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Abstract

Irreversible phenomena are considered unapproachable by quan-
tum mechanics: any attempt to explain non-equilibrium processes is
likely to contradict one or more aspects of that theory.

In this paper, to single out these contradictions, we try a quantum
mechanical analysis of the dynamics of the ideal gas (an elementary
model of irreversible phenomena briefly reviewed here). It turns out
that to endow quantum mechanics with the power to explain non-
equilibrium phenomena, besides adding the laws of motion that it
lacks, an amendment to that theory is required: the rejection of
the absolute character usually ascribed both to the Pauli and the
indistinguishability principles.

1 Introduction

The ideal gas is here understood as a finite set of identical particles that
randomly enter and leave an enumerable set of possible states so that, at a
given instant t, the state j is occupied by rj(t) particles (j = 1, 2, . . .). In
the usual approach, the rj ’s are treated as random variables whose behavior
is likened to the placement of balls in cells. sm1 provides a variety of
methods to derive the equilibrium pdf’s of these variables; however, they
were not devised to explain the transient processes the gas undergo while
moving from an arbitrary initial state towards the final state of rest.

In a different approach [1], the population dynamics in each state is
treated as a Markovian birth and death process in which the birth and
death rates are given in terms of the creation and annihilation operators
of qm. While the pdf’s of the occupation numbers rj ’s there obtained,
exactly reproduce those given by sm in the equilibrium, in non-equilibrium

1pdf, sm, qm and gf are acronyms here used to designate probability distribution
function, Statistical Mechanics, Quantum Mechanics and generating function, respec-
tively.
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states they were shown to violate both the Pauli and the indistinguishability
principles.

After presenting a summary of paper [1] in section 2 (where the ideal
gas is redefined, so to be endowed with kinetic faculties), the present paper
discusses, in section 3, the conflicts that arise when this gas is confronted
with qm.

2 The dynamics of the ideal gas

To represent the motion of a gas we assume that during a short interval of
time, not all, but only a small number of particles change their positions,
most of them remaining in the same state they were in the beginning of
the interval. We therefore state

Hypothesis 2.1 (Continuity) The smaller the time interval considered,
the smaller the number of particles changing their states.

Besides, as attested by sm, the values of both the equilibrium expec-
tation and variance of the rj(t)’s are negligible when compared with the
extremely large numbers of particles and states in the gas. This leads to

Hypothesis 2.2 (Independence) The removal of any state from the gas
(together with the particles it contains), will not modify the flow processes
that take place in the remaining states. In other words, the flow of particles
in a given state is independent of the flow that occurs in any other state.

With these assumptions, the investigation of the laws of motion of the
ideal gas is therefore reduced to find the laws that rule the arrival and
departure rates, to and from, a single quantum state. To describe this flow
we denote by Aj(∆t) and Dj(∆t), respectively, the number of particles
entering and leaving the state j during the time interval ∆t, and consider
their power series,

Aj(∆t) = Aj(0) + Ȧj∆t + . . .

Dj(∆t) = Dj(0) + Ḋj∆t + . . .

where Ȧj(t) and Ḋj(t) are identified, respectively, with the arrivals and
departure rates of that state. According to hypothesis 2.1, we have Aj(0) =
Dj(0) = 0. Therefore the first-order equilibrium condition of the flow
becomes,

Ȧj(t) = Ḋj(t). (1)

Denoting by Prj (t), the probability of finding rj particles in the state j
at the instant t, it can be easily verified that both the hypotheses 2.1 and
2.2 are subsummed in
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Axiom 2.1 (Law of motion) The flow of particles in a quantum state
is a Markovian birth and death process.

The master equation for Prj
(t) of a Markovian birth-and-death process is

given by the difference-differential equation [2],

∂Prj
(t)

∂t
= − (

λrj + µrj

)
Prj (t) + λrj−1 Prj−1(t) + µrj+1 Prj+1(t), (2)

where λrj and µrj are, respectively, the arrivals and departures rates of
particles. To complete de description of the movements of the gas, we have
to search for the laws that determine these rates.

2.1 Arrhenius rates

In this section the arrivals and departures rates for the ideal gases of Bose,
Fermi and Boltzmann particles are derived.

