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Abstract

We consider the time evolution of a quantized field in backgrounds that violate the stability of vacuum
(particle-creating backgrounds). Our aim is to study the exact form of the final quantum state {the density
operator at a final instant of time) that has emerged from a given arbitrary initial state (from a given arbitrary
density operator at the initial time instant) in the course of evolution. We find the generating functional for an
ensemble average at a final instant of time for any possible initial state. Averaging aver states of a subsystem
of antiparticles (particles), we obtain reduced density matrices for subsystems of particles (antiparticles).
Studying one-particle correlation functions, we establish a one-to-one correspondence between these functions
and the reduced density matrices. It is shown that in the general case a presence of bosons (e.g. gluons)
in an initial state increases the creation of the same kind of bosons. We discuss in detail the question (and
its relation to the initial stage of quark-gluon plasma formation) whether the thermal form of one-particle
distribution can appear even if the final state of the complete system is not a thermal equilibrium. In this
respect, we discuss some cases when a pair creation by an electrie-like field can mimic 2 one-particle thermal
distribution. We apply our technics to some QFT problems in slowly varying electric-like backgrounds:
electrie, SU(3} chromoelectric, and metric. In particular, we study the time and temperature behavior of
mean numbers of created particles when the effects of switching on and off are negligible and the particle
creation in a slowly varying electric external field at high temperatures.

PACS numbers:11.15.Tk,11.10.Wx,12.20.Ds,25.75.Nq

1 Introduction

The effect of particle creation from vacuum by an external background (vacuum instability in external fields)
ranks among the most intriguing nontinear phenomena in quantum theory. Its theoretical consideration must
be nonperturbative and its experimental observation would verify the validity of a theory in the domain of
superstrong fields. The study of this effect began in connection with the so-called Klein [1] paradox, and
was continued by Schwinger [2], who calculated the vacnum-to-vacuum transition probability in a constant
electric field. A complete study of particle creation from vacuum by a constant electric field is represented in
[3;'4].. It should be mentioned that the effect can actually be observed as soon as the external field strength
approaches the characteristic value (critical field) E, = m*c®/|e|h ~ 1,3.10'® V/em. Although a real possibility
of creating such fields under laboratory conditions does not exist at present, eTe~-pair production by a slowly
vasying external electric field from vacuum is probably relevant to phenomenology with the advent of new laser
technology which may access the truly strong-field domain. It is widely discussed nowadays {5} at SLAC and
TESLA X-ray laser facilities. Such sirong fields may be relevant in astrophysics, where characteristic values of
electromagnetic fields and gravitational fields near black holes are enormous. The electric field near a cosmic
string can become extremely strong {6]. In this respect, one has to mention that the Coulomb field of superheavy
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nuclei may create electron-positron pairs, see [7]. Aside from the pure QED problems, there are problems in
QFT where the vacuum instability in various external backgrounds play an important role, for example, phase
transitions in non-Abelian theories, the problem of boundary conditions or the influence of topology on the
vacutr, the problem of a consistent vacuum construction in QCD and GUT, multiple particle creation in the
context of heavy-ion collisions, and so on. The particle creation by background metrics are important in black
hole physics [8, 9] and in the study of early Universe dynamies [10]. Recently, it has also been recognized that
the presence of background electric field must be taken into account in string theory constructions, see, e.g.,
[11] and references therein.

Considerable attention has been recently focused on a non-perturbative parton production from vacuum by
a classical chromoelectric field of SU(3) [12, 13} and SU(2) [i4] in the framework of a modern version of the
known chromoelectric flux tube model [15], the latter being an effective model for the confinement of quarks in
QCD (previously the pair creation by a constant field has been calculated for SU(2) in [16] and for SU(3) in
[17}). The model ensures a very good description of the phenomenology of hadron jets in high-energy et ~ e~
and p — j collision experiments (for further development of the basic model and phenomenclogical applications,
see, e.g., review [18]). Probably, this model describes reasonably well the initial stage of quark-gluon plasma
formation (in particular, the transversal spectrum of produced soft partons). Such a state may be produced at
high-energy large-hadron colliders such as RHIC (Au-Au collisions at /s = 200 GeV) [19] and LHC (Pb-Pb
collisions at /s = 5,5 TeV) [20]. At present, this initial stage is related to an effective theory, the color glass
condensate [21] (see also the review papers [22]), which is the coherent limit of the quark-gluon plasma at high
energies. In such a picture, after a nuelei collision, a strong classical chromo-electric-magnetic field is created
due to relatively slow fluctuations of the color density. Such a field is sufficiently uniform in the direction that is
transversal to the beam direction and has a longitudinal chromoelectric component [14, 23]. This component is
much more intensive than the transversal component, see [14]. Thus, the color glass condensate picture provides
strong arguments in favor of the chromoelectric flux tube model and allows one to calculate configurations of
the field in a tube. In particular, such a physical picture allows one to accept a quasiconstant chromoelectric
field as a good approximation at the above-mentioned initial stage. One ought to say that experimental data of
a heavy-ion collisions that exist at present can be interpreted as a quantum parton production by an external
chromoelectric field both from vacuum and from many-particle states.

There exists a considerable interest to particle creation at finite temperatures and a finite particle density
which is basically motivated by a heavy-ion collisions, cosmological QCD phase transitions and dark matter
formation. For example, thermally influenced pair production in a constant electric field has been searched for
at the one-loop level [24, 25, 28, 27).

All the above calculations were made in the framework of the theory of a quantized field placed in an
external background. A consistent formulation of complete QED (interacting quantum electromagnetic and
matter fields in pariicle creation backgrounds) with unstable vacuum that treats interaction with an external
backgrounds nonperturbatively was elaborated in [28]. Possible generalizations of the formalism to an external
gravitational field and non-Abelian gauge fields were presented in [29] and [30] (see also [31]), respectively. An
attempt to extend this technics to the thermal case was given in [32]. Calculating particle creation by black-hole
metric, Hawking has discovered that the density matrix of created particles at the spatial infinity has a thermal
character. Is such a character related to the particle creation mechanism in general or to the gravitational origin
of the background? A way to answer this question is to elaborate an adequate technics which would allow one to
include arbitrary mixed initial states, in particular thermal initial states, in the corresponding particle creation
formalism [28].

. In this article, we present a development of the particle creation formalism [28] that could answer some of
the above questions, We consider the time evolution of a quantized field (bosonic or fermionic) in backgrounds
that violate the stability of vacuum. Our aim is to study the exact form of the final quantum state (the density
operator at a final instant of time) that has emerged from a given arbitrary initial state (from a given arbitrary
density operator at the initial time mstam) in the course of evolution. The article is organized as follows.
Section 2 has an original but rather technical character. Here, we derive exact expressions for density operators
{more appropriate for the generating density operator} by applying a path integration method. Some necessary
relevant formulas are placed in Appendix. In section 3, having an exact expression for the generating density
operator, we derive reduced density operators for subsystems of particles and antiparticles, We introduce and
calculate one-particle correlation functions and establish a one-to-one correspondence between these functions
and the reduced density operators. In particular, this ailows one to restore the reduced density operator of a
complete system from one-particle distributions (of course, this is possible only in the model under consideration,




being a quadratic theory). Tt is shown that in the general case a presence of bosons (e.g. gluons) in an initial
state increases the creation of the same kind of bosons. We discuss in detail the question (and its relation to the
initial stage of quark-gluon plasma formation) whether the thermal form of one-particle distribution can appear
even if the final state of the complete system is not a thermal equilibrium. In section 4, we discuss the obtained
expressions for density operators and one-particle distributions in electric-like backgrounds: electric, SU(3)
chromoeleciric, and metric. In particular, we analyze density operators and one-particle distributions in the so-

called T-constant electric background (a field exists during a finite period of time T") and demonstrate how such -

a problem is related to particle creation in a gravitational field {Hawking’s effect). We present some examples
when a pair creation by an electric-like field can mimic a one-particle thermal distribution. Then, we analyze
the time and temperature behavior of particle creation when effects of switching on and off are negligible. In
particular, we show that at high temperatures the production rate is non-trivially time-dependent. This result
has to be taken into account at high temperatures.

2 Density operator in pair-creating backgrounds

‘We consider a quantum field (z) in an external background. The quantum field can be scalar, spinor, etec.
field, and the background can be a classical external electromagnetic, Yang-Mills, or gravitational field. In the
general case, the background is intense, time-dependent, and violates the vacuum stability. Such a background
mdst be treated nonperturbatively. We are going to follow the formulation proposed in [28].

