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Abstract

We consider a class of electromagnetic �elds that contains crossed �elds combined with longitudinal
electric and magnetic �elds. We study the motion of a classical particle (solutions of the Lorentz
equations) in such �elds. Then, we present an analysis that allows one to decide which �elds from
the class act as a beam guide for charged particles, and we �nd some time-independent and time-
dependent con�gurations with beam guiding properties. We demonstrate that the Klein-Gordon and
Dirac equations with all the �elds from the class can be solved exactly. We study these solutions,
which were not known before, and prove that they form complete and orthogonal sets of functions.

1 Introduction

Relativistic wave equations (Dirac and Klein�Gordon) provide a basis for relativistic quantum mechanics
and QED of spinor and scalar particles. In relativistic quantum mechanics, solutions of relativistic wave
equations are referred to as one-particle wave functions of fermions and bosons in external electromagnetic
�elds. In QED, such solutions permit the development of the perturbation expansion known as the Furry
picture, which incorporates the interaction with the external �eld exactly, while treating the interaction
with the quantized electromagnetic �eld perturbatively [1, 2, 3, 4, 5]. The most important exact solutions of
the Klein�Gordon and Dirac equations are: solutions with the Coulomb �eld, which allow one to construct
the relativistic theory of atomic spectra [6], solutions with a uniform magnetic �eld, which provide the
basis of synchrotron radiation theory [7], and solutions in the �eld of a plane wave, which are widely used
for calculations of quantum e¤ects involving electrons and other elementary particles in laser beams [8].
Another physically important class of �eld con�gurations (for solving the relativistic wave equations) is
a superposition of crossed �elds and longitudinal �elds. Solutions of relativistic equations with �elds of
this type were �rst studied by Redmond [9]. The Redmond con�guration is a plane-wave combined with
a constant longitudinal magnetic �eld. The corresponding solutions have wide spread applications, for
example, in plasma physics [10] and cyclotron resonance [11]. In the works [12, 13, 14] exact solutions of
the relativistic wave equations with a generalized Redmond con�guration (Redmond �eld plus longitudinal
electric �elds) were found and used to calculate di¤erent quantum e¤ects. In [15] the author has presented
another generalization of a crossed �eld, which is a particular (the simplest) case of a vortex �eld [16, 17]
(electromagnetic waves with vortices play a central role in singular optics [18]). He studied exact solutions
of relativistic wave equations in such a �eld and he has discovered that it can be used to create a beam
guide for charged particles.
In the present article we represent and study new solutions of the Klein�Gordon and Dirac equations

with a new class of �elds, which is a combination of crossed and longitudinal electromagnetic �elds. For
the crossed �elds Ez = Hz = 0; Ex = Hy and Ey = �Hx, and they depend on the time t and on the
coordinate z via a light-cone variable � = ct� z. In the general case, the amplitudes of the crossed �elds
can also contain a linear �-dependent combination of the coordinates x; y. Thus, we can interpret the
crossed �elds as plane-waves with amplitudes linearly dependent on the coordinates x; y. One ought to say
that this combination of crossed and longitudinal �elds form a class which is described by several arbitrary
�-dependent functions. This combination of electromagnetic �elds is physically interesting, since some
con�gurations act as beam guides for charged particles in a similar fashion to which the vortex �eld acts
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in the work [15]. The aforementioned vortex �eld is a particular case of our beam guiding con�gurations.
It is interesting to stress that all other beam-guiding �eld con�gurations do not belong to the vortex �eld
class.
The article is organized as follows: �rst, we describe potentials for the above mentioned combination of

electromagnetic �elds and we study classical particle motion (that is, solutions of the Lorentz equations) in
such �elds. Then, we present an analysis that allows one to decide which �elds from the combination act as a
beam guide for charged particles. We �nd some time-independent and time-dependent con�gurations with
beam guiding properties. Finally, we study solutions of the Klein-Gordon and Dirac equations containing
all the �elds from the combination and we prove that these solutions form complete and orthogonal sets
of functions. In the Appendix, we place some technical results.
The electromagnetic �elds we consider are de�ned by the following potentials1 :

A0 =
1

2
[G (�)�A] ; A1 = Ax = �F1 (�)�H (�) y ;

A2 = Ay = �F2 (�) +H (�)x; A3 = Az = �
1

2
[G (�) +A] ; (1)

where
A = R11 (�)x

2 + 2R12 (�)xy +R22 (�) y
2; � = x0 � z = ct� z ;

and G (�), H (�), Fi (�), Ri j (�) = Rj i (�) ; i; j = 1; 2, are arbitrary functions of �. The corresponding
electromagnetic �elds have the form

Ex = Hy = F 01 (�) +R11 (�)x+ [R12 (�) +H0 (�)] y; Ez = G0 (�) ;
Ey = �Hx = F 02 (�) + [R12 (�)�H0 (�)]x+R22 (�) y; Hz = 2H (�) : (2)