Let εj designate the energy of the quantum state j of an ideal gas. The
average number of particles occupying that state is given by the well-known
formula2,

r̄j =
1

e(εj−η)/kT − β
, (3)

where β = 1 for Bose, β = −1 for Fermi and β = 0 for Boltzmann particles.
It is more suggestive to rewrite equation (3) in the form,

λ (1 + βr̄j) = µr̄j , (4)

where
λ = ξe−εj/kT and µ = ξe−η/kT , (5)

and ξ is an unknown frequency rate3. The factors λ and µ can be iden-
tified with the Arrhenius rates of chemical kinetics [3]. By assuming an
equivalence between equations (1) and (4), we identify, in the left side,
the arrivals rate at the state j and, in the right side, the corresponding
departures rate. Accordingly, we split (4) in two independent rates4,

λrj = λ (1 + βrj) and µrj = µrj . (6)

It can be seen that these rates are proportional respectively to aa+

and a+a, where a+ and a are, respectively, the second-quantization creation
and annihilation operators [4].

2In this paper, k designates the Boltzmann’s constant, h, the Planck’s constant T, the
absolute temperature, η, the chemical potential of the gas, N, the number of particles
in the gas and V, the volume it occupies.

3For photons ξ is expressed in terms of the Einstein’s coefficients.
4It is remarkable that these rates are time-invariant.
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2.2 The master equation

Let us denote by Πj(z, t) =
∑

rj
Prj

(t)zrj , the gf of the pdf Prj
(t). After

substituting the laws of change (6) in (2), we arrive at [1],

λ(z − 1)Πj =
∂Πj

∂t
− (z − 1)(βz − µ)

∂Πj

∂z
, (7)

whose solutions are,

Πj(z, t) =





(
µ−λ
µ−λz

)
· f

(
λ−λz
µ−λz e−(µ−λ)t

)
(Bose),(

z+ µ
λ

1+ µ
λ

)
· g

(
z−1
z+ µ

λ
e−(λ+µ)t

)
(Fermi),

e
λ
µ (z−1) · h((z − 1) e−µt) (Boltzmann),

(8)

where f, g and h are arbitrary functions whose forms are determined by
the initial configuration Πj(z, 0) of the gas.

Equations (8) have the common general form, Πj(z, t) = ϕj(z) ·=j(z, t),
where ϕj(z) is the gf of the average occupancy numbers r̄j of the state j
in the equilibrium, and =j(z, t), is the gf of the transient population yj(t)
in that state, at time t. According to the convolution theorem, the total
population at time t is rj(t) = r̄j + yj(t).

2.3 Radiation and change

By referring to equation (2) as the equation of motion of the particles in
a quantum state, and to (6), as the laws of force which determine that
motion, we are implying an analogy with Newton’s mechanics and a re-
statement of his first law in a wording that makes it closer to qm5,

Wording 2.1 Every particle continues in its state of rest (occupying one
of a set of stationary states) (. . . ) unless it is compelled to change that
state by forces impressed upon it.

In his famous paper on the quantum theory of radiation, Einstein rec-
ognized, in the argument of the exponential function in the equilibrium
equation (3), the Bohr ’s frequency rule, εj − η = hν. After almost a cen-
tury, Bohr’s frequency rule remains the only form of energy conversion
known by qm. Although this fact passed unnoticed (or rated as irrelevant)
through this period, it implies that the occupancy number of any state
cannot change unless there is the absorption or the emission of at least
one photon. As a consequence, the whole gas can undergo no change, un-
less its particles interact with radiation. Thus, the “forces” referred to in

5We emphasize the use by Newton of the word “unless”, which ascribes to the “forces”
the only cause of change.

4



wording 2.1 of Newton’s first law, are shown to have their origins in the
way matter and radiation interact. We then arrive at a stricter restatement
of 2.1:

Wording 2.2 Every particle continues in its state of rest (occupying one
of a set of stationary states) unless it is compelled to change that state by
interacting with radiation.