2.1 Some relevant relations

It is supposed that there is a set of creation and annihilation operators al(ti), @n(tin) of particles af (£;,),
@), and antiparticles 8], (£in), bn(tin) respectively at an initial time imstant i, (fin — —o0), and a set of
creation and annihilation operators a,(tous), @n(fout), of particles, and bf (fout), Bu(fou:) of antiparticles at an
final time instant feu: (f; — o0). By 1 we denote a complete set of possible quantum numbers. The total
Hamiltonian of the quantized field under consideration is diagonalized (and has a canonical form) in terms of
the first set at the initial timme instant, and is diagonalized {and has a canonical form) in terms of the second
set at the final time instant. Nonzero commutators! are

] [an(tin)’a:rn(tin)} = {an{tout), ain(tout)}
= [bn(tin)= blz(tin)} = [bn(tout)a bjn(taut)} = Onm .+ (1)

Vacuum states |0, .} at i, and |0, o) at toy; are defines as usual,
a(tin)i0, tin} = 0(Ein}0,tin) =0, a(tout)]0tou) = b{tous)]0, tous) = 0.

To pass to the Heisenberg picture, we introduce finite-time evolution operators {4,
Q(+) =U (t: tin) 1 Q(—) =U (ta tout) s U (touta tin) = QI,)Q(jL} 3

where U (¢, ') is an unitary evolution operator of the system. Then, we define a set of creation and annihilation
operators o, (in), a,(in) of in-particles, similar operators bf,(in), b,(in) of in-antiparticles, the corresponding
insyacuum |0,in), and a set of creation and annihilation operators a;[“ ay, of out-particles and similar operators
b, by, of out-antiparticles, and corresponding out-vacuum |0),

(af (#n), alin), b (in), b(in)) = Q(yy (¢ (tin), altin), B (bim), b(tm)) O, ,
(a15 a, st b) = Q{—) (GT (tout}: a(touf)s bT (touf)a b(tout)) Q-{w) 1
10, 47) = Q1310 tin) » 10) = 2310, Eout) @)

The in- and out-operators obey the canonical commutation relations (1).

11t is the usual commutator in the Bose case and the anticommutator in the Fermi case.




All the information about processes of particle creation, annihilation, and scattering is contained in elemen-
tary probability amplitudes,

W (++), = €5 {0 |ama1,(in)| 0,in},

W (=) = €57 (0 bl (in)] 0, i) ,

w (0] = +) = €5 {0 [0l (in)ecf, (i)} 0, im)

w(+ —|0),,, = e; {0 |amba| 0, in), (3)

H

where ¢, is the vacuum-to-vacuum transition amplitude

Cy = (0]0, in}. (4)
The amplitudes {3) can be calculated via appropriate sets of solutions of corresponding relativistic wave equation
(Klein-Gordon, Dirac, linearized Yang-Mills), see [28, 30].

The sets of in and out-operators are related to each other by a linear canonical transformation (it is called
sometimes the Bogolubov transformation). As was demonstrated, in the general case such a relation has the
form (see [28])

V (al,a,b!,b) V1 = (al{in), a(in), bt (in), b(in))
[0,in) = V(0) (e; = (O]V]|O)) (5)
where an unitary operator V' reads
V = vguavav, (6)
and?
vy = exp{—bw (0| — +) a} , v = exp {a' Inw (+|+) a},
vy = exp {—rblnw (—|—)b'} , vy = exp {-~ralw(+ - [0) b},
_ | 1 Permi particles
k= { —1 Bose particles (M)
Using this explicit expression for V', one can easily find
¢ = (0|V|0) = exp{—xtrnw (-|-)} . (8)

Let p(tin) = p(al(tin), altin), 81 (#in), b(tin)) , trp (k) = 1, be a density operator of the system under
consideration at the initial time instant. Ewvolving in time, this density operator becomes P (tous) at the final
time instant,

fO (tou{:) = U (touts tin) ﬁ (tin) UT (tout: t:m) . (9)

The density operator # of the system under consideration in the Heisenberg representation is defined as

b= QUnbltn) QL) = p(al(in), alin), b (in), b(in)) ,
P o= Qpltee) ), trp=1. (10)
Suppose a physical quantity is given by an operator & (tout) at the final time instant as
_ F (tous) =F(af?(tout)aa(tout),bt(tout)sb(tout)) . (11)
T};én ibs mean value at the final time instant is '
(Fy =t [ (fous) p (tous)] =t [F] , (12)
whére
F = F (tou) Qf_, = F(at,a,b",0) : (13)

is an operator of the physical quantity in the Heisenberg representation3.

2{We use condenced notations here and in what follows. For example,

bw (0] = +)a =3 buwnm (0| — +) am .

n,m

3All operators in the Heisenberg representation are denoted by the turned over hat in what follows, e.g. A.




2.2 Generating density operator

We introduce the following generating operator R (J):
R = 320), wR()=1, (14
B(J) = Ninexp [al(in) (I = 1) a(in) + b} (im) (3 ~ 1) b(an)] ,

where Grassmann-even variables .J = (Jég)) are sources, O = 6anr(f), Nin is the sign of the normal form

with respect to in-vacuum, and Z = trR{J) is a normalization factor (statistical sum). Here and in what
follows, ¢ =+, being (+) for particles and (—) for antiparticles.

In order to fulfil the calculations it is effective to use a path integral representation. For the fermion case we
use a path integral over anticommuting (Grassmann} variables which is understood as Berezin's integral [33] at
K=1,

oo Ka o dot K fexp {&X*E7IN+ath + Ma) HdX dh ., (18)

where af, a are some creation and annihilation operators and : ... : realizes the normal form of the operators
af, a. All the operators o' and a can be considered as Grassmann-odd variables under the normal form sign,
therefore, we can calculate the complete path integral (15) as a Gaussian one over Grassmann-odd variables.
For the boson case we use a path integral (15) over commuting variables at £ = —1. In this case, we can consider
all the operators ¢! and ¢ as bosonic (vrdinary) variables under the normal form sign, such that path integral
in (15} is an usual Gaussian path integral, where A*K 11 > 0.

Let us note that the trace of a normal product of creation and annihilation operators can be calculated by
using the path integral representation, as presented in (105) from the Appendix. For example, calculating Z

we obtain
Z = exp {H,Z [in {1+ WJ(+))]ﬂn +53 [+ mJ(_))]mm} : (16)

Knowing the generating operator (14), we can obtain different density operators (in the Heisenberg repre-
sentation), corresponding to different initial states of the system. We represent some examples below:

a) Setting all J = 0, we obtain a density operator 2, of the system that was in a pure vacuum state at the
initial time instant,

b, = R(0) .
Indeed, using reiation (103) from the Appendix, we have
By = Nin exp { ~ [al(in)a(in) + b{inYb(in)] } = 10,n){0, in| . (17)

In addition, we define the following generating functional of moments,
& (J) = {0, in| exp [af.li(+>a + bf.u(-)b] 10, 4n) = tr é (J) ,
$(J) = exp [aTJ<+)a +813¢98] (18)

which is useful to study a final state evolved from a vacuum at the initial time instant.
b) A density operator p {m}us{n}y Of the system that was in a pure state with M particles and N antiparticles

{with the quantum numbers {ml, omar) = {m}a and {ny,...,nx} == {n}y respectively) at the initial time
instant can be obtained from the generating operator 2 (J) as follows:
. AMANE (J ) . = '
' Pimhetntn = 50T 7070 0y o IR NI CONC IR WHES I GO (19)

where

M N
1% ntasitnyn (i) = ] [ akn, (Gm) TT 61, (Gm)l0, in)
i=1 i=t1

(Y {m}assin}w (i0)| = (0,in] H bn, (i0) H G, (1) .

i=t i=1

|
|
«




¢} Let us set
JO =B, 5O = (o0 - ), g =, (20)

where sgf) are energies of particles or antiparticles with quantum numbers n; ,u@ are the corresponding chemical
potentials, and © is the absolute temperature. One can see that with such choice of sources, the generating
operator (14) becomes the density operator p; of the system that was in thermal equilibrium at the initial time
ingtant. Using relation (100) from the Appendix, we obtain an explicit expression for pg,

Pg = R (e_Ef(-C}) = -é-exp {w— [af(z'n)E("')a(z'n) + bT(in)E(_)b(z’n):I } .

