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Abstract

A natural and very important development of constrained system theory is a detail study o
relation between the constraint structure in the Hamiltonian formulation with specific featur
the theory in the Lagrangian formulation, especially the relation between the constraint struc
with the symmetries of the Lagrangian action. An important preliminary step in this directi
a strict demonstration, and this is the aim of the present article, that the symmetry structur
the Hamiltonian action and of the Lagrangian action are the same. This proved, it is suffi
to consider the symmetry structure of the Hamiltonian action. The latter problem is, in
sense, simpler because the Hamiltonian action is a first-order action. At the same time, the s
of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as
objects. One can see that the Lagrangian and Hamiltonian actions are dynamically equivs
This is why, in the present article., we consider from the very beginning a more general prot
how the symmetry structures of dynamically equivalent actions are related. First, we pre
some necessary notions and relations concerning infinitesimal symmetries in general, as well
strict definition of dynamically equivalent actions. Finally, we demonstrate that there exis

isomorphism between classes of equivalent symmetries of dynamically equivalent actions.
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I. INTRODUCTION

The most of contemporary particle-physics theories are formulated as gauge thec
It 1s well known that within the Hamiltonian formulation gauge theories are theories
constraints. This is the main reason for a long and intensive study of the formal th
of constrained systems, see [1]. It still attracts considerable attention of researchers. I
the very beginning, it became clear that the presence of first-class constraints among
complete set of constraints in the Hamiltonian formulation is a direct indication that
theory is a gauge one, i.e., its Lagrangian action is invariant under gauge transformat;
A next natural, and very important, step would be a detail study of the relation betweer
constraint structure and constraint dynamics in the Hamiltonian formulation with spe
features of the theory in the Lagrangian formulation, especially the relation between
constraint structure with the gauge transformation structure of the Lagrangian action.
important problem to be solved in this direction would be a strict demonstration, and tl

the aim of the present article, that the symmetry structures of the Hamiltonian action




of the Lagrangian action are the same. This proved, it is sufficient to consider the symr
structure of the Hamiltonian action. The latter problem is, in some sense, simpler bec
the Hamiltonian action is a first-order action. At the same time, the study of the symix
of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects
[2, 3]. It follows from the results of the article [4] that the Lagrangian and Hamilto
actions are dynamically equivalent. This is why in the present article we consider :
the very beginning a more general problem: how the symmetry structures of dynami
equivalent actions are related. The article is organized as follows: In sec. 2, we pre
some necessary notions and relations concerning infinitesimal symmetries in general
strict definition of dynamically equivalent actions is given in sec. 3. Finally, in sec. 4
demonstrate that there exists an isomorphism between classes of equivalent symmetris

dynamically equivalent actions.

II. SYMMETRIES
A Basic notation and relations

We consider finite-dimensional systems which are described by the generalized coordir
g ={q% a=1,2,...,n}. The space of the variables ¢°¥,

d
qa.[l] = (dt)lqav 1=0,1, vy Na, (qa[ﬂ] = qa) ? dy = EE,

considered as independent variables, with finite N, , or with some infinite N, , is c
the jet space. The majority of physical quantities are described by so-called local funct
(LF) which are defined on the jet space. The LF depend on ¢ up to some finite o

I < Ny > 0. The following notation is often used[6]:
F (g™, ¢"M, ¢, ..) = F (¢1)

for the LF. In what follows, we also deal with so-called local operators (LQO). LO Uac

matrix operators which act on columns of LF f2 producing columns F4 of LF, FA = {4




LO have the form
K<oo

Uaa= ) b ()",

where u%_ are LF. We call the operator

K<oo

(ﬁT)a,A - Z (o) uhe

k=0

the transposed operator With respect to [4,. The following relation holds true for an;
4 and f,:
FA[AIAafa = [(ﬁT)M FA] f*+dQ
where @ is an LF. The LO U, is symmetric (+) or antisymmetric (—) respective
(U' T) L= +07,,. Thus, for any antisymmetric LO Uy, relation (5) is reduced to the
lowing: f%U.,f* = dQ/dt, where Q is a LF.
Suppose the total time derivative of an LF vanishes. Then this LF is a constant. Nax

aF (¢ ()

» = [y =
7 _0==>F(q )_.const.

