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Abstract

In this work the non-relativistic limit of the linear wave equation for
zero and unity spin bosons in the Duffin-Kemmer—~Petiau representation
is investigated by means of a unitary transformation, analogous to the
Foldy-Wouthuysen canonical transformation for a relativistic electron.
For non-interacting fields, it is shown that such transformation corre-
sponds exactly to a Lorentz boost to the particle’s rest frame. The inter-
acting case is also analyzed, by considering a power series expansion of the
transformed Hamiltonian, thus demonstrating that all features of particle
dynamics can be recovered if corrections of order 1/m? are properly taken
into account, through a recursive iteration procedure.

1 Introduction

Recently, with the increasing technical complexity of string theories as the best
candidates for the unification of the fundamental interactions, there is a renewed
interest in quantum field theory of higher spins as a natural covariant formalism
for accommodating the particle spectra in the Standard Model and quantum
gravity gauge theories, as well as their supersymmetric counterparts. Thus, from
the phenomenological standpoint, it is mandatory to investigate such theories
in the low-energy regime, by examining their non-relativistic formal properties
and taking into account the interaction with external electromagnetic and/or
metric fields as a starting point.

In relativistic quantum mechanics, one must seek a relation between irre-
ducible representations of the Poincaré group and wave equations. In Wigner’s
standard form, non-trivial wave equations can only be written for wave func-
tions with a large number of components, simultaneously expressing constraints
on redundant components and equations of motion for the physical ones. Study-
ing general invariant equations, Gel’fand and Yaglom expressed relativis-
tic wave functions in terms of linear differential operators, simultanecusly de-
termining both these operators and the finite-dimensional representations of
the homogeneous Lorentz group, according to which the components of the
wave function transform. However, such a procedure is not applicable to non-
relativistic wave equations whose solutions transform according o the homoge-
neous Galilei group. Following another approach, relying upon the Bargmann—
Wigner method, J.M. Lévi-Leblond[®! constructed a basis in a ten-dimensional
representation space of the homogeneous Galilei group for free massive parti-
cles of spin 1, by taking a complete set of independent linear combinations of
symmetrical tensor products of two-component wave functions which describe
non-relativistic particles of spin 1/2, and arriving at a system of equations in-
volving linear operators.

In order to investigate the physical properties of particles of zero and unity
" spin in the presence of electromagnetic external sources, instead of starting
from Galilean-covariant wave equations, we start from a Lorentz-covariant lin-
ear wave equation in the Hamiltonian form, and apply a canonical transfor-
mation, analogous to the Foldy-Wouthuysen (FW) transformation!®! for Dirac




fermions, to a suitable reference frame where we can recognize the different
-couplings of charged bosons with the electromagnetic field. In this sense, the
Duffin-Kemmer--Petian representation!¥ proves to be particularly useful, since
all physical quantities are constructed from linear operators which satisfy con-
venient algebraic relations, in close similarity with the familiar Dirac operators.

This work is organized as follows. In the following section we present the
linear wave equation which describes bosons of spin zero and unity and the
basic identities of the DKP associated algebra, then rewriting this equation in
the Hamiltonian form for non-interacting particles. In section 3 we discuss the
quantum canonical transformation for the free boson Hamiltonian, by analogy
with the ordinary FW transformation. Next, in section 4, we derive the non-
relativistic limit of the Hamiltonian which describes charged bosons in interac-
tion with an external electromagnetic field. In section 5 we make concluding
remarks.

2 DKP Hamiltonian

Let us briefly review the DKP formalism for non-interacting bosons of spin zero
and one. The relativistic wave equation in such a representation reads

(if—m)¥ =0, ey

where §= §,,0* and ¢ is a five(ten)-row column associated with the zero (unity)
spin field. For instance,

m1/2¢
; 2
m-1.5 |’ (2)
m~ Y28y
where ¢ obeys the Klein—Gordon equation for spin-0 particles and the Proca

" equation for spin-1 particles.
The S-matrices obey the following algebra:

ﬁuﬁv}gp + ﬁpﬁuﬁ.u. = B,U.gup + ﬁpgv,u . (3)
Let us list some useful consequences:
ﬁoﬁkﬁ(}:O, k=132}3: (4)
85 =bBo, (5)
b=y, (6)
(B-B)Bo(B-8) =0, (7)

where b, = (bo, E) is a generic four-vector.