Z=exp {EZln (1 + "‘e—E’(‘H) + RZln (1 -+ fte_Ei‘))} ’
or
Pg= Z lexp {—ﬁ [ﬂ - Z pO G } , (21)

s

where H is the system Hamiltonian (written in terms of in-operators), N¢) are operators of in-particle or
in-antiparticle numbers, '
H = af(in)eMa(in) + bt (in)eb(in)
N = ot (in)a(in), N = bt (in)b(in),
and the matrices £} and () are defines as: Bih = mn FS and £, = Gmnels).

One can see that the problem of calculating mean values of an operator ];3‘ (tout) in a system state in the
final time instant is related to the problem of calculating the quantity tr [FR{J)!, where F is a Heisenberg

operator corresponding to F (tous). Such a quantity can be represented as follows:

oo

wFRO)] = S X (¥ Umba (ah) P () RN ({m) g (m)),

M,N=0 {m}{n}
[T ({m} g, {n}n)) = ol ... @k, 00, ... 0], [0},
(T ({m}uy . (n}) = 01bny - bny Grnpg - - - Cay (22)

Caleulating tr [FR (J)] according to (22), it is convenient to have an expression for the operator & (/) in terms
of out-operators. Ome can easily see that such an expression has the form

RO =vUW@V!, U@ =rexp [af (19 = 1) 067 (169 - 1) ] -, (23)

where : - : is the sign of the normal form with respect to out-vacuum, and the operator V' is defined by (6).
A normal form of the operator R {J) with respect to out-vacuum is calculated below.

2.3 - Normal form of the generating operator
First, we rewrite the operator expression (23) as follows
R(J) = vgvaraY (J)wlulv], ¥ = (J)o], (24)

where the operators v, i = 1,...,4, are given by (7). Using formula {99) from the Appendix, we represent the
operater Y {.J) in the form

Y () =Y (U (J), Y (J)=exp(—bBa)exp (—al A (J}b) ,
AW =IPBIE) B =w (0]« +) . (25)

Both operator exponents in the expression for ¥ (J) can be written in terms of Gaussian path integrals.




Consider first the fermi-particle case. In such a case, we can treat anticommuting operators @ and b {or a*
and bt) as Grassmann-odd variables. Then according to the representation (15} at 5 = I we have

Y = det A det B / exp (5('-‘3—15\ + X*A‘l)\) OIIdA" dAdA"dA,
® =exp (65\ + j\*a) exp (a*)\ + )\*bf) . {26)
By the help of the relation (101) from the Appendix, we represent the operator ¢ in the normal form, |
P =: exp (aﬁ)\ X HBA+ A e+ XA+ 5\)\*) ‘.

Then, using the formula (15) we can calculate the complete path integral (26). In the Bose case, we can
consider all the operators af, bt, a, and b as bosonic {ordinary) variables under the normal form sign, such that
the operator ¥ (J) can be represented as an usual Gaussian path integral by application of the representation
(18) at & = —1. Calculating such Gaussian integrals, we obtain the normal form of the operator Y,

Y =det(1+xAB)" :exp{-a'dija—btA__b—atA _bt - bA_ja}:,

Ay, =kAB(1+&AB) ", AT =kBA(1+£BA)™,

A =(Q1+KAB) A, AL =B(1+kAB)™" . (27)
By the help of relation (102) from Appendix, we represent now the operator ¥ in the normal form,

Y = det (1 + kAB)" : exp {—aTZH.a ~bTA__b—alA b - bg_+a} :

App=1-(1-4, ) 4 _=1-(1-4. )1,

A =AY A =104 W, (28)

Using relation (8), we rewrite the operator vs as
vy = exp [~-xblnw (—|-) v'] = cyexp [bT lnw (—|-)T b] .

Then using formulas (100) derived in the Appendix, we represent the operators vswy and v;vg from (24) in the
normal forms as follows:

Ugla = ¢y : €XP [bf ('w (—=]-)F — 1) b] exp [al (w (+]+) — 1) al :,
v}u; =g exp [aT (w (+|+) = 1) a] exp [bT (fw (-1t - I) b] I
Finally, applying relation (102) in tandem, we obtain the normal form of the operator 22 (J),
R(J) = ey’ det (1 + kAB)™ : exp [—al (1 — Dy )a — bt (1-~D.)b—a'CTe —bCa) ;,
Dy =w{++) (L + £AB) 7 I (4|41
DI = w (=)' 37 (1 4 sBA w(-]-)
C =w(~|-Y IOB (1 + kAB) ™ JPuw (+4)F + kw (+ — 0 . (29)

The representation (29} is useful since it allows one to calculate the trace (22) using a path integral techniques
described in Appendix (see, eq. (105)).

As an example, let us consider again the density operator p, defined by (17). Using (29), we represent this
operator in terms of out-operators and in the normal form

B, = R(0) =le|* : exp [—aTa,— oo — malw (+ — 10) bt — wbw (+ — o)t a] :. {30)

In a similar manner the operator ¢ (J) in the expression of generating functional (18) can be transformed
to the normal form, which is

& (J) = leo|” : exp [—a"a - 86— kae? 1w (+ — 10) bt — b (- — Jo)t a] : (31)

7



where the representation (30) for p, is used. Then using the path integral representation for traces (105) and
applying in tandem the formula (102), we represent the generating functional of moments as

3Y(J) = [e]? exp {mm [1 + kw(+ — [0} & w (+ — 10) el"*’] } . (32)

3 Reduced density operators and correlation functions

3.1 Reduced density operators

In the general case, states of the system under consideration at the final time instant contain both particles and
antiparticles due to the pair creation by the external field and the structure of the initial state. On the other
hand, a very often we are interested in physical quantities Fiy that describe only particles (+) or antiparticle
{-) at the final time instant. The corresponding operators F1y are functions of either operators al,a or bi.b,

Fy =F, (al,a), FL = F. (b1,0). (33)

Mean values of the operators Fy and all the information about subsystems of particles and antiparticles, can
be obtained from the so-called reduced density operators, which we are going to define below.,
- We present the basis vectors from (22) as follows

- T ({mla s {nkw)) = [Wa ({m}p)) ® [Zo ({n}p))s [0} =102 @ [0)s, _
Ta ({mhae)) = ab, - aby [0)as [T ({0} ) =L, ... 0L |0}, (34)
where |0}, and |0}, are vacuum vectors of particle and antiparticle subsystems. The mean values of the operators
£y are

(Fe) = trytr. (Fup) , ' (35)
where  is a density operator of a system and reduced traces try of an operator A are defined as
tryd = Z > (DT (T ({m) ) 1A Wa ({m} )
M=0{m}
o0
. 1 -
oA = 303 (M)W, ({m) ) AT, ({m}y,)) . (36)
M=0 {m}

We define the reduced density operators (in the Heisenberg picture) p, of particle and antiparticle subsystems
respectively as

Py =trep. (37)
Then mean values (35) can be calculated by the help of the reduced density operators . as
{(Fy) =try (Fupy ). (38)

Even if an initial state of the system is a pure state, the reduced density operators p, describes mixed states.
In some physical problems the use of the reduced density operators is inevitable. For example, considering the
particle creation by a gravitation field of a black hole, we have only reduced operator of particles created outside
the black hole, since we do not have any information about particles behind the horizon, 8, 9].
In the similar manner, we introduce reduced generating operators R4 (J} as follows

Ra (J)y=trsR(J) .

Using a path integral representation for traces (105), the representation (29), as well as applyihg in tandem
{(102), we get?

Ri(N) =2 :exp {~al (1 - K. (1)) a}:,
R (J)=2":exp{-b" (1~ K_(J))b}

Ki(J)=Ds+CH(1+sDT) "0,

Z7N () = Z7 ey det (1 + AB)" det (1 + kD)™ . (39)

40One ought to say that symbols of the normal form of the operator Rg were represented in [24] via some path integrals. The

explicit form of the operator was written there for J P It contains, unfortunately, essential misprints.