Indeed, let us suppose that N, are the orders of the coordinates ¢® in the LF, i.e. F (q['
F (-+-g*Wel). Then according to (6) the following relation holds true

Neg—1

OF  aiNett] = )
BgoNa 74" — |OF + Z Z g a[k]

The right hand side of the above relation does not depend on g™+, Thus, 3F/d¢°™el

and therefore £ (q[”) must not depend on ¢®™sl. In the same manner we can see
F (q[l]) must not depend on ¢~ and so on. If F (q[‘]) does not depend on any ¢V |
&, F (™) = 0 as well, and we get F (g [l]) = const.

We recall that F4 (gl) = 0 and x, (¢!} = 0 are equivalent sets of equations whenever
have the same sets of solutions. In what follows, we denote this fact as F' = 0 <= x :
Via O (F) we denote any LF that vanishes on the equations F, (qll} = 0. More exactly
define O (F) = V°F,, where V? is an LO. Besides, we denote via [/ = O(F) any LO




vanish on the equations F, (¢!) = 0. That means that the LF u that enter into (3) vs
on these equations, u = O (F), or equivalently U f = O (F) for any LF f.

We consider Lagrangian theories given by an action S[q],

t
Slal= [ Ldt, D=L (d),
t

1

where a Lagrange function L is defined as an LF on the jet space[7]. The Euler-Lagr.

equations are
) ; OL
oe =~ 2. gom =
5q P aq [
Any LF of the form O (85/dq) is called an extremal.

0.

For any LF F (gl) the operation

de P i d\' or
dg® s\ dt Hqdt]
is called the Euler-Lagrange derivative with respect to the coordinate ¢®. One can see

the functional derivative of the action S coincides with the Euler-Lagrange derivative o

Lagrange function,

05  dpLL
g dg®
The Euler-Lagrange derivative has the following property:
der d
dg® dt
To prove this, one may use the relation
o d 8 ( 3 8
Tt <
alk alk bt alk—1
aq (% gt 6q[] — aq[] aq[ |

0 0 d 0 %,
bii4+1]_~ - _ Y _ v
+ (8t + ; q 3qu) 8qa[k] - dt aqa‘[k] + (]. 5}:0) aqa[k_l] .

Thus, one gets

dnd (4N 9 d s dYT 0 s _i)’“ 0
dg® dt dt) &g di <\ dt dgell ~ L=\ dt) Ogel-1]

k=0 k=

_4N~(_9 ki_iz LA\ _ 0 _ddm ddm _




B Noether symmetries

Consider an infinitesimal inner[8] trajectory variation é¢® (inner variations vanish toge

with all their time derivatives at ¢, and £3). Namely,
¢*(t) = ¢ (t) = ¢" (t) + 64"

We suppose that §¢® = 6¢° (¢l) is an LF. The corresponding first variation of the ac

can be written as follows:

tgﬂ
5= | éLdt,

ty

where the operator 5, which will be called the transformation operator, acts on the c

sponding LF as[9]

A d .
§=> 8¢ M —r =5,
pr aq[] |

Two simple but useful relations follow from (14):
Sq“ = d¢", Sci(;z.q = c"&;{q.

The variation (12) is a symmetry transformation of the action S, or sir
asymmetry of the action S, whenever the corresponding first variation of the Lagrange f
tion is reduced to the total time derivative of a LF. Namely, dq is a symmetry if

. dF
oL = —
dt ’

where F' is an LF. In this case the first variation (13) of the action depends on the comy

set of the variables ¢l at t = #; and ¢ = ¢, only,
to .
85 = f dLdt = F|? .
41

Any linear combination of symmetry transformations is a symmetry.
Indeed, let &;¢ be some symmetry transformations, and dg = ¢'8;q, where ¢* are s
constants. Then, taking into account (15}, we obtain:

2 aF; - dF ;
. = ____3 = — = iEj .
(551qL pm = 55qL | a’ F=c¢




Transformation operators that correspond to symmetry transformations are called «
metry operators.
" The above-described symmetry transformations are called Noether symmetries.
Below, we list some properties of the transformation operators and of the symrx
transformations:

a) Any first variation of the Lagrange function can be presented as

donl AP _ (,88  dP
i T et a

8L = 8¢°

where P is an LF of the form
; Na Na a-m
P = Za;p?c?cf[m"” , Py = ; (—gg) g(:?[g :
One ought to remark that the sum (19) that presents P is running only over those a for w
N, > 0. However, it can be extended over all ¢s since the momenta pj* that correspon
the degenerate coordinates are zero. Thus, the prime over the sum above can be omitt

b} Any transformation operator commutes with the total time derivative:

2 d
5,4] =o.