They consist of crossed �elds and longitudinal electric and magnetic �elds propagating along the z-axis.
In the general case, amplitudes of the crossed �elds depend linearly on the coordinates x; y.
The Maxwell current determined by the �eld (2) has the form

j� =
c

4�
(�; 0; 0; �) ; � = � (�) = R11 (�) +R22 (�)� G00 (�) : (3)

2 Classical motion

Let us �rst examine the classical Lorentz equations

m0c
2 _u0 = e (uE) ; m0c

2 _u = eEu0 + e [u�H] ;
�
u0
�2 � u2 = 1 ; (4)

where

u� =
dx�

ds
= _x� =

�
u0;u

�
; ds2 = �� �dx

�dx� ; �� � = diag (1;�1;�1;�1) :

And the Hamilton�Jacobi equation is�
@ 0S +

e

c
A0
�2
�
�
rS � e

c
A
�2
�m2

0c
2 = 0 ; (5)

where S is the classical action. From equations (4) obviously follow the equations for the kinetic momenta
P� = m0c u

� =
�
P 0;P

�
:

m0c
2 _P 0 = e (PE) ; m0c

2 _P = eP 0E+ e [P�H] ;
�
P 0
�2 �P2 = m2

0c
2 : (6)

In particular, from (6), with allowance made for (2), we easily obtain

m0c
2 _Pz = e (PE) + e

�
P 0 � Pz

�
Ez : (7)

1The four-dimensional coordinates of a particle are denoted as x� =
�
x0 = ct; x1 = x; x2 = y; x3 = z

�
, � = 0; 1; 2; 3,

where c is the speed of light. Contravariant and covariant four-vectors are often represented in the form

a� =
�
a0; ai

�
=
�
a0;a

�
; a =

�
ai
�
; a1 = ax; a

2 = ay ; a
3 = az ;

a� = ���a
� ; a� = ���a� :

Three-vectors are indicated by boldface letters.
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Let us introduce the generalized momenta p� according to the well-known relations

P� = p� �
e

c
A�; p� = �@�S : (8)

One can easily prove that the quantity
� = p0 � pz (9)

is an integral of motion. Indeed, (8) implies

� = p0 � pz = P 0 � Pz +
e

c
G (�) : (10)

Hence, we obtain
_� = _P 0 � _Pz +

e

c
G0 (�) _� = _P 0 � _Pz +

e

c
Ez _� : (11)

Taking into account the obvious relation

_� = _x0 � _z = u0 � uz =
P 0 � Pz
m0c

(12)

and the equations (6) and (7), we �nd that (11) implies _� = 0, which completes the proof.
Let us introduce the notation

� = ~�; g (�) =
e

c~
G (�) ; p (�) = �� g (�) ; m =

m0c

~
: (13)

Then (10) can be rewritten as
P 0 � Pz = ~p (�) ; (14)

and (12) implies

m _� = p (�) =) s =

Z
md�

p (�)
; (15)

which relates the proper time and the parameter �.
In what follows, we denote

rij (�) = rji (�) =
e

c~
Rij (�) ; Fi (�) =

e

c~
Fi (�) ; (i; j = 1; 2) ; H (�) =

e

c~
H (�) ; S = 1

~
S : (16)

Let us also introduce a 2� 2 symmetric matrix r = r (�) and the two-dimensional columns F = F (�) and
v,

r =

�
r11 (�) r12 (�)
r12 (�) r22 (�)

�
; F =

�
F1 (�)
F2 (�)

�
; v =

�
x
y

�
: (17)

The complete integral of the Hamilton�Jacobi equations (5) for the �elds (2) can be presented as

S = �1
2

�
�
�
x0 + z

�
+ �

�
; � = v+fv + �+v + v+�+ F+v + v+F +

Z �
�+�+m2

�
p�1 (�) d� ; (18)

where the 2� 2 real symmetric matrix f = f (�),

f =

�
f11 (�) f12 (�)
f12 (�) f22 (�)

�
;

and the real two-column � = � (�) satisfy the equations (see Appendix I)

p (�) [f 0 (�) + r (�)]� [f (�) + iH (�)�2] [f (�)� iH (�)�2] = 0 ; (19)

p (�) [� 0 (�) + F 0 (�)]� [f (�) + iH (�)�2]� (�) = 0 : (20)

Here, �2 is a Pauli matrix.
Using (19) and (20), we can see that the three independent functions fij (�) provide a solution to a set

of three �rst-order non-linear equations, while the two functions �i (�) obey a set of two linear �rst-order
inhomogenous equations, where the functions fij (�) are assumed to be known. One should look for a
particular solution of equations (19), and so the general solution of (20) has the structure