The reduced generating operators R4 (J) allow one to obtain the reduced density operators p, for different
initial states of the system. Consider below some examples: 3 .

a) Selecting all J = 0 in (39), we obtain reduced density operators p,,. = Hy (0) of the system that was in
a pure vacuun state at the initial {ime instant. Explicit expressions for R4 (0) follow from {39} with account
taken of ; \

Ee (@ =w{+—[0)w(—-10), 25" (0) = [cl* - (40)
The same result was obtained in [24, 34] by a straightforward calenlation.

b) Reduced density operators py,, 4 and Pmso+ of the system that was in a pure state with one paa_"ticles or
one antiparticles respectively at the initial time instant can be obtained from the generating operatork, {J) =
Z Ry (J) as follows:

y 8k, (J) y
Pmot = gy = [atw ()], py [w (T e]
8Jm J=0 b
AR_(J) . i
Pom-=——my| =[5 w0
” o |, b | ™
. 8k, (J)
Poye + = —/—715
. Oy + (9.],5—,, ) o
- [otw (+ = 0w (7] [w -1y w~10)7a]
. 8R_(J) .
Pro-= 5| = [wHD )]
aJm J=0
= Potw (k= 10w (+)°], 2o [0 HD w0 (= 0)10]

= bos [ (-2 w (=)

mm

c) Let us set sources in (39) as in (20). One can see that with such choice of sources, the reduced generating _

operators (14) become the reduced density operators Paz of the system that was in thermal equilibrium at the
initial time instant.

3.2 One-particle correlation functions

Let us consider the following generating functions

NG = 4w (alamB) = try (elomft,) ,
NG = tr(BlbnR) = tr (blonRy) . (41)

They generate one-particle correlation functions for different initial states of the system. Setting sources (taking
corresponding derivatives if necessary) in (41) as was demonstrated in sec.2, we chose needed initial states. Di-
agonal elements N, are generating functionals for mean numbers N of particles/antiparticles with quantum
numbers m at the final time instant (further differential mean numbers). In what follows, we call the quantities
(41) simply correlation functions.

The correlation functions N&) can be expressed via matrices K, (39) and vice-versa as follows
v K T NOT
N© = —< Ke=——m0 .
1+ KZKC 1 1 — kNET (42)

We.note that the quantities K are functions of elementary probability amplitudes (3).
Relations (42) can be proved in the following way: First, using commutation relations (1), we represent (41)
as traces of operators in the normal form,

NGH = try [af Ry (Ka),,), NG =t [BLR_(K_8),_] . (43)
The quantities N can be obtained from generating functions 2 (7, ) as follows:
2 5 .
ng, = ZZd) (14)
5.??18.7771 3=J‘=0




where

2.4, = Z;ltr.,_ : exp {—(fr 1-1K,]a}:,
Z_(F,5)=Z % rexp {4 {1 —IK_]b} 1,
ZC (01 O) = 1_, ]Imn = amn +3mjn5 C = :Ea (45)

and 7 and j are some new sources. Traces in (45) can be calculated using formula (105) from the Appendix.
Thus, we get

Z(7,0) =27 exp {KZZ [ (14 chIK;)}m} . (46)

Then the relations (42) follow from (44) and (46).
Normalization conditions and second relation {42) imply that the quantities Z, can be expressed in terms

of N(©) as
Z; = exp {K.Z {1+ F&Kc)]nn} = 8XpP {—EZ [ln (1 - ﬁN@)T)] m} . (47)

Now we are going to relate the quantities Nigh with correlation functions NS, {in) of in-operators,

Nm (in) = tr [aL(z’n)am(m)R] , NL;,Z (in) = tr [bl(m)bm(m)ﬁ] . (48)

Using the representation (14) for R, one can easily see that

(£)
NG (in) = Sum N (in), NO(im) = —T2—, (49)
: 1+ wJm

where N (in) are differential mean numbers (generating functions for differential mean numbers). Indeed,
let us take expressions (41) for N($) via traces in the complete Fock space. These traces can be written in -
the in-basis |¥ ({m},,, {n}y:in)) = V|¥ ({m},;,{n}y)}. Using canonical transformation (5), we express the
operators af,a,b', b via the operators af(in), a(in), bt (in), b(in) and calculate the traces explicitly. Thus, we
obtain

NOT = @ (F ) NO )G (4 7) + 6 (M) [1 - D) 6 (L),
N =G (Tl NOGn)E (7)) + G (T14) [1 - sNPam)] 6 (1), (50)
where
G =wHDT, G(C1) =w(--)7,
G(71e) = —w (-1 w0~ D) =& fw (+H) (= - 0]

G (-I") =m0l - Hw () =~ [w it~ 10w (-1, (51)

and the property G (C|¢') =G (ﬂg)f is used®.

Thus, due to relations (42), (50), we have explicit expressions of the complete generating density operator (29)
and reduced generating density operators (39) via both correlation functions of in-particles and out-particles,
and via elementary probability amplitudes (3) as well.

We stress that there is one-to one correspondence between one-particle correlation functions and the form
of the reduced density operator of the total system is related to choice of the model, which is a quantized
field placed in an external background. In fact, we deal with a quadratic system of noninteracting (between
themselves) particles. Of course, such a fact is well-known for free particle systems. Our consideration generalizes
it to the presence of a particle-creating background. For systems of interacting particles, there remains an

50One can express the matrices G as an inner product of special solutions of associated relativistic wave equation, see [28]. In
fact, element of these matrices are matrix elementa of the evolution operator of the relativistic wave equation in a special basis.
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important question: Suppose the one-particle distribution at the final time instant is thermal one. Can one
assert that the complete system is in a thermal state with a given temperature (the same that determines
the one-particle distribution)? Such a question seems to be relevant to the problem of particle creation in a
black-hole gravitational field (Hawking radiation), where one-particle distributions of particles created have a
thermal form.

Below, we consider some illustrations of general formulas derived above.

Let the initial state of the system is a vacuum state (J = 0), then (50) reproduces the well-known formulas
for the differential mean numbers N%E) = NT(,E)| of particles/antiparticles created from vacuum by an external
field, =0

R =[G (1) G (W » R =[G C14) G (17) ] (52)

see [28).

Let us consider a commonly encountered case (for example, an uniform external field) when particle/antiparticle

states are specified by quantum numbers (the same for particles and antiparticles) that are integrals of mo-
tion. In such a case, all the matrices G (¢|¢') are diagonal and differential mean numbers (52) of the parti-

cles/antiparticles created from the vacuum coineide, R = nG) =, Using formulas (50), (52), and unitarity
relations

- G e +rG ()G () =¢=,
G+ G (M +sa (1) G (7)) =0,
LMY el +re (- e () =0, (53)

one can find the following expressions for differential mean numbers of particles/antiparticles
N = (1= i) NO (i) + R [1 = 67O (i) - (54)

If an initial system state is different from the vacuum, differential mean numbers of particles/antiparticles
created by an external field is given by the difference ANf(,E ) = N,Sf) - N,Ef ) {in}. One can see that

ANED = AN = AN,
AN,, =Ry, [1 - (N,(,j') (in) + N,S;)(m))] . (55)

Even if Ry, # 0, 1o particle creation of fermions with quantum numbers m occurs if N5 (in) + N§ (in) = 1.
Since k = —1 for bosons, AN,, is always positive and more than R,,. That is, the presence of a matter in the
initial state increases the mean number of the bosons created.

In some articles devoted to the chromoelectric flux tube model (see, e.g., [12, 14, 35]) one can meet an inexact
interpretation of the well-known Schwinger formulas describing pair-creation from vacuum by a constant electric
field [2]. Such an interpretation may lead to incorrect results for some field strengths, as noted in [36]. Below
we discuss this problem and present correct relations that will be used in the subsequent section. We recall that
using the proper time method Schwinger calculated the one-loop effective Lagrangian L in the electric field and
assumed that the probability P of no actual pair-creation occurring within the history of the field for the time
T én the volume V can be written as P? = |¢,|* = exp{—VT2Im L} (for subsequent development, see review
[37]). Schwinger interpreted 2Im L as a probability, per time unit and per volume unit, of creating a pair by
a constant electric field. Some arguments in favour of such an interpretation can be found, for example, in the
book {38} and in the article [15]. The interpretation remains approximately true as long as the WKB calculation
is applicable, that is, VT2Im I, « 1. Then the total probability of pair-creation reads 1 — P = VT2Im L. To
calculate differential probabilities of pair-creation with quantum numbers m (for example, momentum and spin
polarization) one can represent the probability P? as an infinite product,

P = He-—ZImSm , (56)
m .

where a certain discretization scheme is used such that the effective action S = VT'L is written as S = 3, Sm.
All this is possible only if m are selected to be integrals of motion. Then e~2I™ %= ig the vacuum-persistence
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probability in a cell of the space of quantum numbers 7. Using the WKB approximation in the case 2Im S, < 1,
one obtains for the probability P, of single pair-production with quantum numbers mn and for the corresponding
mean values ¥, of created pairs the following relation:

Rn & Prn 2 21 Sy (57)
By analogy with one-particle quantum mechanics, one usually rewrites (57) for fermions as
Ry —In(1 — Prp) = 2Im Sy, . (58)

It is clear that (57) and (58) coincide in the first order with respect to P, . Then it follows from (56)

PPal]-En). (59)

Using the same analogy for bosons and rewriting (57) as
R =1 (1 + Prp) &~ 2Im S, (60)
one obtains the following approximate relation:

- Palla+e)". (61)

It turns out that for the field under consideration, using WKB calculations and relations (58)~(61) one can
reproduce the Schwinger’s result for P*. This fact causes the temptation to interpret the latter formulas as
exact ones, replacing there “~” by “=". One ought, however, to say that such an interpretation is, in particular,
equivalent to the assumption that N,,, = 2Im S,,,. However, as we demonstrate below, the laitter relation is not -
exact and it holds only in the approximation 2 Im Sp, < 1.

