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1 Introduction

In the Wigner-Weyl realization of a symmetry in a field theory there are multiplet(s) of degenerated states
- such as particles with equal masses and quantum numbers. However it can happen that the ground
state is not invariant under the whole transformation group although the Lagrangian is. This occurs in
the Nambu-Goldstone realization. Non zero expected value of one or more fields (which will be called
condensate(s)) appear in the ground state for this (spontaneous) symmetry breaking. Non degenerate
states emerge, eg. particles with different masses. In this case the symmetry is said to be spontaneously
{or dynamically) broken (SSB) [1]. Zero energy excitations appear for SSB of global symmetries by
the Goldstone theorem [2]. The lightest hadrons are known to respect approximately chiral symmetry:
SUL(2) x SUR(2) which is believed to be spontaneously broken down to SU(2) from phenomenology and
theoretical reasons. This is expected to occur with the formation of a scalar isoscalar < grgr, + Jrgp >
condensate in the QCD vacuum [1, 4, 5, 6] not only in the light quark sector but in all the SU(Ny) flavor
and chiral group [7, 8, 9, 10, 11], besides the other condensates expected to be in the QCD vacuum [12, 13].
Hadronic models for strong interacting systems are expected and required to exhibit the relevant features
of low energy QCD, respecting the main symmetries (and properties) of the fundamental theory with its
: (6bserved or not) degrees of freedom. However, tree-level hadronic models can embody higher order effects
of Quantum Chromodynamics - perturbative or not. Besides that calculations on discretized space-time
provide a powerful way to the investigation of links between the two levels of strong interactions. One
of the relevant issues for theses links is the understanding of the behavior of hadronic properties (masses
and coupling constants) in different dynamical situations which are expected to be directly related to the
symmetry and fundamental properties. In particular much attention has been given to dynamical effects
in experimental conditions in which strong interacting processes are investigated. These issues are far
more important in experiments where global many body observables are investigated such as in relativistic
heavy ion collisions (rhic} and high energy heavy ions collisions (hehic). Hydrodynamical descriptions of
many particle systems can be expected to be directly related to the field theoretical approach. For this,
the time and spatial evolution of these systems must be addressed in a variety of approaches. Different
aspects of the time evolution of systems undergoing spontaneous symmetry breaking have been addressed
in many works [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, b8, 59, 60, 61]. In this sense, this work tries
to provides elements which can be helpful to describe effects in experimental situations at the hadronic
level, when quarks and gluons are confined.

The linear sigma model [14, 15] has been extensively investigated and in many respects provides



excelent description of experimental observations. Although there are scalar mesons which have been
observed in different processes [16, 17, 18] there are no real evidence whether their structure is consistent
with the quark-antiquark expected to be present in a chiral partners of the pseudo-scalar mesons (being
that their properties are studied nowadays in the vacuum and in the nuclear medium) [9, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. Furthermore connections between the linear sigma
model and low-energy QCD can be expected to.occur and they have been discussed along last 30 years
[36, 37, 38, 39, 40]. The non linear realization of chiral symmetry {1, 41, 42, 43] will not be worked out
here. The couplings to, for example, vector mesons are determined by the realization of chiral symmetry
[39, 44, 45] and although these subjects are not the main aim of this work some aspects will be shortly
addressed.. Hadron masses, interactions and the manifestation of the symmetry in the vacuum (and
in the medium) also impose severe constraints for these formulations. Non perturbative effects have
an extremely important role in such bound states and their interactions although they are not exactly
calculable in the strong coupling regime of QCD so far (unless, in principle, in lattice calculation). Once
+ again, hopefully, the investigation of the hadronic models, in the (low and high energies) confined regime
may very useful to shed light on effects observed effects and corresponding structure of the QCD.
Nevertheless it is reasonable to ask questions such as: can the linear sigma model be an appropriate
framework to consider the dynamics and properties of the scalars even if they may not be described by
quark-anti-quark states as it is found in some investigations? It will be assumed along this work the
scalars mesons are coupled to the pseudoscalar ones within the linear realization of chiral symmetry.
~ Although in this picture the lightest scalar field is expected to develop a non zero ("classical”) expected
value in the vacuum, the scalar condensate < o >4,.>= 7y x< ¢@ >, it may happen that the expected
value of the scalar meson field may have other components in its complete quark-gluon structure. The
Gell-Mann-Oakes-Renner relation accounts for this very plausible link between the guark and observed

low energy degrees of freedom:
mg < §g >= — Emf, (1)

This condensate is therefore to be identified to the pion decay constant f, and to the chiral radius in
the usual Nambu (Goldstone) picture. These three quantities reduce to the same value in the usual
analysis of the linear sigma model (LSM) at the tree level. The pion masses, as well as the quark masses,
are obtained by breaking explicitely the invariance of the Langrangian with additional term(s) as, for
instance, Ly, = co, where ¢ o p2 although other forms can be also suitable like proposed in the present

work and elsewhere {72].