� (�) = k1�
(1) (�) + k2�

(2) (�) + �� (�) : (21)
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Here, �� (�) is a particular solution for the set of inhomogenous equations (20); �(1) (�) and �(2) (�) provide
a fundamental system of solutions for the set of homogeneous equations (20); k1 and k2 are arbitrary
constants (two integrals of motion). Thus, the complete integral (18) of the Hamilton�Jacobi equations
(5) depends on three integrals of motion, �, k1 and k2.
Having at one�s disposal solutions of the equations (19) and (20), one can easily �nd �rst integrals of

the Lorentz equations. Using (4), with allowance made for (15), one readily obtains a set of equations for
the coordinates x and y as functions of the variable � in the following matrix form:

p (�) v00 (�) + p0 (�) v0 (�)� [r (�) + iH 0 (�)�2] v (�)� 2iH (�) v0 (�)� F 0 (�) = 0 : (22)

One can easily prove that this equation can be integrated once,

p (�) v0 (�) + [f (�)� iH (�)�2] v (�) + � (�) = 0 (23)

(see Appendix II).
Using identity (6) for the kinetic momenta, relations (14) and (16), we �nd

(P 0 � Pz)(P 0 + Pz) = m
2
0c
2 + P 2x + P

2
y =) (P 0 � Pz)(P 0 � Pz + 2Pz)

= m2
0c
2 + P 2x + P

2
y =) p2 (�) [1 + 2z 0 (�)] = m2 + p2 (�) v0+ (�) v0 (�) ;

the coordinate z being a function of the variable �. We �nally obtain

2z 0 (�)�m2p�2 (�)� v0+ (�) v0 (�) + 1 = 0 : (24)

Expressions (23) and (24) are �rst integrals of the Lorentz equations.

3 Crossed �elds and beam guides

In this section we study a particular case of the �eld (2) in the absence of the longitudinal �eld, i.e., pure
crossed-�elds, and discuss how these kinds of �elds can be used to create a beam guide for charged particles,
i.e., �elds that limit the motion of the charge around some given trajectories. These guides trap the charge
in a bidimensional plane perpendicular to its trajectory and they are commonly used in many practical
applications, e.g., quantum computation [19], high resolution spectroscopy [20], non-neutral plasma physics
[21], and mass spectroscopy [22]. We will demonstrate that the Lorentz equations for these crossed-�elds
can be reduced to the classical Newton equation with a bidimensional e¤ective potential. As an example we
discuss a beam guide created by an electromagnetic vortex [15]. Di¤erent from the approximated classical
analogues used to explain the operation of some RF traps [23], the analysis developed here is exact and
can be used to describe the precise relativistic motion of the charge.
In the absence of the longitudinal �eld, we have

Ez = G0 (�) = Hz = H (�) = 0 : (25)

As the only in�uence of the constant G manifests itself through the z-component of the electric �eld, we
can set G = 0. So our potential (1) takes the form

A0 = Az = �
1

2
A; Ax = �F1 (�) ; Ay = �F2 (�) ;

A = R11 (�)x
2 + 2R12 (�)xy +R22 (�) y

2; � = x0 � z : (26)

Whence, the �elds

Ex = Hy = F 01 (�) +R11 (�)x+R12 (�) y ;
Ey = �Hx = F 02 (�) +R12 (�)x+R22 (�) y : (27)

For these �elds we can identify the integral of motion (10) with the light-front energy E = �=m, and the
parameter � is directly proportional to the proper time s, (15) s = m�=�, with � and m given by (13).
Substituting the �elds (27) in the Lorentz equation (4) we obtain:

m _P? = �P
0
? = e�E? = �e� (r?A0 + @0A?) (28)
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where the symbol ? indicates the perpendicular x and y components of the vectors, e.g., r? = (@x; @y).
We can eliminate the perpendicular components A? of the potential (26) using the gauge transformation

~A� (�; x; y) = A� (�; x; y) + @�� (�; x; y) ;

� (�; x; y) = xF1 (�) + yF2 (�) :

So, making use of P0? = ~�x00?, the equation (28) becomes

�x00? = �
e

~
r? ~A0 : (29)

We can identify the above expression with Newton�s non-relativistic equation for the two-dimensional
motion of a particle with e¤ective mass � moving in the e¤ective potential

U (�; x; y) =
e

~
~A0 =

e

~

�
xF 01 (�) + yF 02 (�)�

1

2
A (�; x; y)

�
: (30)

Therefore, we can �nd �elds that trap a charge in some point of the x; y-plane without explicitly solving
the Lorentz equations, just by looking for functions A;F1 and F2 for which the associated potential U is
capable of limiting the classical motion of a particle of mass � around this point.
For the special case of a plane-wave, where E = E (�) and H = H (�), we have A = 0, which generates

the e¤ective potential
U (�; x; y) =

e

~
[xF 01 (�) + yF 02 (�)] ; (31)

and consequently creates a force ~F? = e (F 01;F 02) that does not depend on the x; y coordinates. So
although a plane-wave may limit the motion of a charge around some point, it is not possible to �x the
position of this point only by manipulating the �elds.