Multiplying (1) by fb, and using (5),

(iBP— mPB,) o = (10,0~ mPBu) ¥ = 0,
and then (1),
(m8, ~ m@B,) ¥ =0,
we obtain :
oy = By (8)

Multiplying (1) by 8o and taking the zero component of (7) times the imag-
inary unity, one obtains, upon adding the results,

{1 [00 + &* (BoBr — BrBo)] —mBo} ¥ =0,

or
oy = Hyp 9
where .
H=—i@ - V+fm=a- -7+ fom (10)
is the DKP Hamiltonian, and & is defined by its space components:
ay = Bobr — Brbo, k=1,2,3. (11)

3 FW Transformation

As in the electron case, we now seek a unitary transformation

W =e Yy, (12)
H' =¢VHe ™V, (13)

which eliminates the term that mixes the space components of the four-momentum.
In case H explicitly depends on time, equation (8) gives

. ?:ao(e_iU’{lJ’) — He_iv’d)’,

so that

e (i0py') = (He Y — idpe™V) ¢/,
or

' 0oy’ = H'Y', (14)

‘where . .
- H =V (H —id)e™ . (15)

Let us choose .
B
U=—i—18. (16)
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The fB-algebra (2) implies the identity

28.5° = pipsvr [B:BBr + BBl

ik

= = pipipr Bk + Bidis)

ijk

- so that

(B-0)° = —|7*(B -9

Note that, unlike in the electron case,

o 2
B-F
22 o,
( B
since E - § has no inverse.

Representing (16) in the form
[(B-9)* +|5°1F - =0
and then, on the mass shell,
(B-5) = Bopo —p=PoE +m,

we have

[(-2)> +181°] (BoE +m) ¢ =0.

At the same time,

(85760 =3 piv; (BiB;bo)
&

= =" pip; (BoBiBi + Bodiz) = ~Bol(5 - §)* + Ip[*].

i
Then (17) implies .
(m — BoE) (- p*v = ~ 1o my,

or

(m® — BE*)(B - 94 = —(m? + BoEm) 11”4
Since

mz(m2—6§E2)_1 = |—12ﬁ0)
one obtains from (4)

(B9 = - |° + (Bm) fo + E262.

(17)

(18)

(19)

(20)

Eq. (9) does not contain the complete information about the system due to the

multiplication by the singular matrix Sg.

e S R e AR it B e L s oo




Multiplying (1} by (1 — 32), one gets the additional constraint
[:6* BB ~ (1 — Bym] 4 = 0,

or
(B-9)B; + (1= Bf)m =0, (21)
on the mass shell. Also, left-multiplying (19) by (7 ), and using (16) and (20),
one obtains .
(8- P)bo = E(1 - 63). (22)
Now, multiplying (19) by (3 - )2, and using (20) and (21), one gets
@0 =917 (23)
Then . -
- 2
el = B F/1P)0 — 1+M— 1—cosf +Msin9, 24
pr et T &Y

where (16) and (22) have been used in the series expansion. Hence,

H' = (8.p) |cosb — %sin@] + Bo (|5 siné + mcosé) .
Choosing
. m
sinf = %, cos@ = 5
one arrives at
H' = %" (72 + m*) = BE. (25)

From the matrix realization of the S-algebral® for 8; and ¥, one obtains, ac-
cording to (2),
6(2}¢J — _E2¢I - _m2¢l,
and, therefore, the transformed scalar field ¢’ satisfies the Schrédinger equation
i0od' = E¢' (26)

if and only if E = m, i.e., if the particle is in its rest frame.

4 DKP Interaction Hamiltonian

In order to have a better understanding of the particle content of the theory,
let us examine the behaviour of charged bosons in the presence of an external
electromagnetic field A,,, transforming to a reference frame where particles carry
low momenta. The electromagnetic interaction is introduced by means of the
covariant derivative, so that

p—mg =0, | (27)




where the covariant derivative
D, =08, +ied, (28)
satisfies the commutation relation
[Dyy Dy) = ieFyuy , Fuy = 8,4, — 8,4, (29)
Multiplying (27) by 8,, one obtains

[i (DPDH — jefPt) (_ﬁpﬂuﬁn + B;.cgu,o + ﬁpgu,u) - ‘wﬁum] Pp=0,

or
e
Dy = mﬂlﬂj) + %Fﬁ# (6,061!)6# - ﬁpgu,u)";b . (30)
Then, from equations (27) and {(30),
| 809 = HY, (31)
- it follows that
_ H=HO® 4 g, (32)
- where
HO =a 7 +mfy ~ edo, (33)
ie
HW = o FP (8,08, — Bpgon) » (34)
and .
T=pg—eA. (35)
From (14) and the Baker-Campbell-Hausdorf formula, one can write
ouU 16U 1 18U
4 = : it B -
H =H+ N +i [U,H+2 3t] 51 [U, [U,H+3 BtH +.o.. (36)