Exact treatment in the framework of QFT with unstable vacuum (see, for example, [4, 28, 30]) yields
the following expressions for the scattering P(—|—),, of a particle {and an antiparticle) and a pair-creation .
P(+ — |0),,, probabilities, respectively (see subsection 2.1 for notation):

P(=)=)m = fw (~[=}ppul* P*, P+ = |0 = Jw (+ — |0}, P”, (62)

where due to the relations (51), (52) and (53) the corresponding relative probabilities are

1 N
1w (~| =)l = T hw (+ = [0}l = 1—_"',2'1&'— (63)

As long as the semiclassical approximation is valid {P” = 1, 8, < 1), we have
P+ = [0)m = |w (+ = [0),,] ~ Ry -

Thus, we can see that the quantities P(+ — [0)m, |w (+ — |0),..,.* and R,, can be identified only in the approx-
imation under consideration. The exact expression for P” in terms of mean values R, follows from (8), (63)

and reads
P¥ =exp {K.Zln Q- chm)} . {64)
' "
Formulas (56) and (64) imply the following exact relation between Im S, and N,
2Im Sy, = ~&ln(l — &R,,) . (65)

It has to be used in the general case when the WKB approximation is not applicable.
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3.3 Is it really a thermal distribution?

Considerable attention has been recently focused on a mechanism of fast thermalization in heavy-ion collisions
(see [14, 39] and references therein). A possibility is discussed of a thermal one-particle distribution due to
guantum creation of particles from vacuum by strong electric-like fields. Some of such distributions are already
known in QED, and their relation to thermal spectrum of the Hawking radiation has been discussed (see
references in the next section). We present some examples of such distributions in subseetion 4.3. However,
thermal one-particle distribution of created particles does not guarantee the character of thermal equilibrium
for the corresponding complete quantum state of the system and only mimics, in a certain sense, the latter
state.

One ought to say that in contrast to the case of Hawking’s radiation, in which we do not have any infor-
mation about another member of each created pair behind the horizon, both particles and antiparticles created
from vacuum by the chromoelectric field ean in principle be observed. Because of the one-to-one correspondence
between one-particle correlation functions and the reduced density operator of the total system, all the mo-
ments of the particle (or antiparticle) distribution coincide. Howaver, the higher moments of the simultaneous
distributions of particles and antiparticles are different.

In what follows, we formally examine the above questions.

Suppose that the differential mean numbers N, of particles/antiparticles in a final state of a system subject
to an external field have the form of a one-particle thermal distribution. There arises the question if one can be
siite that in such a case the final state of the complete system is a thermal equilibrium or the thermal form of
one-particle distribution can appear even if the final state of the complete system is not a thermal equilibrium.
To answer these questions, we are going to examine two different possibilities of having the same one-particle
thermal distribution for two distinct states of a complete system, one of them being a thermal equilibrium and
the other one a pure state. Let the first state of the complete system be described by the thermal density
operator

Pt = % exp {— [aTE("")a + bTE(’)b] } )

Z = exp {nZlu (1 + ne"E'(IH) + K,Zh’l (1 + K:e_ES‘_))} ) (66)

where E®) are given by (20). Tt is obvious that in such a state the differential mean numbers N, have the
form

Ny == (e + K‘.)_l . (67)
On the other hand, if we have a causal evolution from vacuum, the density operator of the corresponding pure
state has the form p, {17) (see the normal form in (30)). Such a state provides the differential mean numbers
(67) if (63) holds true. We can see that measuring the one-particle distribution cannot distingnish between
both cases. However, they can be distinguished by measuring the next moments, as demonstrated below. Let
us caleulate the variances Var,, in the states described by the density matrices (66) and (17), respectively,

Varth =t [(aham +8lubm — 2N0)" 2]

Varl, tr [(ainam + b by, — 2Nm)2 ,FJU} .
Since the differential mean values coincide in both states, one can see that
Varhy — Vary, = 2(Qh — Q)
“ QP = tr [aLambfnbmbgut] , G =1tr [a]tnambfnbmbv] . (68)

To calculate the quantities @Y and QY and demonstrate that they are different, we are going to use the
generating functional ©* (J) (32) and the generating functional of moments for the thermal distribution,

Tt (J) = tr {exp [GTJ(+)G + b’r_]](*)b] p%ut} '
Then

62 (pth.
Qi = —

| =M, (69)
an‘;f)aJ}n)’J:D ™
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where the expression

ch(']) = %GXP {KZIn (1 +'ne”E.r(t+)+Jr(;+)) + HZID (1 + K,BE&J"'J'('W))}

™m

is used. On the other hand
b il

= W} = Ny [1+ (1 — &) Nm] - (70)
1) ) J=0

QU

4 Particle creation in an electric-like background

4.1 Quasiconstant electric field

Below, we consider some applications of the above-elaborated formalism in QED with quasiconstant (slowly
varying) uniform electric fields violating the stability of vacuum. We emphasize that our consideration can be
relevant in QCD with an electric-like color field and in some QFT models with & curved space-time as was
demonstrated, for example, in [40]. Tt was shown [4] that the distribution of pairs created from vacuum by a
quasiconstant electric field has a thermal-like form. It appears that such a form has an universal character, i.e.,
it ‘emerges in any theory with quasiconstant external fields, and when applied to particle creation in external
constant gravitational field it exactly reproduces the Hawking temperature. Thus, our consideration in QED
with a quasiconstant electric field allows us to reveal the typical properties of any strong-field QFT.

~We note that in the case under consideration, particle states are specified by contintous quantum numbers
- of momentum p and spin projections r = 1 (we formally set r = 0, for scalar particles). From now on, we
assume that the standard volume regularization is used, so that § (p —p') is replaced by &, ¢ in normalization
conditions. Thus, our particles are labeled by a set of discrete quantum mimbers m = (p,r).

As usual, we are going to describe the electric field by time-dependent vector potentials. The states of the

quantum system in question are far-from-equilibrium due to the field influence. We study in detail the time

dependence of various mean values, in particular, mean values of created particles. In a physically correct
setting of the problem, we consider a model of a quasiconstant electric field E(5%) which effectively acts only for
a finite period of time 7', and is zero out of the interval (we further call it the T-constant field). In our model
E(z%) = Eforty <a° < ty, t = —#; = T/2. Thus, the field produces a finite work in a finite space volume. We
accept the initial vacuum to be a free particle vacuum. A relevant calculations in QED with T-constant field
can be found in {4]. Below, we use these results for evaluating the leading terms in particle creation phenomena
at large T, when the effects of switching on and off are negligible,

Let us describe the T-constant field. It is nonstationary, but with a constant space direction. We chose the
latter along the z3-axis. We denote by ¢ the charge of a particle (by —g of an antiparticle) and by M its mass.
The corresponding potentials can be chosen in the form: Ap=A; = A; =0, and :

Etl, .’,L'O el
As(z°) =< Ezx°, a2Velr
Ety, 2eIIl.

where the time intervals are I = (--o0,y), IT = [t1,ty], 11T = {t2, -+oo),

VIf the time T is sufficiently large,
} T>>To=(1+X)/V]gH],

the differential mean numbers X, read
e [1+0 (%)), ~VEEIZ <¢<-k,
R, =14 O(), -K <{<+K, (71)
3
o([]). e>x,
where K is a sufficiently large arbitrary constant, K >> 1 + ),

M4l

\ e _ Ipsl~ 1B T/2

1,2
——t pL=(pl,p%0), ¢= BT HT/2
|qE’, 1 (P 79,0), € :—IqEI

(72)
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and p3 is a longitudinal momentum of a particle [4]. Ome can consider the limit 7' — oc at any given p in the
above expression. In such a limit, the differential mean numbers take a simple form

By =™ (73)

which coincides with one obtained in the constant electric field by Nikishov [3]. One can see that the stabilization
of the differential mean numbers to the asymptotic form (73) for finite longitudinal momenta is reached at
T >»> Ty. The characteristic time Ty is called the stabilization time.