3.1 Time-independent �elds

For a time-independent potential, the boundary trajectories can be found by looking for the minima of the
surface U (x; y). These points can be found using the standard procedure to determine the maxima and
minima of a function of several variables [24]. A point (x0; y0) will be an extreme if the �rst derivatives
@U=@x and @U=@y vanish at this point, and this extreme will be a minimum if the second derivative
@2U=@x2 and the discriminant D (x; y) are positive at (x0; y0),

D (x0; y0) =

�
@2U

@x2
@2U

@y2

�
�
�
@2U

@x@y

�2
> 0 ;

@2U

@x2

����
x0;y0

> 0 : (32)

In the case of a time-independent potential, the expression (30) for U assumes the form

U (x; y) =
e

~

�
xC1 + yC2 �

1

2

�
x2R11 + 2xyR12 + y

2R22
��
; (33)

where Ci and Rij (i; j = 1; 2) are constants. So the condition (32) implies

R11 < 0 and R11R22 > (R12)
2
; (34)

and, consequently, R22 < 0 and detR 6= 0. Therefore, the minimum for the potential (33), under the above
restrictions (which is the unique extreme point of U and, consequently, a global minimum), is the point

x0 =
R22C1 �R12C2

detR
; y0 =

R11C2 �R12C1
detR

:

However, the �elds (27) associated to the potential (33),

Ex = Hy = C1 � x jR11j � y jR12j ;
Ey = �Hx = C2 � x jR12j � y jR22j ;

correspond to a problem of a constant charge density in the x; y plane and a constant current density in
the z direction, which is nonrealistic.
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3.2 Periodic time-dependent �elds

For a periodic time-dependent potential, and the special case of linear (or quasi-linear2) systems (which
includes the case of quadratics potentials (30)), where we have

r? ~A0 =M (t)x? ;

with M (t) a periodic time-dependent 2� 2 matrix, the stability of the potential (30) can be studied using
the Lyapunov criteria [25]. To use these criteria, we �rst substitute Newton�s second order equation (29)
by a pair of �rst order equations making u? = x0?, that turns (29) equivalent to

V0
? = �V? ; V? =

�
x?
u?

�
; � (t) =

�
0 I

M (t) 0

�
: (35)

The motion is called stable around the point (0; 0) if, for every " > 0 we can �nd a � > 0 such that for
arbitrary initials values V? (0) with moduli less than � the coordinates V? (t) remain of moduli less than
" for all the time t � 0, i.e., the motion is stable if

_" > 0; 9 � > 0 ) jV? (0)j < � =) jV? (t)j < " (t � 0) :

For periodic time-dependent M (t) there always exists a transformation R that leads to a static problem
~� = R�R�1 = const. having the same stability character as � (see [25], Vol. II, p.119). So, after applying
this transformation, the stability of the system can be analyzed by �nding the roots �k of the characteristic
polynomial

det
�
~�� �I

�
= 0 : (36)

The system is stable if:

1. Re (�k) � 0, for all �k;

2. The pure imaginary characteristic values Re (�k) = 0 (if any such exist) are simple roots.

If at least one of the above conditions is violated the system will be unstable.
Let us use the above procedure to analyze the �elds generated by the functions (60) of the next section,

for a pure crossed �eld (H = 0). In this case, we have

R11 (�) = C1 + C2 cos!�; R22 (�) = C1 � C2 cos!� ;
R12 (�) = C2 sin!� ; F1 = F2 = 0 ; !; C1;2 = const:

Substituting these values in (30) we obtain the e¤ective potential

U (�; x; y) = � e

2~
��
x2 + y2

�
C1 +

�
x2 � y2

�
C2 cos!� + 2xyC2 sin!�

�
: (37)

Changing to a rotating frame, that is, making the transformation,

~x? = Rx? ; R (�) =

�
cos (!�=2) sin (!�=2)
� sin (!�=2) cos (!�=2)

�
; (38)

the potential (37) becomes the following time-independent expression:

~U (~x; ~y) = � e

2~
��
~x2 + ~y2

�
C1 +

�
~x2 � ~y2

�
C2
�
: (39)

In the rotating frame the equation of motion (29) becomes

~x00? =
�
RMR�1 �R

�
R�1

�00�
~x? � 2R

�
R�1

�0
~x0? ;

M (�) =
e

�~

�
C1 + C2 cos (!�) C2 sin (!�)
C2 sin (!�) C1 � C2 cos (!�)

�
; (40)

2That is, special systems for which the non-linear terms can be neglected. see Chapter XIV of [25].
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and the expression (35) assumes the form

~V0
? = ~�~V? ; ~V? =

�
~x?
~u?