The latter property is justified by the following relations:

d - 0 i
"——6 _ Z I:é-qa[k+1] — +6qa[fc = ] Z q bil+1] (5(] e
dt pard 0q (%] [k] a0 8q Skl Hatll ]aq |
sd 2 o] 9 alk] ghlt+1] & d»
%= 2 [5‘1 ] 5gl © 60, + > 8 dgPlagelk r

1=0 e =0
¢) The commutator of any two transformation operators is a transformation operatc

well.

Namely, let 31q = dqq, and qu = §¢y. Then

[31, 32] = 33, 33‘1 = 31592 - 325611 .




Indeed, one can write:

fa Bl alk] 5 41l 9
0109 = Z: (515q ) B ] + Z 0g; gy 3qb[z] 3qa[k]

I=0
d'(b,668) alb] 5,21 0 3 9
sy ar O g a0 O
5251 - ; (6625(1 ) aqa[k] + l;)é‘qz Jql aqa[k] 8qu
k3 b
_ d (5626(11) + Z 5 k]éqb[l] 3
dtk aqa[k] 2 qu[l] aqa[k

k=0 k=0
Then subtracting Eq. (23) from Eq. (22), we obtain the relation (21).
In other words, the set of all transformation operators form a Lie algebra.
d) The commutator of the Euler-Lagrange derivative and a transformation operat
broport_ional to the Euler-Lagrange derivative. Namely, if 5q = d¢°, then
k
] - =S () ot

k=0

To prove this property, one may consider a sequence of equalities,

27 dEL (JF) 1a o to .
/t — Lo = f S5Fdt = /t 58 Fdt + f s Pt

1 dq 1 3

LI A a deLF

k=0
:ftl o (&sbwb) dELth, (chazga),

where ( (t) is an arbitrary inner variation, and F is an LF.

It is useful to keep in mind the following generalization of relation (24):

LAY @E,S Qg dur :
dt ] dg* dt dg®

which follows immediately from (20) and (24).

e) The commutator of two symmetry operators is a symmetry operator as well.




Indeed, let Slq = dqy, and 52q = §gy be symmetry transformations, i.e., 6L = dF
and é,L = dFy/dt. Then, taking into account (20) and (21), we obtain

d

am,a:&ﬂmﬁﬂ.

[81, 32] L=6L=

Thus, the set of symmetry operators of the action S forms a Lie subalgebra of the
“algebra of all transformation operators.

f) Symmetry transformations transform extremals into extremals.

The validity of this assertion follows from the relations proven below.

Suppose §isa symmetry operator; then the following relation takes place:

5(1 - Qadq

Indeed, by virtue of (10), {11), and (24), we can write

508 _ sdml _ drr (5L) _ gpdmL
sgr ~  dgr  dg® “deb
. 08
(15q

_dwdF 5,05

T dgt dt “5gb —Q

A generalization of (27) based on the relation (24) reads:

gk
5.‘?._.@: d* Qz 65
dtk §go dtk Yo ggh

g) Symmetry transformations transform genuine trajectories into genuine trajectori

Indeed, suppose that §* be a genuine trajectory, that is

5S

—| =0,
5q“&

and 8¢° be a symmetry transformation. Then the transformed trajectory §* = ¢* + 4

also a genuine one. Indeed, by virtue of (27) and (29), we get:

i)
5¢°

=0.
7 g

5| ()&

8S l : 58
e g

§'=G+dg




C Trivial symmetries

Below, we are going to describe so-called trivial symmetries transformations, which «
for any action.
A symmetry transformation is called a trivial symmetry transformation whenever

corresponding trajectory variation has the form

A 08
a . frab =
6¢° =U 7l

where U is an antisymmetric LO, that is (l:’ T) “ = —{J% . Thus, trivial symmetry tran
mations do not affect genuine trajectories. (One can prove, see below, that any symr
transformation that vanishes on the equations of motion, §¢® = O (§5/8¢) , is trivial, na
it has the form (30)). With the help of relations (5) and (18), we can casily verify that

is actually a symmetry transformation. Indeed,

oo dul~pdal dP _dF  dP _ d(F+P)
oL = dqu dgb i w T ES T @

where F' and P are some LF.