Law 2.2 holds for every microscopic transformation occurring in the gas
in which a particle undergoes a change of state, whatever its nature (elas-
tic6 or inelastic collision, chemical reaction, etc.). It discloses the “entropy
law” as the result of the unceasing random interaction between matter and
radiation, so that no cogent explanation of irreversible phenomena can be
obtained unless the interaction matter-radiation is considered. Summariz-
ing informally,

Radiation is the nature’s way to induce matter to dissipate its avail-
able energy7.

3 Discussion

Quantum theory (. . . ) tells us that what was formerly considered as
the most obvious and fundamental property of the corpuscles, (. . . )
their being identifiable individuals, has only a limited significance.

Only when the corpuscle is moving with sufficient speed in a region
not too crowded with corpuscles of the same kind does its identity

remain (nearly) unambiguous. Otherwise it becomes blurred.

E. Schrödinger, Nature and the Greeks, p. 16 [5].

Equation (7) can be seen as a mere alternative mathematical represen-
tation of the random placement of balls in cells. As shown in the previous
sections of this paper, the gas game, whose laws of change derive directly
from the first-principles of qm, defines a model for the dynamics of the
ideal gas. As opposed to the usual combinatorial approaches of sm, in
which the particles are required to “possess” certain properties, it requires
no different treatments to deal with distinguishable, indistinguishable or
“exclusivistic” balls, for these behaviors arise as natural consequences of
the laws of change that rule the placement of balls in cells.

6In an elastic collision there is a momentum reversal which implies the change of state
of the colliding particles (and consequently to an emission or absorption of photon) but
not necessarily to an energy change.

7As much as propaganda is the business’ way to persuade people to dissipate their
savings (see topic §14).
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As any other explanation of non-equilibrium phenomena is likely to,
some of the conclusions derived from the model of the gas here introduced,
are in conflict with the axioms of qm. In the following we discuss the
reinterpretations of, and amendments to qm, to attenuate some of the
arisen conflicts.

§1. While sm does not explain irreversible phenomena, the explanation of equi-
librium it provides is considered essentially correct. Hence, before we use
our model of the dynamics of the ideal gas as a guide to analyze the issues
that obstruct qm to enter the non-equilibrium realm, we must verify if the
description of the equilibrium given by the former is in agreement with
that given by the latter.

In fact, since limt→∞ ∂Π
∂t

= 0, then Π∞(z) = limt→∞Π(z, t) is the solution
of the asymptotic equation,

dΠ

dz
=

(
λ

µ− βz

)
Π, (9)

which exactly reproduces the well known formula of sm. Hence, when the
system it describes is in equilibrium, equation (7) is in complete agreement
with qm.

§2. It is therefore expected that conflicts are likely to arise when ∂Π/∂t 6=
0. In fact, equation (7) departs from qm, not only because it becomes
time-asymmetric, but also because its solutions violate both the Pauli and
indistinguishability principles, as confirmed by the following evidences:

(a) As opposed to Π∞(z), the general solutions of (7) depend on the ini-
tial configurations of the system, a requirement to which the quantum
mechanical description is not subject.

(b) It is in the equilibrium (but only in the equilibrium!) that the pdf of
the occupancy numbers is given by the asymptotic form (9). In non-
equilibrium, the pdf departs from it — in particular, the initial pdf
is an arbitrary function. As opposed to the explanation given by qm,
we cannot say that the particles are indistinguishable or exclusive,
but instead that they become indistinguishable or exclusive.

(c) For Fermi particles, the non-equilibrium solution of equation (7) ad-
mits any non negative value of the occupancy number rj . It is there-
fore not a mathematical necessity that in non-equilibrium this number
be restricted to the values 0 or 1, as has been tacitly assumed for these
particles.

§3. If we insist in ascribing to indistinguishability and exclusivity an absolute
character that is invariant under every transformation the gas can undergo,
then the dynamics of the ideal gas described by (7) becomes, as noted in §2,
doubly incompatible with qm. If we, instead, acknowledge axiom 2.1 to-
gether with the laws of change (6), then indistinguishability and exclusivity
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arise as natural consequences of the master equation (7), however not as
conditions of necessity, but of equilibrium. With this subtle modification
that has no impact on qm when the system it deals with is in equilibrium,
we reduce the incompatibility between the dynamics of the ideal gas and
qm, exclusively to the time-asymmetry of (7).