�
; ~� =

�
0 I

RMR�1 �R
�
R�1

�00 �2R
�
R�1

�0 � ;
where, from (38) and (40), we see that ~� is the constant matrix

~� =

�
0 I

c1 + c2�3 + !
2=4 i�2!

�
; ci =

eCi
�~

;

where �i are the Pauli matrices. The roots �k of the characteristic polynomial (36) are

�1 = ��2 =
1

2

r
4c1 � !2 + 4

q
c22 � !2c1 ;

�3 = ��4 =
1

2

r
4c1 � !2 � 4

q
c22 � !2c1 : (41)

Since each eigenvalue has a negative partner, the two Lyapunov conditions will be satis�ed only if Re (�k) =
0.
The vortex �eld analyzed in [15] is a special case of (37) for C1 = 0 and C2 = B0!. In this case, the

constant potential (39) becomes

~U (~x; ~y) = �eB0!
2~

�
~x2 � ~y2

�
: (42)

This potential describes the surface of a saddle that rotates (by 38) in the x; y plane with angular velocity
!=2 in time � (or angular velocity 
=2 = !�=2m in the proper time s). The classical motion of a particle
in such a rotating-saddle potential is well known [23]. However, we were able to obtain some information
about the trajectories without really solving the equations of motion.
The condition Re (�k) = 0 for the eigenvalues (41) related to the potential (42) determines the expres-

sion
j!j � 4e

�~
jB0j : (43)

This inequality gives us a condition for which the potential (42) generates bounded trajectories. The above
result concurs with the condition obtained in [15] by solving Lorentz�s equation (4) or the one obtained in
[23] by solving the Newton�s equation (29).

4 Solutions of Klein-Gordon and Dirac equations

Solutions of the Klein�Gordon equation ��;k (�; �; x; y) for the �elds (2), labeled by the three integrals of
motion � (see 13)) and k = (k1; k2) (see (21)), read:

��;k (�; �; x y) = N0p
�1=2 (�)

p
�(�) exp (iS) ;

�(�) = detB (�) ; B (�) =

 
�
(1)
1 (�) �

(2)
1 (�)

�
(1)
2 (�) �

(2)
2 (�)

!
;

� = x0 + z = ct+ z ; (44)

where N0 is a normalization factor and �
(s)
s 0 (�) (s; s

0 = 1; 2) are the spinor components �(s) (�) introduced
in (21),

�(s) =

 
�
(s)
1 (�)

�
(s)
2 (�)

!
; s = 1; 2 : (45)

This fact can be directly veri�ed by taking into account that the function �(�) obeys the equation

p
d�

d�
= (trf )� ; (46)

which is a consequence of the uniform set (20). Indeed, the spinors �(s) obey the following equation:�
�(s)

�0
= p�1 [f + iH�2]�

(s) ()
�
�(s)+

�0
= p�1�(s)+ [f � iH�2] : (47)
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The linear independence of the spinors �(s) implies that the matrix B from (44) is nonsingular, i.e.,

� = detB = �
(1)
1 (�)�

(2)
2 (�)� �(1)2 (�)�

(2)
1 (�) 6= 0 : (48)

The function � can be easily calculated. One can see that for real spinors �(s) the following relations hold

� = i�(1)+�2�
(2) =) �0 = i

�
�(1)+

�0
�2�

(2) + i�(1)+�2

�
�(2)

�0
: (49)

Then, using (47), we �nd

�0 = p�1�(1)+ [if�2 +H + i�2f �H]�(2) = p�1�(1)+ [if�2 + i�2f ]�(2) :

With the help of an evident identity

if�2 + i�2f = (trf ) i�2 ;

we �nally �nd (46).
Solutions of the Dirac equation 	�;k (�; �; x; y) for the �elds in question can be presented in a block

form by using the two-dimensional Pauli matrices:

	�;k (�; �; x; y) = Np
�1 (�)

p
�(�) exp [iS]

�
m+ p (�)� �3 (�z)
[m� p (�)]�3 � (�z)

�
V (�) : (50)

Here, the two-component spinor V (�) reads

V (�) = [cosT (�) + i�3 sinT (�)]V0 ; (51)

where V0 is an arbitrary constant two-component spinor, and we also denote

T (�) =

Z
H (�) p�1 (�) d� : (52)

The components zi; i = 1; 2; 3 of the vector z have the form

z1 = f11 (�)x+ [f12 (�)�H (�)] y + �1 (�) ; z2 = [f12 (�) +H (�)]x+ f22 (�) y + �1 (�) ; z3 = 0 :