Since trivial symmetry transformations are proportional to the EM, they do not ch
genuine trajectories, as was already mentioned above.

The commutator of a symmetry operator and a trivial-symmetry operator is a tri

symmetry operator. Namely, if
6L =dF /dt, 5L = dFy/dt, baq® = 62° = V85/8¢°,

then

) fro & . 58S
[511 52] L= 53L, 53q“ = 53qﬂ — Ua.bd_qb,

where V% and U are some antisymmetric LO.
To verify (31), we remark that, according to (21), b3 is a symmetry operator, with §
3152q - 3251q, where d;1q = Slq“. The term 5152q can be calculated with the help of (14
2o, 9(029%) [ d* (008

k=0




and the term d58,g can be calculated with the help of (27),

- 4 08 ~opa 08 A A 88 pop A 08
o ab} Y~ abg "M _ eby Y~ yrabAe Y '
Bybrg = (52v ) 55 Vg (521/ ) 55~ Vs
Thus, we obtain: d3¢® = d3¢° = U%85/8¢%, where U® is an antisymmetric LO of the fc
~ 8(620°) { d\* sy . dN*8 (64" | ¢~
ab _ 1 el ch ac [ _ ¥ -4 Va.b‘
v g { A\ dt v dt) Ogeiel :

We call two symmetry transformations &g and Joq equivalent (81 ~ 2¢) whenever

differ by a trivial symmetry transformation:

58

01 ~ doq = 019" — 02" = fjab(gqb :

AN N
Here (UT) = -y,
Let G (9) be the Lie algebra of all symmetries of the action 5. The trivial symme
form the ideal Gy, (S) in the Lie algebra G (S). Then the classes of equivalent symme

form a Lie algebra Gpy (S) isomorphic to the quotient algebra:

Gpn (S) = G(S) /Gtr (S) L

II1. DYNAMICALLY EQUIVALENT ACTIONS

Very often we encounter an action

Sulg,y] = / Lg (¢, y1) dt,

- which contains two groups of coordinates ¢l and gl such that the Euler-Lagrange allow
to express all y via ¢l. It is convenient to call Sg[q,y] the extended action. One car
to eliminate the variables y from the extended action to get some reduced action, w
depends now only on ¢, and ask the question: What is the relation between the exter

and the reduced actions? There exist a case when this question has a definite answer [2




Namely, let us suppose that the Euler-Lagrange 6Sg[g,vy] /0y = 0 allow one to exy

uniquely the variables y as LF of the variables ¢,

6Selg,yl _
5 =0<=y=7(qd").

Then we define the reduced action S [g]

Slq] = Selg, 9] =/LE (q“,gﬂ)dtme(qﬂ) dt.

Let us compare the Euler-Lagrange that correspond to both actions. First consider

variation of the reduced action 45 under arbitrary inner variations dq,
65 ;
65[ql = f (w%_(ggm Jg"‘) a = [ %51 Sgdt.

ot
In virtue of (34), the Euler-Lagrange of the reduced action read

85 lg] _ Selg,y]
dg dq

. 05slq,
0g° + #
y=¢ 4

=y

On the other hand, the Euler-Lagrange of the extended action Sg [g,y] are

6Selg,y] _ . 8Smlgy] _ — i (4l
= =0 =0<=y=7(q) .

They are reduced to (37) in the g-sector. We can see that the extended action and
reduced action lead to the same Euler-Lagrange for g. This is why the variables y are c:
the auxiliary variables. The auxiliary variables y can be eliminated from the action witl
help of the Fuler-Lagrange. Further, we call the actions SE [g,y] and S{g] the dynami
equivalent actions.

One ought to stress that the above equivalence is a consequence of the assumption
the variables y are expressed via ¢ by means of the equations d5/dy = 0 only. If, for
purpose, some of the equations 4.5/d¢g = 0 are used as well, then the above equivalence ca
absent. Of course, the solutions of the Euler-Lagrange for the reduced action, together
the definition y = 7, contain all solutions of the Euler-Lagrange for the extended actior

it is easily seen from Eq. (36)). However, the reduced action can imply additional solut:




Actions containing auxiliary variables and the corresponding reduced actions have sir
properties, in particular, there exists a direct relation between their symmetry transfo
. tions.