§4. A complete compatibilization of qm with the gas dynamics model can
be obtained if — while preserving the Schrödinger’s spatial equation un-
touched (that is required to determine the stationary quantum states of
the gas) — his time equation is replaced by the master equation (7).

§5. The inference drawn in §3 suggests the following amendments to qm:

(a) To reject those statements (together with their consequences) that
ascribe to indistinguishability and exclusivity an absolute and invari-
ant character, thereby removing them from their status of principles
and,

(b) to raise, in their places, the elementary actions of creation and anni-
hilation to the rank of invariant principles.

This amendment obviously holds also for the symmetric and anti-symmetric
structure of wave functions: they should be acknowledged not as conditions
of necessity but of equilibrium.

§6. Since the rates (6) can be derived from the first-principles, as proposed
in §5b, they emerge as the universal laws of change, i.e., the unceasing
elementary processes that randomly remove and insert particles in quantum
states.

§7. As explained in section 2.3, the laws of change and the absorption and
emission of photons are indissoluble from eachother: they arise as different
manifestations of the same principle. If matter were somehow prevented
from interacting with radiation, then change would be impossible; in sum-
mary,

wherever there is a change of state, there is an interaction with
radiation, and vice-versa.

§8. As shown in §2b and §2c, it is the pdf, itself, that departs from its station-
ary form. Hence, departures from equilibrium should not be confused with
mere fluctuations around the stationary pdf, for fluctuations are inherent
to equilibrium: compared to non-equilibrium states, they are negligible.

§9. A closer analysis of games of chance shows that shuffling is the agent of
a process in which dice, coins, game cards, balls or particles are its pa-
tients. This opposition between agent and patient is absent in the usual
formulation of sm, where a behavior that is imparted by an agent ’s faculty
(to induce particles to behave as indistinguishable) to its patient , has been
arbitrarily ascribed to the latter, as one of their properties.

§10. Indistinguishability cannot be treated as a property of a particle: it does
not fit the idea of something that always existed together with the particle,
at least not with the meaning usually assigned to it when we speak of mass
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or electric charge. The mathematics of indistinguishability is, instead, that
of an equivalence relation of algebra. In fact, while it can be assigned a
meaning to the statement

“if A ≡ B and B ≡ C, then A ≡ C”

(where the symbol ‘≡’ holds for ‘is indistinguishable from’), no meaning can
be assigned to statements such as “an isolated particle is indistinguishable”
or “such particle has indistinguishability”.

Note: Indistinguishability can be treated as an equivalence relation exclu-
sively in the case of elementary particles (see §13).

§11. As opposed to the meaningless examples given in §10, it is meaningful
to say that “such particle has spin”. Bose and Fermi particles behave
differently when subject to shuffling, not because they are indistinguishable
or exclusive, but (as far as is known) because their behavior under shuffling
is thus conditioned by a corresponding property, the spin.

§12. Indistinguishability is also a statistical phenomenon. In fact, it is possible
to obtain the same statistical result by randomly placing balls of what-
ever nature (billiard balls, for instance) in cells, provided the shuffling is
made by some device that properly reproduces the laws of change that
“indistinguishabilize” the balls.

§13. Artificial processes of indistinguishabilization involving macroscopic bod-
ies cannot be confused with the natural processes that involve elementary
particles. Quantum particles seem to be shuffled — by means of a mys-
terious property (see §11) — that is independent of any device. Besides,
even when the pdf of the occupancy numbers in the case of macroscopic
bodies (such as the billiard balls of §12) fit the geometric distribution that
characterizes indistinguishability, these bodies, as opposed to elementary
particles, can be distinguished by the values of any of its degrees of freedom
that do not influence the mechanisms of the shuffling device.

§14. It is remarkable that indistinguishabilization can also occur in non-quantum
mechanical systems (see §12). The most noteworthy examples, that might
be of paramount importance for Economic Theory, are given by the trading
processes involving money8 in which wealth is shuffled. This phenomenon
might be one of the causes of the unfair income distribution among humans.
Economic Theory should pay much more attention to the inquire on the
mechanisms of distribution formation, than to the equilibrium distribution
itself.