Therefore, the classical and quantum-mechanical problems are reduced to the solution of the equations
(19) and (20).
We will demonstrate that for a complete solution of the problem it is su¢ cient to �nd a special particular

solution of equations (19).
The non-linear set of equations (19) can be linearized by the following substitution:

f (�) = p (�) [cosT (�) + i�2 sinT (�)]Z
0 (�)Z�1 (�) [cosT (�)� i�2 sinT (�)] ; (53)

where Z (�) is a non-degenerate second-order matrix. Using (19), we �nd a linear second-order equation
for the matrix Z (�),

p2 (�)Z 00 (�) + p (�) p0 (�)Z 0 (�) +
�
H2 (�)� p (�) �r (�)

�
Z (�) = 0 ;

�r (�) � [cosT (�)� i�2 sinT (�)] r (�) [cosT (�) + i�2 sinT (�)] : (54)

A direct calculation yields

�r11 (�) =
1

2
r11 (�) [1 + cos 2T (�)] +

1

2
r22 (�) [1� cos 2T (�)]� r12 (�) sin 2T (�) ;

�r12 (�) = �r21 (�) = r12 (�) cos 2T (�) +
1

2
[r11 (�)� r22 (�)] sin 2T (�) ;

�r22 (�) =
1

2
r22 (�) [1 + cos 2T (�)] +

1

2
r11 (�) [1� cos 2T (�)] + r12 (�) sin 2T (�) : (55)

In order that the matrix f (�) be real and symmetric, one has to look for real solutions of the equations
(54) that obey the subsidiary condition (the symbol � stands for transposition)

J (�) = ~J (�) ; J (�) � Z 0 (�)Z�1 (�) : (56)
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Such solutions of (54) always exist, since, in accordance with (54), one easily �nds an equation for J (�),

p2 (�) J 0 (�) + p2 (�) J2 (�) + p (�) p0 (�) J (�) +H2 (�)� p (�) �r (�) = 0 : (57)

Transposing this equation and using the property ~�r (�) = �r (�), we �nd that the equations for J (�) and
~J (�) are the same, which proves the existence of solutions that satisfy (56).
Having at one�s disposal a particular solution of equations (54) that satis�es the condition (56), one

can integrate the equations (20) and (23) by quadratures. Indeed, a direct veri�cation shows that the
expressions

v = [cosT (�) + i�2 sinT (�)]Z (�)

�
v0 �

Z
Z�1 (�) [cosT (�)� i�2 sinT (�)]� (�) p�1 (�) d�

�
;

� = [cosT (�) + i�2 sinT (�)] ~Z
�1 (�)

�
K �

Z
~Z (�) [cosT (�)� i�2 sinT (�)]F 0 (�) d�

�
; (58)

obey equations (20) and (23), respectively, where K is a column with components k1 and k2, and v0 is a
constant two-component spinor.
Motion in the �elds of the type (2) has been studied in previous works. The authors of [26] found

the symmetry operators for these �elds, and the authors of [27, 28, 29, 30] found solutions for numerous
speci�c �elds of this kind. However, in all these speci�c �elds there exist certain transformations that
diagonalize �r (�), so that the set of equations (54) splits into independent linear equations of second order.
A considerable progress was made in the work [15], which was the �rst to present exact solutions for

a speci�c �eld that does not admit any transformations leading to the separation of equations (54) into
independent equations of second order. The author of [15] examined a particular case of the �elds (2) with
the following choice of functions:

Fi (�) = H (�) = g (�) = 0; r11 (�) = �r22 (�) = c cos!�; r12 (�) = c sin!� ; (59)

where ! and c are some constants. The solutions of the equations in [15] were obtained in a di¤erent
manner from that of the approach of the present work, and they depend essentially on the speci�c form of
the �elds.
Let us note that in the present approach there is no necessity to assume Fi (�) = 0, because these

functions do not enter the set of equations (54), and so they may be left arbitrary.
We have succeeded in �nding solutions for the �elds de�ned by the following functions:

g (�) = 0; H (�) = H = const; r11 (�) = c1 + c2 cos!� ;

r22 (�) = c1 � c2 cos!�; r12 (�) = c2 sin!�; !; c1;2 = const : (60)

A peculiarity of (60) is the presence of a constant and homogenous magnetic �eld. Expressions (59) provide
a particular case of (60) with H = c1 = 0.
It is easy to see that in the case of the functions (60), the equation (54) can be written in the form

�2Z 00 +
�
H2 � �c1 � �c2 (�l)

�
Z = 0; l = (sin
 �; 0; cos
 �) ; (61)

where T is

T (�) =
H�

�
; 
 = ! +

2H

�
:

For c2 = 0, solutions of this equation are known [18, 28, 29, 30], and therefore we only need to examine
the case c2 6= 0. A direct veri�cation shows that the expressions