In order to study the effects of switching on and off for 7' >> T, let us consider another example of a
quasiconstant electric field,

E(z®) = Ecosh™ (%ﬂ) . (74)

This field switches on and off adiabatically as 2 — oo and is quasiconstant at finite times. It is called an
adiahatic field. The differential mean numbers of particles created by such a field were found in [41]. For further
discussion, we need these numbers for a large . As was demonstrated in [4], the differential mean numbers in
the field (74) take the asymptotic form (73) for & >> ap = (1 + VA)/+/[¢E] and for |ps| << |gE|o. Thus, ag
can be interpreted as stabilization time for the adiabatic field. At the same time, the latter fact means that
the effects of switching on and off are not essential at large times and finite longitudinal momenta for both
fields. Extrapolating such a conclusion, one may suppose that particle creation effects in any electric field, that
is-gnasiconstant &~ E at least for a time period T >>> Ty and switches on and off out of this period arbitrary,
do not depend on the details of switching on and off. Thus, our calculations in a T-constant field are typical
for a large class of quasiconstant electric fields.

- It is of interest for phenomenological application to calculate the distribution of particles created with all
possible p3 values and a given py (it is called p. distribution and is denoted by n,, in what follows). Studying
the total mean number of particles created in the T-constant field, we go over from the summation to an
integration, 5, — %3‘ J dp. Then the total mean number (we denote it by R} can be presented as

N=V f d*ping,,, (75)

where

np, = #Z f dp3¥om (76)

is the p,, distribution density of particles created per unit volume. R, is constant for [ps} < 1/ [¢E| ( VigE|T/2 ~ K )

and at T >> Tp, and decreases rapidly for {ps| > 1/]|¢F| (\/|q'E|T/2 +K ) The contribution to the integral
(76) from the intermediate region can be estimated as 2,//gE|K. This implies

p, = J\/Iq_E [\/I_ET _WA )] * (77)

where J is the number of spin degrees of freedom (J = 1 for scalar particles and J = 2 for fermions). Thus the
p1 distribution density of the particle production rate is

anJ. J Iqu —TA

T Tt e ™, (78)
The total number of particles created per unit volume is
R (gEYT { M2 }
— = J e eXp T b 79
Ve P TR (79)

For a strong electric field, M?/|qE| < 1, and large T, the energy density of created pairs reads £ =
|gE| T®/V, see [42]. We can neglect the back—reactlon of particles created by the electric field in case their
energy density is essentially smaller than the energy density of the electric field, £ < E? /8n. Consequently, the
concept of a strong constant electric field is consistent only if the following condition holds true:

M2
1 < |gBE|T? <<J exp{ IEI}' (80)
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Following [4], we represent the asymptotic formula (73) in the universal form

R, =exp {—27rw?m} ) (81}

where w,, is the work of an external field creating a particle from a pair in a given state m,
1
wm = ¢ [polts) + polt:) + Aewac] ,
where po(ty) and p(t;) are particle energies at a final time instant £; and at an initial time instant £;, respectively,

and Ae,,. is a shift of the vacuum energy due to the time evolution. The quantity g is the classical acceleration
of a particle in the final time instant. In the case of the T-constant field, one can calculate

_Mipl X |gE| _ 2

= f g = -
2p0(ts) T palty) T

Thus, we can see that the differential mean values (81) are given, in fact, by the Boltzmann formula with the
temperature & = ﬂ% (where kg is the Boltzmann constant), the latter having literally the Hawking form [8],
see bhelow.

-+ We recall that the Hawking result for bosons created by a static gravitational field of a black hole in a
specific thermal environment has the Planck form

Ry, = |exp{2mam b1 - (82)
oo {orz} -]

Here wr, is the energy of a created particle and the Hawking temperature reads 0z = %r%é , where gezr) = ﬁﬁ”
g

is the free-fall acceleration at the gravitational radius r, of a black hole with mass M. In this case of a quasistatic
gravitation field, the evolution shift of the vacuum energy is Agyq. = 0, so that one identifies the work w,, {we
have introduced} with the energy of a particle in formula (82). It is also known [43] that an observer that moves
with a constant acceleration g¢py (with respect to its proper time) will probably register in the Minkowski
vacuum some particles (Rindler particles). The distribution of Rindler bosons have the same Planck form (82},
where one has to replace guy by gr), so that the correspondent temperature is Bery = E%S%'

It is a direct consequence of the equivalence principle that the effective temperature 8 of the distribution
(81) has literally the Hawking form. The different form of distributions can be caused by essentially different
structures of the Fock space in both cases. We believe that the Planck distribution arises necessarily due to
the formation of an event horizon (there is a boundary of the domain of the Hamiltonian), that is, due to the
condition for which the space domains of the particle and antiparticle vacua are not the same. On the other
hand, the final state can be treated as an equilibrium state. In contrast to this, in a uniform electric field we
deal, in fact, with both the particle vacuum and the antiparticle vacuum defined over the entire space, that is,
these space domains coincide. In this case, the mixed state of particles (antiparticles) described by the Py (Pu_)
density matrix of Sec. 3 can be represented as a pure state in an extended phase space where the space domains
of both the particle vacuum and the antiparticle vacuum are the same, being a state of a far-from-equilibrium
system. Let us note that in framework of a semiclassical description at wp,/¢ << 1 the Boltzmann spectrum
closely approaches the Planck spectrum. -

4.2 Soft parton production by SU(3) chromoelectric field

As.mentioned in Introduction, in QCD there exist physical situations that are quite efficiently described by the
chromoelectric flux tube model. In this model, the back-reaction of created pairs induces a gluon mean field
and plasma oscillations (see [44] and references therein). It appears that for calculating particle creation in this
model one needs to apply the general formalism of QFT for pair production at a finite temperature and at zero
temperature both from vacuum and from many-particle states (see, physical reasons for that in [26, 36, 45]).
The consideration of various time scales in heavy-ion collisions shows that the stabilization time Ty is far smaller
than the period of plasma and mean-field oscillations. Then, according to the condition {80), the approximation
of a strong T-constant chromoelectric field can be used in treating such collisions during a period when the
produced partons can be considered as weakly coupled due to the property of asymptotic freedom in QCD. It
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may be also reasonable to neglect dynamical back-reaction effects and to consider only pair-production from
vacuum by a constant SU(3) chromoelectric field.

Here, we would [ike to turn our attention to results obtained in QCD with a constant SU(3) chromoelectric
field B2 (& = 1,...,8) along the z%-axis, see [12]. In this work, the imaginary parts of one-loop effective actions
for quarks S9247F and gluons §%%°" were calculated via gauge-invariant p, distributions ng”"" and Sgi“‘m
respectively. They have the form

Im Squurk — fdsz_ Im S‘gzark , ]-_msgluon - fdzpi. Tm Sgiuon ,

VT o "
Im $73°7% = —2=5 > laBg|n (1 —eTma)
=1
3 -
Im Sgion = é‘% > |eEw|m (1 +e0)
j=1
2

2, 2
Ay = altasd J Sy = T2, (83)
|2E)| laE )|

where Ey;) are eigenvalues of the matrix {T*E® for the fundamental representation of SU(3); EU) are all the
positive eigenvalues of the matrix {2 E* for the adjoint representation of SU(3); and g is the coupling constant.
These eigenvalues are the following gauge invariant quantities:

. Eyy = +/Cif3cosb, By =+/C1/3cos(2n/3-0),
Eg = +/Cif3cos(2n/3+8),
where @ is given by cos® 3¢ = 3C,/C3, and

1/2

[ (1mcod)]" = [2 (14 (2-))] "
[% (1+cos (%4-6))]1/2,

where 8 is given by cos®8 = —1 4 6C2/C3. Here, C; and Cy are Casimir invariants for SU(3),

Eq

E(3)

Ci = B°E®, C = (due E°E"E")’

where dgp. i 2 symmetric invariant tensor in the adjoint representation of SU(3). Then the probabilities P¥
for vacuum to remain vacuum are found, for both guarks and gluons, from relation (56). However, formulas for
parton production rates derived in [12] hold only in the approximation 21m ng”"‘ % 1 and 2Im Sg'i“"“ <1
by virtue of the arguments we presented at the end of subsection 3.2. To obtain exact results, we can use
the following line of reasoning. The results (83} can be treated as ones obtained in the case of a T-constant
chromoelectric field when the integration over the longitudinal momentum and the summation over the spin
and color degrees of freedom have been carried out. Then, using the relation (65), we can extract from the
representation (83) an exact expression for p; distribution densities of quarks n?,‘i“’"k and gluons nﬁi‘"‘m produced
per unit volume. Those are

.