Since, in the nonrelativistic imit, 6 ~ sin @ ~ |}/m, one can choose, in the first
approximation, by analogy with the free case,

B

From the commutation relations (A.1)-(A.7) and the vector relations (A.8) and
(A.9), listed in the Appendix, one obtains

U, HO) = - Z{3-7 (B- D)8+ 5187, BBl - 5187, F4poB5) . (39)

- In addition,

37, B3 =45 -#x B2 + (- E)o(B -2 — 3 -4,  (39)
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so that one arrives at

-mﬁg—er+—( -ni;— )-{—%@ H)ﬁﬂ"""“g"(ﬁx&).ﬁ
+ 58 (@ X E)) (1+263) + 5515 7, (B0 + F x @) - H] |
-2 By 2~ 25 B2 M - -7+ 0 (m) (40)

where relation {A.10) has been used. In the above expression, § stands for the
spin operator of bosons,

Si; = 1(8:608; — Bibobs) » 1, =1,2,3, (41)

with eigenvalues 0 or 1, and E and H are the electric and magnetic fields,
- respectively.

Expression (40) is analogous to the Hamiltonian of the Pauli equation for
spin-1/2 fermions, in the case of charged bosons of spin 0 and 1 in the presence
~ of an external electromagnetic field. In expression (40) we can recognize each
term individually. For example, the second term is related to the electrostatic
potential and the third one corresponds to the kinetic term of the non-relativistic

interaction Hamiltonian. In fact, following the same steps which led to equation
- (21) on the mass shell, and from the very definition of the matrices ay, it results
that the kinetic term in the transformed Hamiltonian can be rewritten as

% [ 283 -1)]

which is indeed diagonal and non-singular in the matrix realization of the DKP
B3-algebra, as one would expect by analogy with the disentangling property of
the FW transformation.

In this approach, the most interesting result is the appearance of the spin
and orbital angular momentum couplings with the external magnetic field (the
fourth and fifth terms, respectively), as well as the diagonal spin-orbital coupling
(the sixth term), through the electric field; the last two terms may be interpreted
as being analogous to the Darwin term for spin-1/2 fermions in the presence of
an electric field; the remaining terms represent higher-order corrections to such
effects, as well as the (non-diagonal) corrections to the rest-energy (the first
term).

5 ConCluding Remarks

In the preceding sections we have investigated the non-relativistic limit of the
Lorentz-invariant wave equation which describes scalar and vector mesons in
the so-called Duffin- Kemmer-Petiau representation. By constructing unitary
operators involving the space components of the relativistic 4-momentum and
those belonging to the associated IDKP algebra, both for free particles and for




charged bosons in an electromagnetic background, we performed a quantum
canonical transformation to a reference frame where we succeeded in identifying
the coupling terms with the electric and magnetic fields, in close similarity with
the non-relativistic behaviour of interacting fermions described by the Pauli
equation.

Our approach differs from the one by Lévi-Leblond!? in the sense that be
. derived non-relativistic linear wave equations for particles of arbitrary spins
which satisfy the Galilean invariance by construction, where the electromag-
netic multipole moments are introduced on dimensional grounds. Nevertheless,
- in the case of massive particles of spin 1, he settled the corresponding wave
equations by employing the Bargmann—-Wigner construction, referring neither
to the algebraic properties of the relevant physical quantities nor to any partic-
ular representation for them, which we have made explicitly in our treatment.
Yet, in the scope of DKP theory, other authors have recently investigated the
non-relativistic wave equation for spinless bosons via Galilean covariance, by
introducing an extra degree of freedom in the free Lagrangian densityl®, thus
recovering the Schrédinger equation for a free particle. However, the introduc-
tion of electromagnetic potentials spoils the original structure of the associated
Lie algebra on which the reasoningl® is grounded. Another interesting issue
related to the present work is a possible generalization of the above procedure
to theories of higher spins, as well as to their non-Abelian counterparts(7.
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A Appendix

Below we present some useful commutation and vector relations derived from
the algebra (2) of the S-matrices:

0,67 = —foi® ; (A1)
0, ol= 27 (A2
(U, Ao} =~ T o; (A.3)
[U,8U/8%] = E‘i.? (7 x aff/at) ; (A.4)
[U,[U,& 7] = —Ti—z (@) ; (A.5)
[T, [T, Bo]] = ““—ﬂo ; (A.6)
[0, U, Ao]l = § (7 % VAo); (A7)
FPEB, 808, = (E BB+ E -+ F98:iBoB;; (A.8)
F*Bogou = —E- §; (A9)
F98,808; = —ifeS - H—i(fx &) -H. (A.10)
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