Path integral representations in noncommutative quantum mechanics and noncommutative version of Berezin-Marinov action.

D.M. Gitman, V.G. Kupriyanov

Path integral representations in noncommutative quantum mechanics and noncommutative version of Berezin-Marinov action.

D.M. Gitman¹, V.G. Kupriyanov¹,²

¹Instituto de Física, Universidade de São Paulo, Brazil
²Physics Department, Tomsk State University, Russia
E-mail: gitman@dfn.if.usp.br (D.M.Gitman), kvg@dfn.if.usp.br (V.G.Kupriyanov).

June 29, 2007

Abstract

It is known that actions of field theories on a noncommutative space-time can be written as some modified (we call them θ-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and usual quantum mechanical features of the corresponding field theory. The θ-modification for arbitrary finite-dimensional nonrelativistic system was proposed by Deriglazov (2003). In the present article, we discuss the problem of constructing θ-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract θ-modified actions of the relativistic particles from path integral representations of the corresponding noncommutative field theory propagators. We consider Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as θ-modified actions of the relativistic particles. To confirm the interpretation, we quantize canonically these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The θ-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case.

1 Introduction

Recently quantum field theories on a noncommutative space-time have received a lot of attention, see for example [1] and references there. The noncommutative $d + 1$ space-time can be realized by the coordinate operators \hat{q}^μ, $\mu = 0, 1, \ldots, d$, satisfying

$$[\hat{q}^\mu, \hat{q}^\nu] = i\theta^{\mu\nu},$$

where, in the general case, the noncommutativity parameters enter in the theory via an antisymmetric matrix $\theta^{\mu\nu}$. Obviously, many of principle problems related to the noncommutativity can be examined already in the noncommutative quantum mechanics (QM). Some of articles in this direction consider generalization of the well-known QM problems (harmonic oscillator [2], a particle in a magnetic field [3], Hydrogen atom spectrum [4], a particle in the Aharonov-Bohm field [5], and a system in a central potential [6]) for the noncommutative case, trying to extract possible observable differences with the commutative case. In this connection path integral representations in nonrelativistic QM were studied [7]-[11] and calculated for simple cases of the harmonic oscillator [8] and a free particle [11].

One ought to say that classical actions of field theories on a noncommutative space-time can be written as some modified classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions (let us call them θ-modified actions in what follows) reproduces both space-time noncommutativity and usual quantum mechanical features of the corresponding field theory. Considering QM of one particle (or a system of N particles) with noncommutative coordinates, one can ask the question how to construct a θ-modified classical action (with already commuting coordinates) for the system. As in the case of field theory, such θ-modified classical actions in course of a quantization must reproduce both noncommutativity of coordinates and usual QM features of the corresponding finite-dimensional physical
system. For nonrelativistic QM, the latter problem was solved by Deriglazov in [16]. In the present article we discuss the problem of constructing \(\theta \)-modified actions for relativistic QM. We construct \(\theta \)-modified actions for relativistic spinless and spinning particles. The key idea is to extract \(\theta \)-modified actions of the relativistic particles from path integral representations of the corresponding noncommutative field theory propagators. We consider \(\theta \)-modified Klein-Gordon and Dirac equations with external backgrounds for the causal propagators. Then, using techniques developed in [12, 13] for usual commutative case, we construct for them path-integral representations. Effective actions in such path-integral representations, we treat as \(\theta \)-modified actions of the relativistic particles. To confirm this interpretation, we quantize canonically these actions. Thus, we obtain the above mentioned \(\theta \)-modified Klein-Gordon and Dirac equations. The \(\theta \)-modified action of the relativistic spinning particle is a generalization of the Berezin-Marinov pseudoclassical action [14] for the noncommutative case. One ought to say that effects of the noncommutativity appear to be essential only due to the external background. Finally, we consider a noncommutative \(d \)-dimensional nonrelativistic QM with no restrictions on the noncommutativity parameters \(\theta^{\mu \nu} \) and formally arbitrary Hamiltonian. We construct a path integral representation for the corresponding propagator function and demonstrate that the effective action in our path-integral representation is just \(\theta \)-modified action for nonrelativistic QM proposed in [15].

