a formal dynamical system with first-class constraints of (I + 1)-stage-reducibility.
It is shown that this problem is a particular case of describing the embedding of a reducible special gauge
theory into a general gauge theory of the same stage of reducibility.

4. We have proposed an extension of the functional superfield quantization [6,7] to the case of general
antisymplectic manifold without connection. We have found that the requirements of anti-commutativity
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for all operators and of the correct transformation of the path integral measure impose strong restrictions
on the geometry on the manifold.

5. We have established the coincidence of the first-level functional integral Z(*) in [21] with the local
vacuum function of the proposed quantization scheme, in case § = 0 and ¢*(8) =0, Zx (0)| 5 =0~ We have

found a correspondence between Zyx (0)|‘P6=0 and the vacuum functional Z)A{, of the proposed extension

of the superfield quantization {6,7]. We have shown that the above functionals coincide only in the case

of Abelian hypergauges.

From the obtained results follow the generating functional of Green’s functions and the effective
action defined in the first-level formalism [21]. We also observe that, in the case of the dependence
of the quantum action W'[F], or more-than-linear dependence of the gauge-fixing action X'[I'], on the
superfields 9,T?(8), the functional Z¢, differs from Zx(0)| 30 €xactly as the functional Z in (7] differs
from Z() in [21].

In relation with the above points, the following open problems seem to be of interest:

A. A construction of a Hamiltonian formulation of an LSM from a Lagrangian formulation in the
case of a degenerate Hessian supermatrix (S7):;(f) in (5) and its relation to the standard component
description of a model. In this case, the use of Dirac’s algorithm in terms of a @-local antibracket, under
the conservation of primary constraints in the course of the #-evolution along a vector field defined by an
HS with the primary Hamiltonian expressed in terms of antifields, would determine all the antisymplectic
constraints on the classical superfields I'%(#). Among these constraints, there may be a subsystem of
second-class ones, in the case of the degeneracy of the supermatrix ”Eﬂ(@;) [£5(81)SL(81)(-1)7¢] j 5 in
{(6). It is interesting to apply the BFV method to construct, in terms of a §-local Dirac’s antibracket,
(-, - Jen'®, a triplet of 6-local quantities Sg (), (), ¥(8): (ep,e)-even functions Sy (8), 1(8), commuting
with respect to { -, - }op, — by analogy with the Hamilton function and the BFV-BRST charge in a t-local
field theory — and an (ep,e)-odd function ¥(8), which encodes the dynamics of an LSM, its first-class
- constraint algebra, and the fixing of “gauge” arbitrariness in a wider space than IIT* M x {8}. In this

‘connection, it appears of interest t0 consider the question: “How will the construction of the ‘unitarizing

. Hamiltonian’, Sg(8) = Sp(8) + (8), ¥(8))ep, and of Sg(8), (), be related to the quantum action
~of the BV method?”

: B. From the solution of the dual problem of Subsection 4.2, obtained within the classical description,
there arise two natural questions: “How will the operator formulation of a formal dynamical system
with a nilpotent BRST charge and a quantum analogue of the even Poisson bracket correspond to the
Lagrangian quantization of a gauge model? and “What will be related, in a Lagrangian formulation,

" to the formal supercommutator and the Hilbert space of states? The mentioned problems seem to be
related with the correspondence found in Ref. [36] between Poisson brackets and their operator analogues
of the opposite parity.

C. Notice that one of the possibilities of describing theories with non-Abelian hypergauges within the
superfield method [6,7] consists in an enlargement of the component spectrum of superfields (24, ®%)(6)
by a Grassmann parameter 8, not related to an additional antiBRST symmetry. In this case, the in-
clusion of (@4, ®%)() and the fields A%, anticanonically conjugate to 24, into the general superfields
(24,8 4)(6,8) is provided by the relations

(4,8;24)(6,0) = (24, 24)(8), Ta(0,0) = A}

Finally, note that the procedure of N = 1 local quantization has been recently developed in [37], as applied
to the case of reducible general hypergauges when it is impossible to determine hypergauge conditions in
a covariant manner on an antisymplectic manifold.
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