In this paper the Linear Sigma Model {(LSM) with pions and sigma is re-investigated within the
variational approximation with trial Gaussian wavefunctionals [62, 63, 64, 65]. The time dependent
variational principle will also be considered as worked out in [66] to calculate the equations of motion. This
will allow for the investigation of time dependent and static effects related to the spontaneous symmetry
breaking. The equations of motion reduce to the GAP equations in the static limit which determine the
physical masses and ground state of the system. These GAP equations are found from the minimization of
an averaged energy density with respect to the trial variational parameters: the classical fields & =< o >,
# =< w >= 0 and the corresponding two point functions Gg =< ¢% >, Gp =< 7w > . The
Golsdstone theorem is satisfied. Particular solutions for the time-dependent caleculation are found which
do not introduce further ultraviolet divergences in the ground state (local} static limit. They give rise to
modifications in the model parameters such as masses and couplings possibly corresponding to situations
present in experimental investigations of high energy and relativistic heavy-ion collisions. The elimination
of the ultraviolet (UV) divergences can be done with the inclusion of one or two renormalization scale
parameters. These different procedures are considered respectively in the time-dependent and static
calculations. With this, there may occur another kind of dynamical symmetry breaking in which more
than one renormalized coupling constant appear. Without the Lagrangian term which break chiral
symmetry explicitely the pion mass is set to zero with the renormalization mass scale(s) {or eventually
the renormalized parameters) or written as directly proportional to A < 0|w|0 >2— 0. The divergence
~ of the axial cuzrrent is calculated resulting a sort of 'averaged PCAC’ (in terms of an averaged value of
the pion field &) which is associated to the method which deals with averages. The paper is organized
as follows. In the next section the linear sigma model is presented, its ground state is described at the
tree level and the usual Gaussian variational approximation is presented as usually done. In section 3
particular stationary-like analytical solutions for the time dependent calculation are found and partially
compared to the results of the time independent calenlation. The renormalization is performed in section
4, in two ways: in the ususal way or with the introduction of two renormalization scale parameters. In
section 5 the divergence of the (vector and axial) currents are calculated. In the final part there is a

suminary.



2 Linear Sigma Model

The Lagrangian density of the Linear Sigma Model (LSM), with a sigma and pions (e, 7), chirally coupled

to vector and axial fields can be given by [39]:

1 A 2 2 2%, ¢ y u
£ = 5 (Duo-D*o + Dy Dim) — ((cr) +(m)?—0?) + : (ﬁyL,ﬁ b+ Fhy o T “R) )

where v is a constant associated to the bare masses and coupling (A) - the chiral radius. The choice of
how the chiral vector and axial fields are coupled is not the main subject of this work. Other couplings
in the linear sigma model Lagrangian can be considered [39, 1, 44] without modifying the conclusions of
this work. Choices for the covariant derivatives and the “left-right components” kinetic tensor (with a

constant coefficient a) will be given respectively by:

Dyo=0d,0+ ’Y(A#iz — AME).WZI,
Dyt = Ot +y (AR + D) x )" = o ((4B) - (4L)), 3)
Fr=8,AL - 8,AL + vAL x AL,
where the two components, right and left, are the chiral combinations of the isovector and iso-axial vector
fields expected to correspond to the mesons p and A4; (with fl'ff(L) x (17# + (—)EM) /2).

For the parameter v set to zero the model becomes scale invariant at tree level and the sigma mass
also goes to zero. The scale invariance is also broken with the inclusion of quantum loop corrections
[67, 12]. This will be briefly discussed latter. However to obtain the chiral symmetry breaking, with
the chiral scalar condensate 7, this term shows to be necessary. The resulting coupling constants of the

model after the shift due to the scalar condensate are given by:

A A
Joooo = Gnarn = Z Jorr = 2AT  Grroo = “2“: (4)

They are related to each other due to the chiral symmetry and its spontaneous breakdown. From the
usual linear coupling of the scalar field to baryons the nucleonic mass, or part of it, can be generated
without breaking explicitely chiral symmetry. For instance: Ampy ~ +g¢@ For the isovector and azial
fields however the covariant derivatives given above (3) only generate o mass term for the awzial field.
This is to be associated to the mass diference of the rho and A; mesons. This mass term from the above
covariant derivative (CD), obtained with the shift of the scalar field, is given by: m&p AL AY = v*52 AL AY.
Given that ¢ = fr ~ 93 MeV and (m4, —m,) ~ 450 MeV, the coupling can be fized, v ~ 5. The mass of
the rho is not obtained from the above Lagrangian density as proportional to &. This variation of the rho

mass is ezpected to occur being possibly in agreement with recent results for the restoration of chiral SSB
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at high energy densities. The rho mass is then expected to decrease with increasing energy densities until
the restoration of chiral symmetry is reached [68]. This can be reproduced, for ezample, with different

covariant derivatives and different mechanisms of mass generation may be at work [1, 69, 68, 70, 71].

in chiral models depend on the realization of chiral symmetry.

2.1  Tree level and pion mass

The sigma field is therefore expected to acquire non zero expected value in the vacuum, the scalar
.condensate which does not endow the pion with mass (like a Goldstone boson). The minimization of the
potentiol of o, with relation to o and 7, lead to the values of the fields in the ground state. It yields
respectively:

A (—1)2 + (a* + 71'2)) a=0, A (~—v2 + (0? + 'rrz)) e = 0. (5)
The first equation hos three solutions: 0 = & =0, 0 = & = dv whereas 7, is set to zero in the ground
state. For a certain range of values for v and X the sigma field develops a non zero ground siate classical
value & =< o >— +v [I]. This parameter constrains the dynamics of the fields becoming the chiral
radius. The emergence of this scalar condensate breaks spontaneously the global symmetry and orthogonal
fields, the pions, should have zero mass [2] - since the pion mass is in faect non zero (but small) they
seem to correspond to quasi-Goldstone bosons. The scolar field is shifted to account for this appearence
of the condensate when computing the properties and observables of the corresponding processes. This is
usually written as:

g—a+s. 6)