Z11 = A

�
� cos


x

2
cos�� +

�



2
+

 + c2
�


�
sin


x

2
sin��

�
;

Z21 = A

�
� sin


x

2
cos�� �

�



2
+

 + c2
�


�
cos


x

2
sin��

�
;

Z12 = B

�
� sin


x

2
sin�� +

�



2
� 
 + c2

�


�
cos


x

2
cos��

�
;

Z22 = �B
�
� cos


x

2
sin�� �

�



2
� 
 + c2

�


�
sin


x

2
cos��

�
; (62)
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where

�2 =
H2 � �c1

�2
+

2

4
+



�
; �2 =

H2 � �c1
�2

+

2

4
� 

�
;


2 = c22 + (H
2 � �c1)
2; A; B = const:

give a solution for the equations (61) that satis�es the condition (56). The signs of the quantities �; �; 

may be chosen arbitrarily. The quantity 
 is either real or purely imaginary; the quantities �; � may be
complex. For complex �; �, in view of the linear character of equations (61), the real and imaginary parts
of (62) separately provide the sought solutions. The expressions (62) admit a continuous limiting process

 ! 0 in case the sign of 
 (
 being real when 
 ! 0) is chosen to obey the condition c2
 < 0. By
carrying out this limiting process (and rede�ning the constants A;B) we �nd, due to (62) and 
 = 0, that

Z (�) =

�
A cos�� 0

0 B sin��

�
;

�2 =
�
H2 � �c1 � �c2

�
��2

�2 =
�
H2 � �c1 + �c2

�
��2

: (63)

The calculation of the quantities f (�) ; � (�) ; v (�), with the help of formulas (53) and (58), is reduced to
simple algebraic manipulations and integrations of elementary functions, which we omit.

5 Orthogonality and completeness relations

In the case under consideration, it is convenient to de�ne inner products for both scalar and spinor wave
functions on the null-plane � = const; see for details [31, 32]. Such an inner product for scalar wave
functions is

(�1; �2)� =

Z nh
Q̂�1 (�; �; x; y)

i�
�2 (�; �; x; y)

+��1 (�; �; x; y) Q̂�2 (�; �; x; y)
o
d�dxdy ; (64)

where

Q̂ =
P̂0 � P̂z
~

= 2i
@

@�
� g (�) :

For spinor wave functions, the inner product on the null-plane has the form

h	1; 	2i� =
Z
	+1(�) (�; �; x; y)	2(�) (�; �; x; y) d�dxdy ;

	(�)=̂P(�)	; P̂(�) =
1

2
(1� �3) =

1

2

�
I ��3
��3 I

�
: (65)

One can verify that scalar wave functions (44) obey the orthonormality condition

(��0;k0 ; ��;k)� = " � (�
0 � �) � (k01 � k1) � (k02 � k2) ; " = p (�) jp (�) j�1 ; (66)

provided N0 =
�
32�3

��1=2
. First we note that the following relation holds

Q̂��;k (�; �; x; y) = p (�) ��;k (�; �; x; y) : (67)

Then, integration over the variable � is reduced to the calculation of the integralZ 1

�1
exp

�
i

2
(�0 � �) �

�
d� = 4�� (�0 � �) : (68)

Therefore, we can set �0 = � in the integral over x; y. The latter is reduced to the following integral

J =

Z 1

�1
dx

Z 1

�1
dy exp

"
ix
X
s=1; 2

�
(s)
1 (�) (k0s � ks) + iy

X
s=1; 2

�
(s)
2 (�) (k0s � ks)

#

= 4�2�

 X
s=1; 2

�
(s)
1 (�) (k0s � ks)

!
�

 X
s=1; 2

�
(s)
2 (�) (k0s � ks)

!
: (69)
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The product of two �-functions in the right hand side of (69) can be transformed if we take into account
the following fact: Let a be a nonsingular 2 � 2 matrix, det a 6= 0, with matrix elements aij . Then the
relation holds

� (a11z1 + a12z2) � (a21z1 + a22z2) = jdet aj�1� (z1) � (z2) : (70)

Setting in (70): aij = �
(j)
i (�) ; z1 = k

0
1 � k1; z2 = k02 � k2, we obtain

J = 4�2j�(�) j�1� (k01 � k1) � (k02 � k2) ; (71)

where �(�) is given by (48). Then the result (66) follows.
The constant spinor V0 in solutions (51) is related to an additional (spinning) integral of motion, see

for details [30, 31]. So the spinor V0 (and therefore the Dirac wave function as well) depends on a spinning
quantum number � = �1; V0 = V0 (�). It is always possible to choose V0 (�) such that it obeys the
following relations of orthonormality and completeness:

V +0 (�
0)V0 (�) = � �; � 0 ;

X
�=�1

V0 (�)V
+
0 (�) = I : (72)