2 Path integral representations for particle propagators in noncommutative field theory

2.1 Spinless case

In field theories the effect of the noncommutativity of the space-time can be realized by substitution of usual function product by the Weyl-Moyal star product

\[
\begin{align*}
 f(x) \ast g(x) &= f(x) \exp \left\{ \frac{i\theta}{2} \theta^{\mu \nu} \partial_\mu \partial_\nu \right\} g(x) \\
 &= f \left(x^\mu + \frac{i}{\theta^{\mu \nu}} \partial_\nu \right) g(x),
\end{align*}
\]

where \(f(x) \) and \(g(x) \) are two arbitrary infinitely differentiable functions of the commutative variables \(x^\mu \) and the second line in (2) holds if perturbation in \(\theta \) is possible (see [5]). The latter is presumably since the effect of noncommutativity should be small.

The action of a noncommutative field theory of a scalar field \(\Phi \) that interacts with an external electromagnetic field \(A_\mu (x) \) reads

\[
S_{\text{cal-field}}^\theta = \int d^Dx \left[(\mathcal{P}_\mu \ast \Phi) \ast (P^\mu \ast \Phi) + m^2 \Phi \bar{\Phi} \right], \quad P_\mu = i\partial_\mu - gA_\mu (x).
\]

The corresponding Euler-Lagrange equation

\[
\frac{\delta S_{\text{cal-field}}^\theta}{\delta \Phi} = 0 \Rightarrow \left[\mathcal{P}_\mu \ast P^\mu - m^2 \right] \ast \Phi = 0,
\]

being rewritten by the help of (2) takes the form

\[
\begin{align*}
 \left(\bar{\mathcal{P}}^2 - m^2 \right) \Phi &= 0, \quad \bar{\mathcal{P}}^2 = \bar{\mathcal{P}}_\mu \bar{\mathcal{P}}^\mu, \\
 \bar{\mathcal{P}}_\mu &= i\partial_\mu - gA_\mu \left(x^\nu + \frac{i}{\theta^{\nu \mu}} \partial_\nu \right),
\end{align*}
\]

and is an analog of the Klein-Gordon equation for noncommutative case. The propagator in the noncommutative scalar field theory is the causal Green function \(D^c (x, y) \) of the equation (5),

\[
\left(\bar{\mathcal{P}}^2 - m^2 \right) D^c (x, y) = -\delta (x - y).
\]

From this point on, we are going to follow the way elaborated in [12] to construct a path integral representation for the propagator: We consider \(D^c (x, y) \) as a matrix element of an operator \(\hat{D}^c \) in a Hilbert space

\[
D^c (x, y) = \langle x | \hat{D}^c | y \rangle.
\]
Here \(|x\rangle \) are eigenvectors of some self-adjoint and mutually commuting operators \(\hat{x}^\mu \),

\[
\hat{x}^\mu = \hat{q}^\mu + \frac{1}{2\hbar} \theta^{\mu\nu} \hat{p}_\nu,
\]

where operators \(\hat{q}^\mu \) obey the commutation relations (1) and \(\hat{p}_\mu \) are momentum operators conjugate to \(\hat{x}^\mu \),

\[
[\hat{x}^\mu, \hat{p}_\nu] = i\hbar \delta^\mu_\nu, \quad [\hat{x}^\mu, \hat{x}^\nu] = [\hat{p}_\mu, \hat{p}_\nu] = 0,
\]

\[
\hat{x}^\mu |x\rangle = x^\mu |x\rangle, \quad \langle x|y\rangle = \delta^D(x-y), \quad \int |x\rangle \langle x| dx = I.
\]

Then equation (7) implies \(\hat{D}^c = (m^2 - \Pi^2)^{-1} \), where\(^1\)

\[
\hat{N}_\mu = -\hat{p}_\mu - g A_\mu(q), \quad \left[\hat{N}_\mu, \hat{N}_\nu \right] = -ig \delta^\mu_\nu \hat{F}_{\mu\nu},
\]

\[
\hat{F}_{\mu\nu} = \partial_\mu A_\nu(q) - \partial_\nu A_\mu(q) + ig \left[A_\mu(q), A_\nu(q) \right].
\]

Due to the star product property \(f(q) g(q) = (f \ast g)(q) \), we can represent the operator \(\hat{F}_{\mu\nu} \) as follows

\[
\hat{F}_{\mu\nu} = F_{\mu\nu}^*(q), \quad F_{\mu\nu}^*(q) = \partial_\mu A_\nu(q) - \partial_\nu A_\mu(q) + ig \left(A_\mu(q) \ast A_\nu(q) - A_\nu(q) \ast A_\mu(q) \right).
\]