3 3
o T ‘ —w A T i —wA(;
et = 2 3 laE e, ngien = 5 3 g e, ®4)
=1 J=1

where T is a sufficiently large period of constant field action. The p, distribution densities of particle production
rates can be found as dn2%*™* /dT and dng*°" /dT, respectively. The total numbers of quarks and gluons created
per unit volume can be obtained from (84} as

Nqu_ark

T 3 2 M2 Ngtuon 3Tq201
v —.m;(qEﬁ')) exP{_W|qE(j)| } ' v 8 (85)
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where the relation ELI E(zj) = 3C1/2 is used. Taking into account the relation ng:l E(zj) = ('1/2, one can see
from (85) that in a sufficiently strong field Ey;, M2/ |qE(j)| < 1, the densities of created quarks and gluons

are related as Rk /7 = poluen /3y, ‘
We can see that the (j)- terms in expressions (83) and (85) can be interpreted as those which are obtained
for an Abelian-like electric fields Ey;) and E{J), respectively. The maxima of the fields are restricted by the

relations |E{j)| < +/C:/3 and |Eui)| < +/Cy. Thus, to study the validity of the constant SU(3) chromoelectric
field approximation we need to take into account only the energy density of gluons created by the field E’(J—).

We know from the previous subsection that this energy per a single pair is 1qE(j)i T . Then the total energy
density of the created gluons reads

Ngluan

= Z o 5 lal VT

One can neglect a back-reaction of these gluons created by the chromoelectric field only if £ <« C;/8n. Finally,
the validity condition of the T-constant SU(3) chromoelectric field approximation can be written as

2
I gl vVOIT? < Y (86)

" Thus, we can see that the T-constant SU(3) chromoelectric field approximation is consistent during the
pesiod when the produced partons can be treated as weakly coupled.
In the following sections, we turn once again to particle creation by an electric field in QED. The above
discussion shows that it can be useful for understanding the effects of quark and gluon creation in QCD.

4.3 ‘Thermal-like distributions

As has been said above, the thermalization stage of multiparticle production in ion-ion collisions at high energy
is very important. On the other hand, as we know from section 3, it is sometimes difficult to distinguish a
real thermal equilibrium from a state where we have a one-particle thermal distribution. In this connection, we
consider below some simple examples when pair creation by an electric field can mimic a one-particle thermal
distribution.

We recall that due to the screen of created pairs, the original electric field may have an exponential fall-off,

E(z") = Be=='/= (87)

The differential mean number of particles created from vacuum by this field was calculated in [46]. The result
is

l:cosh m:e(s—}-pf,)

-1
2itee __
cosh ﬁa{s—pg) € 1:| fOI' bOSOIlS,
Vo =

(88)

X -1
[anh wfk(5+2.;3) 627rczE + 1:' fOI’ fermions,
sinh rm(s-—ps

where £ = /M2 +p? and p§ = pssgn(gF). At we|ps] < 1 these expressions coincide with Bose and Fermi

disiributions at the temperature 8 = (QTrkBa)_l respectively. '
. Another example is the pulse of electric field (74). The differential mean number of particles created from

vacuum by the sharp fleld pulse (74) at a|gE| /e < 1 can be extracted from the result [41] and has the following

forha:

(rqEa?)* (q}_'?'ozz)2 + (pg/s)z] sinh™? (mae) for bosons,

R = (89)

(quaz) 1—(ps/e) ]smh % (mae) for fermions,

When the ratio ipg| /e is sufficiently small and the external field is not strong, € / V0gE| > 1, there is a

range of values @, wae 3 1 in which the distributions (89) take the Boltzmann form with the temperature
= (2mkga)
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As we noted in the previous subsection, depending on the details of the chromoslectric flux tube model,
its stage and field strength, pair production both from vacuum and from many-particle states by a T-constant
electric field may be relevant. The well-known asymptotic form (73) of the differential mean numbers for pairs
created from vacuum by a constant electric field can lead to a thermal-like distribution of created pairs if, for
example, the chromoelectric string tension undergoes Gaussian fluctuations [47]). It means a modification of
the original flux fube model by introducing a fluctuating string tension. In case the original flux tube model
still holds, nevertheless, the differential mean numbers of pairs created by a T-constant electric field can be
represent as the Boltzmann distribution (81) with the temperature # = (7kgT) ', as we have seen in subsection
4.1. Then it may be reasonable to examine the phenomenological model with slowly oscillated mean electric
field and suppose that the pair creation by the mean field during semiperiod of oscillation can be effectively
approximated by a T-constant electric field (we recall that the time scale of stabilization T} is far smaller than
the period of oscillations). In this case, the electric field produces pairs for a semiperiod of oscillation in the
presence of pairs created at previous stages. This is the way to take into account the effects of back-reaction in
such a model. In other words, we are going to consider pair creation from the initial state given by a distribution
of previously created particles. Formula (55) is relevant in this analysis.

Starting from the initial vacuum state, one has AN, = N,,,, where R,, belongs to the asymptotic form (73).
Then, at the end of the first stage, when the mean field is depleted for the first time, the distribution of particles
(it is equal for antiparticles) is N, ) = N, - During the second stage, the direction of the mean field is opposite
to.the field direction at the first stage. Due to the condition of stabilization, it is of no importance since the
R, is an even function of ¢F. Thus, when the mean field is depleted for the second time, using (55) one has
tife relation

NP =Ry + (1~ 268,) ND

and at the end of the n stage
N =R, 4 (1 — 26N,,) N1
Consequently, the total number of the particles created at the end of the n stage is

n—1

NG =803 " (1 - 268,) .

=0

‘We have this result if the created particles do not leave the region of the active field. To take into account a
possible loss of particles due to interaction, movement, etc. We also assume that the total number of particles
in the initial state of the n stage is less than the number N™~1} of particles created at the end of the n — 1
stage and is YN 1), where 4 < 1 is the factor of loss. Then the modified relation is

N®O =R, + (1 — 268, ) yNP-1 (90)
and we finally have
-1
NS =R >4 (1 - 26R)" (91)
I=0

Supposing that «y is a constant, one can calculate the sum in (91),

1._,w T
N =¥ T 7 = (1 2 (2

<For fermions, x = +1, then NYV < 1. Energy dissipation after a period of oscillation is estimated (for real
parameters of heavy-ion collisions) not to be large so that damping is small and the number of oscillations can

bé quite large; damping decreases with an increasing field strength, If the number of cycles is sufficiently large, -

we-get the limiting thermal-like distribution
Nom 1 1

NE = =, : ‘ .
A Ty Rl Ay e e (%8)
In other words, the system reaches a quasiequilibrium state. For bosons, x = ~1, then N,Ef ; grows. This is

the phenomenon of resonance, and the increase can be either limited or unlimited depending on the factor .
The increase is limited as long as r < 1. In this case, formula (93) is valid for bosons as well. We can see that
the back-reaction induced plasma oscillations can reach a quasistationary form specified by the thermal-like
distribution for both fermions and bosons.
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4.4 Particle creation at finite temperatures

We are now ready to present explicitly, for example, the mean number of (anti}particles in the mode m (with the
finite longitudinal momenta, |p3| < +/|¢E| (\/|q'E [T/2 - K ) ) for the final state of evolution in a quasiconstant

field from the initial thermodynamic equilibrium, N§ ){'m) = (eE"“ + .‘e)_l, at equal chemical potentials it =
p=) =, (< M for bosons),

N = (P + k) + ™™ (tanh (En/2)" (94)

where Enp, = 8 (Em — 1), €m = /M2 +p3 + (1r3)2, w3 = pa +¢BT/2, and it is implied that A is given by (72).
This result for the electric field coincides with the one obtained in [24]. Due to the effect of stabilization, it
seems that the time dependence of the final distributions in question is absent. However, the integral mean
numbers vary as long as a quasiconstant field is active.