The following ezpressions for the pion and sigma masses arise respectively:
my =2 (5% —v?) =0, m2=x(352-1?), (7)

for which & = v, 779

Assume that, for some other external reason or coupling, ¢ # v in the vacuum of the model. The
parameter v still is the bare pion decay constant {chiral limit): v = F; = 88MeV [42] while & can
be the total pion decay constant in the tree level & = f; ~ 93MeV. It is found that A ~ 43.3 and
m2 = (628 MeV)?, for m2 = (140MeV)2. This value of the scalar meson mass is close to values found in

the PDG tables and in theoretical estimates quoted above. In this picture a pion mass can be obtained by
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A chiral symmetry breaking Lagrangian term is usually introduced such that a realistic pion mass is
obtained and such that low energy theorems of current algebra are respected [1]. T'wo different symmetry
breaking terms (not completely equivalent) will be preliminary considered:

Loy =co+ goz, (8)

where c,d are constants to be determined from PCAC. For this, it is assumed in a first analysis that
cach of these terms is responsible for the total pion mass independently. The term proportional to o®
can be responsible for modifying the sigma mass and/or the pion mass. To calculate the PCAC, each of
~ the terms are considered separatedly, i.e. ¢ 0,d =0 or ¢ = 0,d # 0. They are obtained respectively as:
Te=- fzmZ and d = —m2. However the parameter d can also modify the sigma mass yielding d oc Am2

as seen below. The minimization of the sigma-pion potential with both terms simultaneously leads to

the following expressions:

d
)«(—vz+(crz+7r2)+~x>cr+c=0,

A (—'ug +(0* + 'n'z)) g = (.
Whereas ¢ introduces a more complicated mathematical expression for the solution of the condensate &

(deforming the chiral circle), the parameter d can be regarded as a shift the chiral radius: v? — o2 — %,

(9)

which endows the pion with a mass besides modifying the sigma mass. Consequently the chiral radius is

written as:
' 1 c d
2 2 2
m2==-{9 ) 10
o+ 2 ( YT )\U) 10
The parameter is therefore d = —m2, as discussed above, corresponding to a deformation of the chiral

circle. It also yields a modification of the sigma mass Am?2 = d. These symmetry breaking terms, either

of ¢ or d [72], will not be considered explicitely in the remaining part of this work.

2.2 (Gaussian approximation

Quantum fHuctuations for the sigma and pion fields will be computed in the frame of the variational
approach in the Schroedinger picture using the Gaussian prescription [66, 62, 73, 74, 75, 46, 48, 47] .
In this approach the state of the system is described by normalized wave-functional(s) which satisfies
the functional Schrédinger equation. Field operators and their respective canonical conjugated momenta.
(b = o,m; & = M,,1Ix) are applied to the wavefunctional respectively as: ¢;|Tid;] >= ¢ T[es] >
, éi|\IJ[¢z-] >= wi%ﬂ\ll[gbi] > . In the following, the time-dependent version of the variational principle is

described and the static limit considered latter. Given a Gaussian trial wavefunctional, |¥ >= |¥ [0, 7] >



containg the variational parameters, the averaged action which yield the time-dependent Schrédinger

equation can be calculated. This action is given by:

= [t < Wl G0, — Higs, L) 191 > (11)

A trial Gaussian wave-functional is decomposed into two Gaussians, one for each of the the fields

(scalar and pseudo-scalar fields). For example, for the sigma field part it can be written:

 Wlo(0] = Neap{ -1 [ dxdy(o(0) - ) (65" (x,y) + iSs(x,9)) (o) - &) +i [ dnbs(otx) - )},
(12)
Where N is the normalization, the variational parameters are (i) the vac,;uum expected value (“conden-
sate”, constant) &(x,t) =< ¥|o|¥ >; (ii) the two point function, representing quantum fluctuations, for
| ._ the width of the Gaussian: Gg(x,y;t) =< ¥|o(x)o(y)|¥ >; (iii) their respective conjugated variables for
the time dependent formalism are respectively Es(x,t) and Xg(x,y;t). An analogous expression for the
pion wavefunctional is considered with the variational parameters: G‘f;.’b(x,y; t) =< U|x°7®|¥ > (where
a,b stand for pion index: 1,2,3); 7, =< U|mo|¥ >= 0; Tp(x,y;t) and £p(x, ). The two point function
G‘I‘;b is a matrix in isospin space and it is considered to be diagonal in the particular case worked out here
(Gr‘%b = Gpé**). This guarantees the explicit chiral and isospin invariances as long as we take & = 0.
However all the calculations are done as if this quantity were non zero, and for drawing conclusions, the
limit & — 0 is done.
The variation of the averaged action with respect to the Gaussian variational parameters (7,7,
Gp,Cs, Es,ép, Tg and Lp) yield the movement equations. They may be written in the following form:

6T -
= Bty (%, 1) = 6 (-A + 724 3Gp+ 50 + Gy — vz) 8o To(x,1);

¥4 .
EEZ — at’ﬂ' (x, t) = —f?:(x, t)
é—%})—} s (x,1) = 6) (—A + 6%+ 3Gs + 72 + Gp — v?) 5(x, 1)
é% i R
% — agO'(X,t) = —§g(x,t);
5T -2 .
—— = Ts(x,¥;t) = 254 (x,y; ) — s xy:l) + (“é 42 (GGS +65% + 27% +2Gp — 21)2)) ,
- 8Gs 8 2 4
T G5
52” = 8T8 (x,y;1) = 2(B5)*(x,y;t) — Gp oyt (}g’y’t) + (—% + % (SGP + 62+ 3%+ Gg — '02)) Sab}
5z
T~ %ls(xyit) = 2(Gs(x,24)s(2,y; 1) + Ds(x,2;1)Gs(2,¥3 1)) ,
6 {3 C, a,C [
5EF O (x.¥31) =2 (CF (x0T (5,33 8) + S5°(x,2 )G (2, y31))
P



With implicit summations in ¢ and integrations in coordinate. The completely isospin invariant solution
corresponds to 7, = 0. The "static” limit yields the GAP and field equations which define the ground
state in the variational approach. In this approach the expected value of the scalar field, to be associated

to the chiral scalar condensate, is introduced as a variational parameter.