As was mentioned above, we are going to relate the symmetry properties of the extes
and reduced actions. To this end, it is convenient to make an invertible coordinate rep.
ment, (¢%,9%) = ¢ = (¢%,2%), y = z+7 (qm) , in the extended action. In fact, we are g
to consider a modified extended action S[§], which is obtained from the extended ac

Sklq,y] as follows:
5[q] = ff, () dt = Selg, z + 7] = fLE (gl 20 +70) dt.

The extended action Sg[g,y| and the modified extended action S[g} are completely ec
alent. They lead to completely equivalent Euler—Lagrange. Thus, it is sufficient to &
the relation between the symmetry properties of the modified extended action S[g] anc
reduced action S [g] .

Note that

Slal=Sldl|__, L() = L (@)

2=0 '

Besides, the action (38) can be presented in the form

St = stal+8sla, ASl = [ ALat,

AL=L () - L(¢") = Lg (¢!, 20 + g1) — Ls (¢",5") .
The variables z are auxiliary ones for the action S [d], and, in particular, z = 0 on
Euler-Lagrange. Indeed,

650q] _ o ., 95ele,y]
0z &y

=0=y=7(¢") = 2=0.

The latter implies:

55’ JAS A
— = 8 _
Gz 0z% ap? 0.




Since equation (41) has the unique solution z = 0, one can easily verify that {7 is an inver
LO. The equation (42) implies

. d
AL = Za aﬁzﬂ + ziiF,

where K is a symmetric LO, and F is an LF. Besides, one can write

AR N

On the other hand, due to the property (11), one can write

.JAS _ deLAL _ i_E}_,_ [za 2 zﬁ]
dqe dqg® dqg® f )

.Then, taking into account (43, 44), and the definition of the Euler-Lagrange derivative.

get the following useful relation:
SAS 1 A8 s~ 4\ 0K ()
dge = A _Z(_EFZ) “ gl (U ) ’

where A% is an LO.

IV. SYMMETRIES OF THE EXTENDED AND THE REDUCED ACTION

There exists a one-to-one correspondence (isomorphism) between the symmetry cle
of the extended action S[j] and the reduced action S [g] . Below, we prove a set of assert.
which justify, in fact, this correspondence.

i} If the transformation

&q°
8¢t = )

62

is a symmetry of the extended action S, then the transformation
8g® = &ql,_

is a symmetry of the reduced action S.




Indeed, let (46) be a symmetry of the action 5. Then

- d -
SqL;EF:

where F' is an LF. Considering (48) at z = 6z = 0, we get

. d . .
Sal= ZF, 0¢"=8dlg, F=F|

where L is given by (39). Thus, any symmetry of the action S implies a symmetry of
action S. The symmetry dg obtained in such a way can be called the symmetry reduc

of the extended action.

it) If the transformation dq is a symmetry of the reduced action S, then the transforms

6§ = ( o7 ) , 02% = — (f\T)zc‘)'q“,

dz%

where the LO A defined by Eq. (45) is a symmetry of the extended action S.

To prove this assertion, let us consider the first variation Sggf/ of the Lagrange func
L . Since 6q is a symmetry of the reduced action S, the relation 3.5qL = dF/dt , whe
is an LF, holds true. Thus, with the help of the property (15), one may write the varie
55(;[[: in the form

55"E= (55 +35 ) E——‘ iF—i—- (35 +(§5z) AL.
q q Z dt q

Now, we present the variations quAL and &5, AL with the help of relation (18). Bes

taking into account the expression (49) for the variation dz, we get

dsqL = 5; (F+ P+ P)+ 5(1“(?75 - [(AT)Q 5Q“] 5§f )

a

where P, and P, are some LF. Using (45) and (5), we may write

e 28 o8 - (i) o) S5 2,

where G is an LF. Thus, the variation 5,5qu is reduced to the total derivative of an LF,

Sggﬁz%(F+Pq+Pz+G).




Thus, 6§ is a symmetry of the extended action 5.