Using the Schwinger proper-time representation for the inverse operator, we get:

\[
\hat{D}^c = D^c(x_{out}, x_{in}) = i \int_0^\infty \left[\frac{i}{\hbar} \hat{N}(\lambda) \right] [x_{in}] dx_{out} \exp \left[-\int_0^\lambda \frac{i}{\hbar} \hat{N}(\lambda) \right],
\]

\[
\hat{N}(\lambda) = \lambda (m^2 - \Pi^2).
\]

Here and in what follows the infinitesimal factor \(-i \hbar \) is included in \(m^2 \). Doing finally a discretization, similar to that in [12], we get a path integral representation for the propagator (13)

\[
D^c = i \int_0^\infty d\lambda_0 \int_{x_{in}}^{x_{out}} D\pi \int Dp \int D\lambda \exp \left\{ \frac{i}{\hbar} \left[S^\theta_{\text{scalt-part}} + S_{\text{GF}} \right] \right\},
\]

where

\[
S^\theta_{\text{scalt-part}} = \int_0^1 \lambda \left(p_\mu \hat{x}^\mu - \frac{1}{2\hbar} \theta^{\mu\nu} p_\nu \right) d\tau, \quad S_{\text{GF}} = \int_0^1 \pi d\tau,
\]

\[
\mathcal{P}_\mu = -p_\mu - g A_\mu \left(x^\mu - \frac{1}{2\hbar} \theta^{\mu\nu} p_\nu \right), \quad \lambda = d\lambda_0.
\]

The functional integration in (14) goes over trajectories \(x^\mu(\tau), \ p_\mu(\tau), \ \lambda(\tau) \), and \(\pi(\tau) \), parametrized by some invariant parameter \(\tau \in [0, 1] \) and obeying the boundary conditions \(x(0) = x_{in}, \ x(1) = x_{out} \), \(\lambda(0) = \lambda_0 \).

Since momenta are involved in arguments of electromagnetic potentials \(A_\mu \), an integration over the momenta in the representation (14) is difficult to perform in the general case. On the other side, we can go over from \(x \) to new coordinates \(q \),

\[
q^\mu = x^\mu - \frac{1}{2\hbar} \theta^{\mu\nu} p_\nu,
\]

which correspond in a sense to the noncommutative operators \(\hat{q}^\mu \) (1). Then

\[
D^c = i \int_0^\infty d\lambda_0 \int_{x_{in}}^{x_{out}-\theta q/2\hbar} Dq \int D\lambda \int Dp \int D\pi \exp \left\{ \frac{i}{\hbar} \left[S^\theta_{\text{scalt-part}} + S_{\text{GF}} \right] \right\},
\]

\[
S^\theta_{\text{scalt-part}} = \int_0^1 \left\{ \lambda \left(p_\mu + g A_\mu(q) \right)^2 - m^2 \right\} + p_\mu q^\mu + \frac{1}{2\hbar} \theta^{\mu\nu} p_\nu \right) d\tau.
\]

\(^1\) Here and in what follows \(\Pi^2 = \Pi_\mu \Pi^\mu \) and so on.
Thus, we get rid from the above mentioned difficulty but a new one has appeared. The action S_{field} in (17) contains an "inconvenient" term $\frac{\lambda \mu}{2} \theta^{\mu \nu} \theta_{\nu}$. Here one possibility to integrate over momenta is related to the study of the structure of $\theta^{\mu \nu}$ matrix and with a subsequent transition to some Darboux coordinates.

The representation (17) can be treated as a Hamiltonian path integral for the scalar particle propagator in the noncommutative field theory. The exponent in the integrand (17) can be considered as an effective and non-degenerate Hamiltonian action of a scalar particle in a noncommutative space time. It consists of two parts. The first one S_{GP} can be treated as a gauge fixing term and corresponds, in fact, to the gauge condition $\lambda = 0$. The rest part of the effective action S_{eff} can be treated as θ-modification of the usual Hamiltonian action of a spinless relativistic particle in the commutative case. This action differs from the corresponding commutative case (see [12]) by the term $\frac{\lambda}{2} \theta^{\mu \nu} \theta_{\nu}$.