2.3 Time independent limit: GAP equations

In the time independent limit the time derivatives of the equations of mouvement (13) are set to zero
and the remaining equations are those for &, # and G;(x, x), assumed to be homogeneous functions. The

physical masses uf (when G,p = G, 0,5} can be written as:

(3&2 +#2 +3Gg + Gp —-1:2) ,

2=
s (14)
7 m)\(3ﬁ2+5'2+3Gp+Gg—v2) .

The (diagonal} two point functions G; can thus be written as:

1
~—~—|x>. 15
2/ A+ (15)

where the above expressions for the masses (14) have been considered. These functions have exactly

Gi(x: x; ’J’E) =< x}

the form of the perturbative two point Feynman Green’s functions with time integrated, the imaginary
part with opposite sign and with physical mass. They have ultraviolet {UV) divergences which are to
be eliminated to provide reliable results. The time-dependent renormalization is usually believed to be
the same of the time-independent: there seems to have no extra ultraviolet divergence due to temporal
evolution [75, 46].

The time independent limit of the condensate equations in the case discussed above (13) can be

written as:
A(~A+#2+52+3Gp+Gs — v?) fra () = 0; (8)
M-A+5+ 5 +3Gs + Gp—v?) 5(x) =0.
With the GAP equations, the sigma and pion masses are found to be directly related to the variational

parameters, and they can be re-written in the homogeneous case (AG = A% = 0) as:
pi=2282, i =227%%* 0. (17)

With the inclusion of quantum corrections, the parameter v is not equal to &. The zero pion mass is
obtained directly in this approach for # = 0 in agreement with the Goldstone theorem [65, 77, 78]. For

the sake of generality some calculations will be done for both & and & different from zero.



2.4 Some non-homogeneous solutions

For particular non homogeneous situations, there are interesting solutions for expressions (16). Consider,

for instance, that:
AF = A%s, AR = AL, (18)

where 4; = A;(x) or constants. The respective GAP equations can be written as:

pE(E) = (uf)ess(x) = 26%(x) + A%, pb(x) = (ub)ess(x) = 27°(x) + A}, (19)

yielding an analogous form of the homogeneous limit (17) with x-dependent effective masses (u7)ess(x).
Different possibilities arise and the choice of appropriate coordinates (cylindrical, cartesian or spherical)
. is relevant depending of the corresponding geommetry of the systemb.

For constant imaginary A;, corresponding to a periodic configuration of ¢;, there results A2 < 0,
leading to a smaller effective mass. For a continuously varying system which develops inhomogeneities
(with real 4;) uff fs . For other types of configuration in which A is x-independent at least in a
localized region of space, u¢f7 # u,. For x-dependent A; there are a large variety of situations. Some
questions arise such as: is this kind of inhomogeneities sizeably present in experimental conditions, for
example in the fireballs of rhic and in hehic where the value of the condensate is expected to be modified

due to the expected restoration of chiral symmetry? The same question would arise for any other field.

3 Time dependent stationary-like solutions

Before eliminating ultraviolet divergences through renormalization of coupling constant and mass param-
* eters it is interesting to seek a particular classes of solutions of the regularized equations of mouvement
{(13). In this section stationary-like solutions are searched for the sigma and pion variational parameters

(they are denoted by G; and ¢;, where i = «,¢). The following general prescriptions are considered:

Cix,x;0) = (E (% 1), (1), 6 (x,1) = a(B)F(1), (), (20)

Where a;, , ¢* and G* can be time-dependent or not. For particular solutions it will be suitable to
change the notation for: G%(x,x;t) = a;(£)Gi(x, x), q._Si(x,t) = b;(t)#h. 1t is kept the possibility
of having different "flows” (a;, b;} for each of the fields. For real parameters a;, & these prescriptions
correspond to amplifications or reductions of the variables with time. The dependences on x,t will be

omitted in most of the expressions from here on.



The prescription (20 (i)) (for G(t);} is considered for the equations of motion (13). By redefining
% = a;5¢ the following equation (for @;) is obtained:

(Gi - iag(z:;)-l) Y (Gi - i(zg)mlag) = BG (1) + G (1)ZH(E) = 0. (21)

Although this expression is similar to the one obtained within a static (thermal or not) ensemble such
as those obtained, for example, in [74] it cannot be casted in that form and indeed corresponds to a
time dependent system although ”it seems” that G; = 0 because the prescriptions for the solutions of
expressions (20) ailow.the rearrangement of the equations. !. These (new) variables, (G+,G_), can be

rewritten in the following form:
64 =229 (6t + G4 0), Ghe) = 2. (640 - EL). (22)