Taking into account (72) and the relation

	(�)�;k; � (�; �; x; y) = (32�
3)�1=2�1=2 (�) exp (iS)

�
I
��3

�
V (�) ; (73)

we can verify that the spinor wave functions (51) obey the orthonormality condition

h	�0;k0; � 0 ; 	�;k; � i� = � (�0 � �) � (k01 � k1) � (k02 � k2) ��; � 0 (74)

provided N = (32�3)�1=2.
The solutions (44) and (51) form complete sets of functions on the null-plane � = const:
For scalar wave functions (44), we consider the following integral:

M = 2

Z 1

�1
d�

Z 1

�1
dk1

Z 1

�1
dk2 jp (�) j���;k(�; �0; x0; y0) ��;k (�; �; x; y) : (75)

Integrating over the variables k1; k2 leads us to the integral:

M1 =

Z 1

�1
dk1

Z 1

�1
dk2 exp

�
iR(1)k1 + iR

(2)k2

�
= 4�2�

�
R(1)

�
�
�
R(2)

�
;

R(s) = �
(s)
1 (�) (x0 � x) + �(s)2 (�) (y0 � y) ; s = 1; 2 :

This expression has the form (70), where a = ~B (�) is the transpose of the matrix B in (44), and z1 =
x0 � x; z2 = y0 � y. Thus we obtain:

M1 = 4�
2j�(�) j�1� (x0 � x) � (y0 � y) : (76)

After that one can easily integrate over � in (75) to get the following completeness relation:

2

Z 1

�1
d�

Z 1

�1
dk1

Z 1

�1
dk2 jp (�) j���;k (�; �0; x0; y0) ��;k (�; �; x; y)

= � (x0 � x) � (y0 � y) � (�0 � �) :

Similar calculations can be performed in the spinor case. Here we have additionally to use the second
relation (72) to get a completeness relation for the solutions (51):X

�=�1

Z 1

�1
d�

Z 1

�1
dk1

Z 1

�1
dk2 	

+
(�)�;k; � (�; �

0; x0; y0) 	(�)�;k; � (�; �; x; y)

= � (x0 � x) � (y0 � y) � (�0 � �) P̂(�) :

Acknowledgement 1 V.G.B. thanks grant SS-5103.2006.2 of the President of Russia and RFBR grant
06-02-16719 for partial support; M.C.B. thanks FAPESP; D.M.G. thanks FAPESP and CNPq for perman-
ent support.

11



Appendix

I. Equations (19) and (20) are obtained as follows. We search for a complete integral of the Hamilton�
Jacobi equations (5) in the form

S = �1
2

�
�
�
x0 + z

�
+ �

�
; (77)

with the function � is

� = f11 (�)x
2 + 2f12 (�)xy + f22 (�) y

2 + 2 [�1 (�) + F1 (�)]x+ 2 [�2 (�) + F2 (�)] y + � (�) : (78)

Here, fij (�) ; �i (�), and � (�) are unknown functions of the variable �. Substituting the expression (77),
with allowance made for (78), into equation (5), we obtain a quadratic form in x; y, with coe¢ cients being
functions of �, that must be identically zero, which is only possible when each coe¢ cient is equal to zero.
Hence, we obtain the following equations:

p (f 011 + r11)� f211 � (f12 +H)
2
= 0 ; (79)

p (f 022 + r22)� f222 � (f12 �H)
2
= 0 ; (80)

p (f 012 + r12)� f11 (f12 �H)� f22 (f12 +H) = 0 ; (81)

p (�01 + F
0
1)� f11�1 � (f12 +H)�2 = 0 ; (82)

p (�02 + F
0
2)� f22�2 � (f12 �H)�1 = 0 ; (83)

p� 0 � �21 � �22 �m2 = 0 : (84)

Owing to (84), the expressions (18) and (78) for the function � are identical. It is easy to see that the set
of equations (79)�(81) coincides with the matrix equation (19), and the set of equations (82)�(83) has the
matrix form (20).
II. Let us show that the equation (22) is a consequence of the equation (23). To this end, we di¤erentiate

(23) with respect to the variable �,

pv00 + p 0v0 + [f 0 � iH 0�2] v + [f � iH�2] v0 + �0 = 0 : (85)

However, the left-hand side of (85) satis�es the identity

pv00 + p 0v0 + [f 0 � iH 0�2] v + [f � iH�2] v0 + �0 = A+B ;

A = pv00 + p0v0 � [r + iH 0�2] v � 2iH�2v0 ;
B = [f 0 + r] v + [f + iH�2] v

0 + �0 : (86)

In the expression for B we now substitute f 0 from (19), �0 from (20), and v0 from (23), and thus we easily
�nd that B = �F 0 and that A+B is identical to the left-hand side of (22), which completes the proof.
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