(3

Since 44 is a symmetry of the action S, one can write

iii) Any symmetry of the form

of the extended action S is trivial.

a2 a2 o= dF
Osql = 05 L = — -,

where F is an LF. Taking into account (18), we may rewrite Eq. (54) as

where F' is an LF. The left-hand side of equation (55) can be transformed, with the he
(42) and (5}, to the form

1

298 _ sop o [(07) on] 28 4 O
0z Jza_éz B —[(U )ﬂaa]z +

where F” is an LF. Thus, the equation (55) may be reduced to
dd N
Be =" = {07 @
L dt’ Js (U )ﬂaa !

where f (QU) and & (QU) are some LF. Let us present the LF ® as

i) (Q“) = ®, (q“) + @, (Q[]) ’
N
Dy = (I)lz=0 , <I)1Iz=0 = Z @a(k) (Q[]) Za[k] , N <o00.
k=0
It follows from equation (56) that d®q/dt = 0. According to (6), the latter implies d
const . From (56), we get the equation

- N+1

Z Payz®™ =0,
fex=0




where

Pal0) = fa - (i’a(O) s Pa(N+1) = —q)a(N) )
Pa(k) = — [(I)a(k—l) -+ (i)a(k)] ,k=1,.,N.

The general solution of Eq. (58) is

N+1

Pal) = Y Ma®la 2, Ma®lse = ~Mps)lialk) s
=0

where My (s (@U) are some LF. Then the LF o and f, can be found from Eq. |

N—k N+1
Laqr) = Z Z ( ) [ma(k+m+1)|ﬁ([)z'6 [l]] ,
m=0 =0
N+1 I\
fa= 2. (“g,g) [mamyisayz™] = thas?”,
m,i=0

where 72,4 is an antisymmetric LO. Thus, we get from (56)
. Ay —1 ,. 88
§2% = M*P = 95 Me# = [(UT) ] Mg (U‘l) ,

az8’
where M*? is an antisymmetric LO. Therefore, the symmetry (53) is trivial.
iv) Suppose both transformations 6g; and &g, to be symmetries of the extended acti

such that their reductions coincide, that is
&'q =0 = ‘5‘I2| _o=140q.
Then these symmetries are equivalent,
8g1 ~ 0Ga,

which means that d§; and dG, differ by a trivial symmetry.

Thus, we have to proved that the transformation

e s Ad =0q — g
Aq = 5q1—6Q'2 — , Aq"z-':() = 0
Az =108z — 0z




is a trivial symmetry of the extended action S. In virtue of Eq. (63), the LF A¢' ma

presented as

o

Ag® = mlz®,
where 7 is an LO. With the help of (44), we get for Aq’ the following expression:

ap 035

AMZM ,
? 828

where M = {1 is an LO.
Let us present the transformation Ag in the form A§ = A;§ + Ay, where

. & 0 MoeP
A1§=MAB5—53'7 MABz - ab ’
8§ _ (MT) 0
and
. 0
qu =
AO..H

The transformations A;§ is a trivial symmetry since the LO M4B ig antisymmetric, th
(M T) " — MAB_ Thus, Ay is a symmetry of the extended action S. Besides, the I
symmetry has a special form (68). It was prover in item c) that any symmetry of su
form is trivial. Therefore, the symmetry Ag is trivial as well.

v) Let a transformation 6¢ be a trivial symmetry of the extended action S. The
reduction dq is a trivial symmetry of the reduced action 5.

According to this assumption, we may write
N S -

b2 = — (M7) " 5+ Nor

where the local operators M and Mef are antisymmetric. Then the reduction §g = §'¢

of the transformation (69) reads

6qa — mab%, mab — Ma.b

z=0 )

The LO 72 is antisymmetric. Thus, (70) is a trivial symmetry of the reduced action ;




vi) Let a symmetry dg of a reduced action S be trivial. Then any extension of
symmetry to the symmetry 6§ of the extended action S is trivial as well,

Since dq is a trivial symmetry, one can write

where Mm® is an antisymmetric LO. Consider the following extension of the symmetry

R R
0 q
which is a trivial symmetry of the extended action 5. Any other extension of dq differs :
81 by a trivial symmetry, according to item (iv). Therefore, any extension of the tr
symmetry is a trivial symmetry as well.
Concluding, we can see that there exists an isomorphism between classes of equive
symmetries of dynamically equivalent actions. Since the Lagrangian and Hamiltoniar

tions are dynamically equivalent, one can study the symmetry structure of any sing

theory considering the first-order Hamiltonian action.
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