“There is a solution for which G} is a constant and the temporal evolution of G is given, according to

prescription (20), by af = a*(¢). The above expression (22) can also be rewritten as:
BHHGH) + GHR)EHE) = 0, (23)

where ¥;(t) = £(t) —a;/4(t) and i.i (t) = Bs{t)—a;/4(t) — 0. Therefore, in spite of G(x, y; ) is a function
* of time, its time dependence, from equations (13), can be given by the form of expression (23) due to a
redefinition of the conjugated variable ¥; within the prescription (20). Final solutions for the equations of
motion are found substituting these expressions in the equations (13) for ;. Usually this eliminates the
‘variable ¥;(x, y; ) although such expression for X;(x, y;t) cannot always be obtained analitically in the
coordinate space. Considering again that f}z(t) = 0, it follows that 5(¢) = 0 and finally: Z;(t) = a;/4(t).
"This prescription yields, after a re-arrangment, the following expression for ¢; (where i always stands
for o or 7):

1.2 a2 <2
0=-367%+ (A+m— % +a57), (24)

where ii =%; — a;/4 — 0 in this case.
"The prescriptions proposed above can be akin to those a self similar-like system in which the resulting

stationary solution keeps a modified effective (and eventually time-dependent) mass fi;(¢) in the form:

i = ) - 22 L an )’ (%)

"However the same kind of prescription can be considered for a thermal (smoothly varying) caleulation producing similar

expressions. One defines G (x, by; ) and G_(x,y;t) in the same way such that it hag nothing to do with thermalized mixed

states, although eventually it can be translated into a particular (self-similar) system out of equilibrium.
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where %; is given, in a more general case, in terms of G by rewriting expressions (21,22). However, from the
prescription considered above there is one (trivial) solution 3 = 0 yielding Ti(x, y; ) = a;(t)/4 d(x —y).
Rewriting explicitely the above expression (25) in terms of G+ and the corresponding mouvement

equations for G; (13) it is obtained that:

2ty = (357(2) + 36,0 - S 1) + 720) + G (1))
2 (26)
Fr(t) = X 372() +3Ga(t) - £(8) + 3%(t) + Gs(®) |,
“where G; stands for the sigma and pion two point functions. Although the condensates & and # have not
been calculated so far 'we draw some possible pictures below. Renormalization of ultraviolet divergences
.' in G; as shown in section 5 does not change the form of the solutions. For real parameters a; the pion
‘and sigma effective masses are smaller.

In the time dependent solution (or in medium solution) for up — 0 it follows that fip # 0, as an
effective (“dynamical”) pion mass. In this case, the time evolution of the system is basically driven by
an effective mass which should be rather time dependent (a;(t)), althongh solutions for constant a; may
appear. The “effective” pion mass in these situations, where non homogeneities are in the form proposed
in the section 3.2 (periodic), can induce a corresponding time evolution of the pion field {and eventually
condensate if present) such that its total effective mass acquires particular values, according to expression
(17). This can correspond, for example, to a situation in which (87 — A)¢; = 0 and therefore A? = o?.
Otherwise the effective pion mass is nonzero even in the so called chiral limit {where.c =d =0 in the

~ Lagrangian density given in expression (8)) for such (time dependent) case. This non zero solution for
the (effective) pion mass may eventually be part of a dynamical origin from the measured pion mass in
the (non trivial) vacuum...

A different kind of solution with a modified total mass in the framework of the variational approach
was found in an expanding environment, namely in the A¢* model in a de Sitter metric for inflationnary
models [58]. Therefore it is reasonable to expect that the Universe expansion may contribute to masses

of particles depending of its geommetry.

3.1 Equations of Condensates

So far, only the equations for G; and X; were investigated. For the equations of motion of the condensates,

without writing their eventual x-dependences, the following analogous prescriptions are considered:
7)) =p(t) ®(x;t),  o(t) = s(t) 5(x;8), (27)

1



Where the parameters p, s can be constants or not. The equations of motion (13) can be written in the

form:

T
A BRI PR,
. 6 6
A pE—25%  s4+8%\ 0 (28)
—~4 -+ 6 + X o =0,

The time derivative of these equations lead to the following equations:

2 _ox2 52 2 _ 9 (372 5 195
(_A+Mp & 4P pp-2(3%%) i+ pp)%a=0’

6\ 6 BpA 6pA
P2 -2 482l 5+ 28s (29)
—A 5 Hs ~2 5=0.
( TR T T T T e )" 0
On the other hand, the time derivative of the GAP expressions (14) yield:
2 ~2 ~2
e = A (Gsa +2.(p)F° + 3a:Gs + apGp) , (30)

AP =X (3-(21’)71'2 +285% + a,Gs + 3apGp) :

Some particular solutions are given below. Depending on the prescriptions for a;, s, p numerical solutions
are found. The parameters ;, 5, p can be partially determined or constrained in terms of the parameters

* of the model (coupling and mass).

3.2 Some solutions

For constant "flow” parameters, a; = § = p = 0, real or comples, (which still yield G = G(t)), the
equations above together (28,29,30) yield to the following coupled equations:

2 _9x2 2 2
(—A+M+p—+“—*"+)i‘raz0,

3) 6X ' 6ph
3\ 6x x0T

‘where 17 are given by expressions (30). These coupled equations, Jor the prescriptions proposed above,
yield algebroic eguations for the parameters instead of differential equations.