§15. As shown in this paper, the dynamics of the ideal gas implies the existence
of a transient process of indistinguishabilization. Since qm does not pro-
vide a cogent explanation of transient phenomena, we try an explanation
of the origins of indistinguishabilization process in terms of the following
conjectures:

8This character of money was recognized and used by Sir James Jeans in the con-
cluding portion of his book Physics and Philosophy to explain the indistinguishability
of electrons [6].
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(a) A microscopic particle is completely characterized by the set of values
X = {x1, x2, . . . , xn}, of its n degrees of freedom that, jointly define
its global quantum state. This set is the only identifying character a
particle has. Therefore, we assume that the necessary condition for
two particles to become indistinguishable is that they display exactly
the same set of values of X. Since, from photons to (small-size)
molecules, n is a small integer, there is a non negligible probability
that two particles become indistinguishable.

(b) Each degree of freedom of a particle is compelled by the laws of change
(that thus endow it with a natural tendency) to abandon an excited
state towards its ground state. As the outcome of this process — to
which the uncertainty relations impart a decisive influence9 — the
particles occupying a given state loose all distinctive characters they
had, thus becoming indistinguishable.

(c) One of the most distinguishing character that singles out one particle
from another is the set of coordinates that locates it in space. In a
gas, as the temperature decreases and its density increases, so that,

√
3mkT

3

√
V

N
→ h

2π
, (10)

then, according to Schrödinger [7],

one has, I think, to say that the particles become entirely
blurred, the particle aspect breaks down, and one is no longer
allowed to speak of a granulated structure of matter.

When all degrees of freedom of two different particles decay to the
minimum allowed, location remains their only distinguishing char-
acters, at least until the Heisenberg’s uncertainty relation turns it
blurred .

(d) That indistinguishabilization is a non-reversible process should not
be surprising for it is impossible to restore the individualities of two
particles that have lost, in that process, their identities.

(e) By acknowledgeing indistinguishability not as a condition of neces-
sity, but of equilibrium, it seems that we can interpret (without the
slightest modification of its mathematics) that the method of the
Most Probable Distribution of statistical mechanics establishes, not
the maximum entropy for a constant internal energy, but instead the
minimum available (Helmholtz’s free) energy for a given, prescribed
entropy.

In summary,

The particles of a gas are neither indistinguishable nor exclu-
sive; they become increasingly so as the system approaches its
equilibrium.

9see §15c. A different explanation of this issue is presented in [1].
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4 Conclusion

Most of the requirements that, in the view of Huang, a “satisfactory”
derivation of sm should fulfill [8], are satisfied by the alternative approach
to the gas dynamics discussed in this paper, namely by providing

1. a non-ad hoc assumption of molecular chaos by reducing it to a first prin-
ciples representation, given in terms of natural laws of change;

2. a detailed description, at least for the case of ideal gases, of the approach
to equilibrium;

3. a master equation (7) expressed, however, not in terms of wave functions,
but of the pdf’s of occupancy numbers.

By confronting the behavior of the gas here defined, with the principles
of qm, it was possible to identify, in the absolute character ascribed to
Pauli ’s exclusion and indistinguishability principles, one of the possible
barriers that keep qm away from a first-principles explanation of irreversible
phenomena.

If the amendments to qm, proposed in §5 and their generalizations
turn out to be justified, then, besides the interpretation of these principles,
many of the current explanations of the persisting puzzles that arose dur-
ing the development of thermodynamics, kinetic theory and sm, such as
the Boltzmann’s principle, the direction of thermodynamic processes, the
opposition between order and chaos, the derivation of the rates of change
of irreversible processes, the Gibbs correction, etc., should be revised.

Acknoledgment. The manuscript of this paper was read by Dr. Davi
S. Monteiro, whose help I gratefully acknowledge.

References

[1] Mammana C Z 1997 The Transient Distinguishability of Identical Particles,
Phys Ess, 10(4) pp 608–14.

[2] Feller W 1968 An Introduction to Probability Theory and its Applications,
vol I, John Wiley & Sons.

[3] Moore W J 1972 Physical Chemistry , Prentice-Hall.

[4] Landau L & Lifchitz E 1966 Mécanique Quantique, mir.
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