It is of interest to establish some general behavior of the integral mean numbers of created particles when
the effects of switching on and off are negligible. As shown above, we can satisfy this condition by selecting the
action time T of the T-constant field (T" >> Tp) as an effective period of pair creation. It is implied that, in
general, the final time instand, £y, and the initial time instant, t;, are so selected that a quasiconstant field is
closely approximated by the T-constant field for a period from ¢; to iy, and £y — ;= T\

‘Let us estimate the sum over the longitudinal momentum p; of AN, in (55), which is the mean number
of particles created with all possible values p3. As above, E - (2—:;-5 J dp and the distribution ¥, plays the
role of the cut-off factor for the integral over ps. Then, one can conclude that the p, ,r dlstrlbution density of
particles produced per unit volume is finite and can be presented as

né = AN.d
P ™ 27r) f Ps
v [, flemiTs
=5 |e™ [ nn(@dvs + VREIO(K)) (95)
(2m) ~laE|T/2

m(B) = (tanh (E/2))" .
From (95), one can estimate the p |, r distribution density of the particle production rate,

d'”‘m.,r' _ |qE|

7~y " Olstaste | (©6)

We have (qET)2 > M?+p? according to the condition of stabilization. Then, the low and high temperature
limits for the production rate are only defined by the final longitudinal kinetic momentum |g&|T and the
temperature & relation: 8 |qE|T > 1 and 3 |gF|T < 1, respectively. For simplicity, we assume that |¢E|T > p.
Considering these limits, one obtains for the temperature dependent term in {96)

n (Bl pyetgmr = 1— 20 PET BIgEIT > 1,
o {B) | wgmeiqmyr BleEIT/2]", B|gE|T < 1.

i

We can see that at high temperatures the rate d—:;,-i is time-dependent: it iz much lower than the zero
ténperature value but increasing for fermions and considerably higher than the zero temperature valne but
decreasing for bosons. Consequently, the frequently used notion of a number of particles created per unit of
time makes sense only at low temperatures and in this limit it coincides with the zero temperature value of the
production rate. We consider two temperature limits for the p, ,r distribution density (95): low temperatures
at e —p) > el =/ M2 +p J_i , when all the energies of the particles created in the modes with a given py

are considerably higher than the temperature @, and high temperatures at 8 |¢E}T < 1, when all the energies
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of the created particles are much lower than the temperature 9,

Ny, - = 'al—q)@;—l [ [gE[Te ™ + 0 (K)] s k=1, BleL —p) > 1,
Y[3

o _ BlaE| : o
e = oy [|9E|T2/2+O (\/lqEIT)] ™, k=41, BlgEIT < 1, (97)

O A 21 . T - =—1, BlgB|T < 1
"=y |7 mlu(\/lquT/K)e +O(K)|, m=-1, BleB|T < 1.

The result at low temperatures is not different from the zero temperature result {4] within the accuracy of the
analysis. Integrating expressions (97) over p, , one finds the total number of particles created per unit volume
at low temperature and high temperature limits, respectively:

Ner  (gEVT

= ] e—wM"'/inI, M- 1,
> o B(M - p)
N BIEPT? oz
- = ——————a " N = +1, BT & ]-y
7 TR iz Blgb|T <
cr |q'Ef In \/IQ’EIT
ik N—- = —Me_anlqE’ k= *-"'1, ﬁlqEIT <& ]., (98)
v 33

where the summation over r = +£1 is carried out for the fermions, and only the leading T-dependent terms
are shown. From (97),(98), we can see that the values of the integral mean numbers for fermions at high
temperatures are much lower than the corresponding values at low temperatures. For bosons, the integral mean
numbers at high temperatures are considerably higher than the corresponding values at low temperatures.

As mentioned in the introduction, thermally influenced pair production in a constant electric field has been
investigated in several approaches [26, 24, 25, 27]. The results obtained are rather contradictory, varying from -
the absence of creation to values of the rate of fermion production higher than the rate at the zero temperature.
Now, we are ready to discuss such contradictions. As shown above, the initial thermal distribution affects
the number of states in which pairs are created by the quasiconstant field. Hence, the pair production exists
at any temperatures, and, in particular, the fermion production rate cannot be higher than the rate at the
zero temperature, by any means. Note that our calculations are based on the generalized Furry representation
elaborated especially for the case of vacuum instability in accordance with the basic principles of quantum field
theory. On the other hand, all conclusions in [26, 27] concerning the pair production rate and/or the mean
numbers of pairs created at non-zero temperatures are based on either the standard real-time or imaginary-time
one-loop effective actions. However, such formalisms do not work in the presence of unstable modes. The real
part of the standard effective action describes effects of vacuum polarization and has nothing to do with the
time-dependent conduction current of ereated pairs. For example, it can be seen at the zero temperature (see
(42]). In this case, the information about pair creation comes from the imaginary part of the standard effective
action. The extension of real-time techniques for finite-temperature quantum electrodynamics with unstable
vacuum was presented in [32]. In this article, one can see that the relevant Green functions in a constant electric
field are quite different from the standard proper-time representation given by Schwinger. Then, the relevant
real-time one-loop effective action must be different from the standard one®. The standard imaginary-time
formalism was derived under the assumption of thermal equilibrium and the appearance of a contradiction
With the Pauli exclusion principle shows that the attempts of generalization to a far-from-equilibrium system
have failed. The functional Schrédinger picture used in [25] to calculate the N°™ af high temperatures appears
relevant. Its asymptotic expressions for N° at high temperatures are in agreement with ours in (98).
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SWe will present the relevant real-time .one-'loop effective action elsewhere.

21




Appendix

1. For both the Bose and Fermi cases, the following relations hold:

t 1 t T —
ae® D“xe“ D'aeDG,, afea D“:e"‘ Daa'i'e D, (99)

e’ Da e, exp {aff (eD ~1) a} 1, (100)

where D is a mairix. To prove (100), let us consider the operator function F(s) = gse' D @, where s is a parameter,
The function is a solution of the following equation:

di—gs) =alDaF(s), F(0) =1.

Using relation (99), we can rewrite the right-hand side of the equation as follows:

%‘gﬂ =alF(s)De*Pa, F(0O)=1.

Now, we can verify that a solution of such an equation reads
F(s)=:exp{al (e’ -1 a}: .
S{étting s =1, we justify (100).
" II. We often use the well-known relation
’ Mot A = gallgraghh (101)
where A and X are Grassmann-odd or Grassmann-even variables depending on statistics. For a product of two

normal forms there is a generalization of (101},

t 5
ret Depailia. .y

where D and D are some matrices.
III. The projection operator on the vacuum state can be written as follows:
Py ={0){0] =z e~'e . (103)
Such a representation was first used by Berezin [33]. One can see that the operator P, obeys the equations

aPy =0, Poal =0, F|0) =10).

Using the Wick theorem, one can see that : ¢4 : is a solution of these equations.

1V. The trace of a normal product of creation and annihilation operators can be calculated by using the
following path integral representation. Let X (aT, a,) be an operator expression of creation and annihilation
operators o and af. Then the trace of its normal form

tr{: X (a',a) :} = i Z:(M!f1 {0l@my - --am, : X (aT,a) : a), ceoah, 0},
M=0{m}

cafl be represented as the following vacuum mean value:

tr {: X (al, 2):}={0T: X (af,a) : e“(tf)“*{“)m) {104)

where the notation a = a(i5), al = al (&) is used for operators a to the left of : X (af, a) : and o’ to the right
of : X (a¥,a) :, and T is ordering operator putting a (¢} to the left of : X (af,@) : and at (t;) to the right of
¢ (aT, a) .. Using either the Berezin path integral or the Gaussian integral over ordinary variables, depending
on statistics, one can rewrite (104) as

tr{: X (a',a) :} = (0] fexp{h‘,,\*)\ + Xa}: X (af,a)  exp {al A} IIdA*dA|0), (105)

where o (t5) = o and a' (;) = o' are used after rewriting.
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