Several types of solutions can be searched depending on A¢ # 0 or A¢ = 0. For example, there is a
particular class of solutions for which —A¢; = —;S?;, as noted above {¢; = &, 7). The resulting expressions
have the same form of the static ones for the condensate although the effective masses also would have
time and spatial dependences which are required to be compatible with this configuration. Considering

only that Aq_? = 0 the solutions will be called homogeneous. In this situation more restrictive condition
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“will be considered in equations (30,31) such that an analytic simplified solution appear:
0s = ap = 2p = 2s. (32)

This conditions mean that: dG, = 28,5 and the same relationship for #(t) and Gp(t). This is quite

reasonable since from the variational equations: Gg o &% and similarly for the Gp x #2. It follows that

fio = as(uy + 2%, i = as(ul + M), (33)

being that the constant v? breaks scale invariance already in the Lagrangian density. A solution for these
" equations is given by:

pe = 2?4 Cpe®?,  pg = —Xv? 4 Cyetet, (34)

where the constant C; > 0 is the only parameter to distinguish the masses at a given time ¢; which may
be #; = 0. Different values for s = p = 5/5 yield diverse situations as long as the relations among the
variables (32) are kept and the physical masses are positive (with A > 0). For real parameters, ag, (which
. ‘may be for contraction or expansion) these solutions cannot be valid for long times otherwise m? become
negative (a; < 0)or too much large {g; > 0).

. Thecaseof a increasingly larger scalar order parameter, &(t) with ag > 0 from an initial time when
& = 0, the solution (33) can be valid for an interval of time until &(¢) — v =~ 93 MeV, eventually
occurring in experimental situations [79, 49]. Considering that sigma and pion masses are zero at t =0, -
it is reasonable to choose C; = Av? and Cp = Av?. It can be ﬁritten that: p2 = Av?(—1 4+ ezp(ast)), and
" & similar expression for the pion mass. This is consistent with a zero mass for the Sigma when & =0 and
it increases until its value when & ~ 93MeV. In this case the time scale needed for the pion mass reach
its real value will be nearly given by:

AtziLn (l-l—g).
ag A

For a coupling constant A ~ 20 we obtain At ~ 0.11/a,fm. Larger the coupling constant X faster the
-mass will vary until its value in the (true) vacuum which is an expected behavior. Meanwhile the sigma
mass will vary accordingly because the flow was assumed to be the same a; = ap. The values of the
parameters a;, s, p may be different in a more complete calculation for # = 0 or not. Other different
scenarios can be obtained from the above equations. The equations would also hold for non zero & for
example in conditions when the disoriented chiral condensates - DCC - could be expected to appear [80].
This kind of modification and time dependence of the masses and couplings can have relevant effects in

experimental situations.
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4 Elimination of UV Divergenc'es: Renormalization

The Gaussian approximation is self consistent and it corresponds to a sum of the "cactus” Feynman
diagrams, Hartree Bogoliubov approximation and to the leading order large N approximation {81, 82].
In the case of zero pion mass an infrared divergence appears in Gp which is not treated.

The regularized expression of the two point functions G; (where i stands for pion or sigma) with a
cutoff A in the momentum space, in the limit of large A, is given by:

2
G = Gilud) = 55 {A2 by (iﬁz)} (39)

)

The GAP equations with the expression (35), assuming # = 0 or not, and considering only one cutoff,

can be written as:

A2 2 2
2wl = — vt + 3252 +,\— _ s % My (44 + O(#),
w2 1672 eps 1672 ens (36)
- A2 3 4A? A2 46*
2 _ 4,2 yx2 _ SALp s
2up = -+ A5+ /\27r2 16m? Ln _‘3#?3 lﬁﬂ‘an " + QO(®) — 0,

where the terms containing #* were not written explicitely (O(#%)). It is worth to remind the other way
 of writing 43, in expression (17) according to which u% = 0. There are other ways of eliminating the UV
divergences of these equations. We follow the logics of the references quoted above: the GAP equation
above with 42(7 = 0) = M2 is subtracted from the GAP equation with (5 # 0). This is also considered |
for the pion GAP equation with 4%(% # 0) and p%(% = 0) = M. This makes possible the pion’ and
sigma masses to become equal at some energy scale (M2 = M2) or to be always different (M2 # M3Z).
- To eliminate the UV divergences renormalized parameters are defined in these subtractions of the GAP
equations. They can be written in terms of the bare parameters and mass scale parameters (M2, M3).

Following this usual reasoning for each of the GAP equations they can be re-written as:

2 2 2 pY
43 = M3+ Brpe36% — SHEARS i‘i) i (Mg) + O(#),

1672 Mg 1672
2 2 2 3ubArp I PEARP HE (37)

~ In these expressions renormalized parameters determining the form of the renormalized potential were

defined by:
A2 2 4A?
2 _ 2 = 2 A HP bl
M _#S,R_‘TAR;S( v "'*'27‘_2 167T2Ln(2M12, y

38)
A2 ,u,2 4A2 (
Mp = ppp = Arp (—"’2 + 507~ Tgpaln (M '



Renormalized coupling constants were also defined, namely:

A
Ars = 3 an2 Y’
1 + 677 Ln (m‘g)
A (39)
AP = 33 242
_ 1+ 1677 Ln (eMPE)

These coupling constants are to be respectively the g,4 and g,« couplings. Their combination leads to a
9,22 coupling constant. From the discussion above in expressions (37) it is seen that the sigma coupling

Ar,s (for o* vertex-type interaction) can be different from Az p (for =* vertex-type interaction). This

means that the coupling o®7? could have two values depending on the process under consideration: for

the sigma or pion self energies 2, corresponding respectively to the fourth term on the right hand side
of each of the two GAP equations (37). In the Gaussian approach there is no coupling like g, .2 which
is obtained in the tree level of approximation with the usual shift of the scalar field. Each of the above
couplings confribute to the renormalized finite theory of the finite energy density.