2.2 Spinning particle

Consider a θ-modified action of noncommutative field theory of a spinor field Ψ that interacts with an external electromagnetic background A_μ. Being written in commuting D-dimensional Minkowski coordinates x^μ, $\mu = 0, 1, \ldots, D - 1$, the action reads

$$S_{\text{spinor-field}}^\theta = \int dx^D \Psi \star (P_\mu \gamma^\mu + m) \Psi,$$

(18)

where γ^μ are gamma-matrices in D dimensions, $[\gamma^\mu, \gamma^\nu]_+ = 2\eta^{\mu \nu}$. In this article, we consider D to be even $D = 2d$, for simplicity and as a generalization of the 4-dim. Minkowski space, the odd case can be considered in the same manner following ideas of the work [13]. As it is known [17], in even dimensions a matrix representation of the Clifford algebra with dimensionality $\text{dim} \gamma^\mu = 2^d$ always exists. In other words γ^μ are $2^d \times 2^d$ matrices. In such dimensions one can introduce another matrix, $\gamma^{D+1} = \gamma^{r_1} \gamma^{r_2} \ldots \gamma^{D-1}$, where $r_1 = 1$, if d is even, and $r_1 = i$, if d is odd, which anticommutes with all γ^μ (analog of γ^0 in four dimensions), $[\gamma^{D+1}, \gamma^\mu]_+ = 0$, $(\gamma^{D+1})^2 = -1$. The Euler-Lagrange equations

$$\frac{\delta S_{\text{spinor-field}}^\theta}{\delta \Psi} = 0 \Rightarrow (P_\mu \gamma^\mu + m) \Psi = 0,$$

(19)

becing rewritten by the help of (2) take the form

$$\left(\tilde{P}_\mu \gamma^\mu - m \right) \Psi = 0,$$

(20)

and represent an analog of the Dirac equation for the noncommutative case. The propagator of the noncommutative spinor field theory is the causal Green function $G_c(x, y)$ of equation (20),

$$\left(\tilde{P}_\mu \gamma^\mu - m \right) G_c(x, y) = -\delta^D(x - y).$$

(21)

Following [12, 13], we pass to a θ-modified Dirac operator which is homogeneous in γ-matrices. Indeed, let us rewrite the equation (21) in terms of the transformed by γ^{D+1} propagator $\tilde{G}_c(x, y)$,

$$\tilde{G}_c(x, y) = G_c(x, y) \gamma^{D+1}, \quad \left(\tilde{P}_\mu \gamma^\mu - m \gamma^{D+1} \right) \tilde{G}_c(x, y) = \delta^D(x - y),$$

(22)

where $\tilde{\gamma}^\mu = \gamma^{D+1} \gamma^\mu$. The matrices $\tilde{\gamma}^\mu$ have the same commutation relations as initial ones without tilde $[\tilde{\gamma}^\mu, \tilde{\gamma}^\nu]_+ = 2\eta^{\mu \nu}$, and anticommute with the matrix γ^{D+1}. The set of $D + 1$ gamma-matrices $\tilde{\gamma}^\mu$ and γ^{D+1} form a representation of the Clifford algebra in odd $2d + 1$ dimensions. Let us denote such matrices via Γ^n,

$$\Gamma^n = \begin{cases} \tilde{\gamma}^\mu, & n = \mu = 0, \ldots, D - 1, \\ \gamma^{D+1}, & n = D \\ \left[\Gamma^k, \Gamma^n \right]_+ = 2\eta^{kn}, & n_k = \text{diag}(1, -1, \ldots, -1), k, n = 0, \ldots, D. \end{cases}$$

(23)

In terms of these matrices the equation (22) takes the form

$$\tilde{P}_n \Gamma^n \tilde{G}_c(x, y) = \delta^D(x - y), \quad \tilde{P}_n = i\partial_n - gA_\mu \left(x^\mu + \frac{i}{2} \theta^{\mu \nu} \partial_\nu \right), \quad \tilde{P}_D = -m.$$

(24)
Now again, similar to (8), we present $\tilde{G}^c(x,y)$ as a matrix element of an operator \hat{G}^c (in the coordinate representation (10),

$$\tilde{G}^c_{ab}(x,y) = \langle x | \hat{G}^c | y \rangle, \quad a, b = 1, 2, \ldots, 2^d,$$