The resulting relations between the bare coupling constant and the renormalized ones, expressions

' (39), depend rather on the ratio of the cutoff to the scale parameters A?2/M?. Considering that Mp = Mg

the couplings satify Ar s = Ag,p, as it is usually considered. Otherwise for Mp # Mg, for fixed ratios in
the limit of very large cutoff, there are several scenarios. In the imit of A — oo for fixed A/Mg <1 and
A/Mp > 1 (or the inverse situation) it follows that the sign of the renormalized couplings may be even
different. These expressions for the renormalized coupling constant seems to exhibit features related to
asymptotic freedom as it was shown for the A¢* model [83, 73]. This model keeps many similarities to
the Linear Sigma model. The appearance of the two couplings (39) may be associated to another kind

of spontaneous symmetry breaking in this model.

4.1 Stationary-like situation

Next we show the renormalization of the stationary-like solutions found in the section 4 considering equal
mass scale parameters M = Mg = Mp. In those cases the equations of motion (13) become GAP-like

equations. They can be written as:

2
- ~ - - a
uh = (36" + 7 +3G5(38) + Gp(Eh) —7) = 77,

(40)
ph =X (3% + 8%+ 30p(i3) + Cs(i}) - v?) - °F,
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where 37 = p? — a?/4. With the expression of the functions G; in terms of the cutoff A and with the

extra terms with only one mass scale parameter M the following renormalized expressions is obtained:

2 n2 ~2 =2 ¥ =2
9 _ 2 85 o3 .» OftgAms, (A%\ [APArs, (P .
Hs = is g T8RST - et In 3 )~ e L\ g ) O
2 _ 3 a  x .o 3ibimp B\ iEirp Bg . )
Hp =#pp =y TARPE = e In s )~ e L\ a2 ) TOR)

In these expressions, renormalized masses determining the form of the renormalized potential were defined

by:

- A? ﬂ2 4A2
2 .2 4 Hp ‘
KR = AR ( Vo T I M \3E ) )
v A2 g 4A% “2)
.Uv?DR:ARP —?)2+——'u}—sn —5 .
: ' 2r2 1672 2M2
Renormalized coupling constants were also defined, namely:
5 A
.\R.S =9 )
L+ 38 =B In (257
Ry
3 ) (43}
AR,P

P
In two limits, namely either with a; — 0 or with ap = ag (keeping pug = pp), the usual renormalized
expressions with only one coupling constant are obtained. This limit of equal coupling constants A RS =

A &P can also be obtained with two mass scales M; within the time-dependent picture as shown in the

previous section for the static limit. Considering the particular values for the masses given by: 4fi; = a?
the resulting renormalized couplings reduce to 5\R,z~ = A. In the most general case however there would
appear two renormalized coupling constants in this time dependent picture. Therefore two ways of

obtaining different renormalized coupling constants were found within the same self-interacting model.

‘4.2  Other remarks

The Gaussian approximation considers two components for a field: a "classical” one, 7 =< ¢ >, whose
expected value in the vacuum is non zero like in a condensed state, and a " quantum” one whose expected
value in the vacuum is zero and it yields the two point Green’s functions Gj(x,y)} o< ¢? >. The former
appears for a spontaneous symmetry breaking which modifies the ground state that has a privileged
direction (or more directions). Usually there are two degenerated points of minimum characteristic of
SSB systems [1]. The "quantum part” of the field corresponds to the physical particles through the

creation and annihilation operators. These two parts have crossed terms in the energy density {46, 49].
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These two components do not have the same "mass” necessarily. They can be calculated respectively

with:
d2

=2
do a=0

"mi” from m2 = p% from (44}

aH
dGg’
and analogously for the pion. The first of these masses is related to the condition of stability of the
effective potential in the broken symmetry direction while from the second one yields the GAP equation,
expected to be "physical mass” (14) [73, 46, 48]. In these definitions it was considered a regulﬁrized
expression for the energy density which are renormalized after the variational procedure as it was shown
in the last section. A slightly different approach, which does not change our conclusions, was suggested
~in [84] for which all the information concerning the phase structure of the model would be given instead
by renormalized parameters. However there still is the usual ambiguity of choosing an absolute value
for the true vacuum energy density which will not be really addressed in this work [84]. The usual
procedure employed in the renormalization scheme is to subtract the expressions of the averaged energy
in the symmetric phase of the potential (& = 0) from H in the asymmetric phase & # 0 [73, 64]. A mass
scale (free) parameter still is to be fixed as it was shown in the last section. The renormalized mass and

coupling constant are the same as those obtained from the GAP equations.

4.3 Symmetry Restoration and particle production?

The scalar condensate can be alternatively (or equivalently} introduced by means of a Bogoliubov trans-
formation from the ground state in the symmetric phase [46, 85, 86]. Considering this ground state
fulfilled with the condensate, with its quantum/virtual Quctuations, it can be excited producing parti-
cles. This can occur in the high energy/relativistic heavy ion collisions in whose conditions the restoration
of chiral symmetry is searched. Considering the QCI} scalar condensate identified to & measure of the
density of quark and antiquarks: < grgr + drgr > (250MeV)® the restoration of chiral symmetry
implies a symmetrical production of particles with quark and anti-quark content (either equal number of
baryons-anti-baryons and/or mesons with quark-anti-quark structure). This goes along with experimen-
tal data in which the baryons/ anti‘-baryons ratio goes to one at the energies in which chiral symmetry is
expected to occur [79]. Assume, next, a resulting fireball in which quarks deconfine from a rhic with a
volume of approximatedly V ~ 1500 fm3.

From this configuration around 1500 quarks and antiquarks would be excited from the (“evaporated”)
vacuum eventually favoring the production nearly 750 (light) mesons, lighter than baryons, without

computing the eventual formation of equal number of baryons and anti-baryons. This very crude and
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naive estimate does not include the structure of the colliding nuclei neither does consider that the spatial
distribution of the condensate can be modified as the colliding nuclei and particles push the condensate
away from the central region of the collision, squashing and smashing the vacuum [49]. An estimatation

of the spatial modifications of the condensate due to the fireball can also be considered.

5 Conserved and partially conserved (averaged) currents

The axial and vector transformation of the fields, scalar o and pseudoscalar 7, with infinitesimal param-

eters «y, can be written respectively as:

g — 0+ Ty, g —F g — Qgd. (45)
g — Wy — Brg, o — 0+ fo.

The divergences of the vector and axial currents are found by performing the corresponding transforma-

tions in the Lagrangian density and the associated variations:

aﬂjg,azial = %: aujff,yector = %a (46)

Because the Gaussian variational method deals with averaged values, the averaged value of the action was

calculated with the trial wave-functionals after the transformations. The divergence of the corresponding
current is found with expressions (46), i.e., an averaged value.

The average of the action usually considered for the variational principle can be written as a sum

of two terms which in the time independent limit reduces to the average of —H. The variations with

relation to the parameters of the transformations yield a zero divergence of the vector current (conserved

current) and the following value for the “averaged divergence of the axial current”:
< Bt it >= —26(< w2 > — < 0 BYi, + O(G*#5) + ... (47)
Considering eqnation (14) we can write the above expression as:
< Bl awiar >= —g § ip o + Oluh, 4, (48)

where O(u*) represents higher order terms in the masses. The pion decay constant, in this level of
approximation, can be written as: f; = —x&, where x = 8/9 or x = 1. There is a non zero averaged
value of the pion, #, =< m, >, as a consequence of the variational method using averages. Without the

averages, the divergence of this current would be proportional to the pion field and expression (48) would
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be, almost exactly, the usual partially conserved axial current (PCAC), except for the numerical factor

different from 1. It is interesting to note that the pion mass which is present in expression (48} was not

introduced as a symmetry breaking term in the Lagrangian. It is tempting to consider this expression as
an “averaged PCAC” with calculable higher order corrections in the pion and sigma masses. For 7, =0
(as it occurs in the vacuum) it would result a completely conserved current. This expression seems to
keep similarities to an anomaly, similarly as it may occur in other models with the calculation of quantum

loops [67, 1].

6 Summary and Comments

Aspects associated to spontaneous symraetry breaking were investigated in the linear sigma model.
Classes of analytical expressions representing solutions of the time dependent linear sigma model were
found in which effective masses were defined driving the the time evolution of the system. Two kinds
of solutions were explicitely shown: with continuous increase or decrease of the condensate, considering
spatial inhomogeinities or not. Pion mass is found to be zero for a chiral invariant Lagrangian in the

Gaussian approach in agreement with other works respecting the Goldstone theorem. On the other hand

“contributions for the masses due to¢ dynamical time dependent reasons were discussed.

The renormalized coupling constant of the linear sigma model can assume different values for the
sigma and pion interactions due to two reasons: from the temporal evolution and in the static limit . Two
renormalization mass scales were introduced in the static calculation and only one in the time-dependent
case for a particular class of solutions. Consequently the ground state (and the temporal dynamics) may
not be invariant under the corresponding (chiral) transformations although the Lagrangian is. Qne may
find, however, that due to different breakdowns of the symmetry {the scalar condensate and appearance
of different couplings) the masses of the scalar and pseudoscalar particles may become less or more
degenerated. Experimental evidences for this effect were not yet presented and can be expected to be
present in the light hadronic phenomenology. This picture can be obtained from expressions (41). Similar
conclusions were reached for particular (stationary-like) solutions of the time-dependent situation with
only one mass scale renormalizétion parameter.

Some aspects of the ground state fulfilled with the scalar condensate were also briefly analysed. This
condensate can be excited in very energetic experimental conditions .which squash and smash the vacuum
yielding non condensed particles and exotic condensate configurations [49] It was shown that the chiral

radius, the parameter which constraint the fields on the functional sphere of the internal chiral space,

19



v, does not necessarily (always) can be identified to the pion decay constant and to the scalar (sigma)
condensa_te associated to the QCD < g¢ > condensate in agreement with other results [87].

Besides that a sort of averaged partially conserved axial current was deduced as if it were ”dynamically
generated” for the parameter & # 0 resulting in m, 3 0. It is an expression formally similar to the
PCAC for really massive pions. However it is rather as a feature of the variational approximation
when considering the classical fleld & # 0 during the calculations before setting it to zero. Besides the
description of hadronic properties in the vacuum effectively (i.e. not in terms of the quark-gluon degrees
of freedom which are confined anyway), this seems to be of interest for other related and intensively
subjects studied nowadays such as: the behavior of each of the variables involved in models, like the
LSM, at extreme conditions of density, temperature and even isospin in a hadronic/nuclear medium to

 quote few works [35, 88, 89, 70, 90, 91, 86, 65, 84].
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