(25)

where the spinor indices a, b are written here explicitly for clarity and will be omitted hereafter. The equation (24) implies $\tilde{S}^c = (\Pi_a \Gamma^a)^{-1}$, where Π_a are defined in (11), and $\Pi_D = -m$. Using a generalization of the Schwinger proper-time representation, proposed in [12], we write the Green function (25) in the form

$$\tilde{G}^c = \tilde{G}^c(z_{out}, z_{in}) = \int_0^\infty d\lambda \int (z_{out} | e^{-i\tilde{H}(\lambda, \chi)} | z_{in}) d\chi,$$

(26)

$$\tilde{H}(\lambda, \chi) = \lambda \left(m^2 - \Pi^2 + \frac{i}{2} F_{\mu\nu} \Gamma^\mu \Gamma^\nu \right) + \Pi_a \Gamma^a \chi.$$

Similar to [12], we present the matrix element entering in the expression (26) by means of a Hamiltonian path integral

$$\tilde{G}^c = \exp \left(i \Gamma^\mu \frac{\partial}{\partial x^\mu} \right) \int_0^\infty d\lambda \int d\chi \int D\lambda \int D\chi \int_{z_{in}}^{z_{out}} D\tau \int D\psi \int D\chi \exp \left\{ i \int_0^\infty \left[\lambda \left(m^2 + 2i g F_{\mu\nu} \psi^\mu \psi^\nu \right) + 2i F_{\mu\nu} \psi^\mu \chi \right.
ight.$$

$$- i \psi_{\nu} \psi^\nu + p_{\mu} \psi^\mu + \pi \lambda + \nu \chi] d\tau + \psi_{\nu}(1) \psi^\nu(0)) \right\}_{\lambda = 0}.$$ (27)

Here ψ^n are odd variables, anticommuting with the Γ-matrices,

$$\frac{\partial}{\partial x^\mu} = -d^\mu, \quad F_{\mu\nu} = F_{\mu\nu}^* \left(x^\mu - \frac{1}{2\hbar} \theta^{\mu\nu} p_{\nu} \right),$$

the function $F_{\mu\nu}(q)$ is defined in (12), and the integration goes over even trajectories $x(\tau), p(\tau), \lambda(\tau), \pi(\tau)$, and odd trajectories $\psi_{\nu}(\tau), \chi(\tau), \nu(\tau)$, parametrized by some invariant parameter $\tau \in [0, 1]$ and obeying the boundary conditions $x(0) = x_{in}, x(1) = x_{out}, \lambda(0) = \lambda_0, \chi(0) = \chi_0$.

Performing the change of variables (16) in (27), we obtain another representation for \tilde{G}^c,

$$\tilde{G}^c = \exp \left(i \Gamma^\mu \frac{\partial}{\partial x^\mu} \right) \int_0^\infty d\lambda \int d\chi \int D\lambda \int D\chi \int_{-\infty}^{\infty} Dp \int Dq \int D\tau \int D\psi \exp \left\{ i \left[S_{spin-part}^\theta + S_{GF} \right] + \psi_{\nu}(1) \psi^\nu(0) \right\}_{\lambda = 0},$$

where

$$S_{spin-part}^\theta = \int_0^1 \left[\lambda \left(\left(p_{\mu} + g A_{\mu} \right)^2 - m^2 + 2i g F_{\mu\nu} \psi^\mu \psi^\nu \right) + 2i (p_{\mu} + g A_{\mu}(q)) \psi^\mu \pi \chi \right.$$

$$- 2i m \psi \pi - i \psi_{\nu} \psi^\nu + p_{\mu} \psi^\mu + \frac{1}{2\hbar} \pi \psi \theta^{\mu\nu} p_{\nu} \right] d\tau,$$

(29a)

$$S_{GF} = \int_0^1 \left(\pi \lambda + \nu \chi \right) d\tau.$$

(29b)

3 Pseudoclassical action of spinning particle in noncommutative space time

Similar to the spinless case, the exponent in the integrand (28) can be considered as an effective and non-degenerate Hamiltonian action of a spinning particle in the noncommutative space time. It consists of two principal parts. The first one S_{GF} with derivatives of λ and χ can be treated as a gauge fixing term, which corresponds to gauge conditions $\dot{\lambda} = \dot{\chi} = 0$. The rest part $S_{spin-part}^\theta$ can be treated as a gauge invariant
action of a spinning particle in the noncommutative space time. The action \(S_{\text{spin-part}}^{(2)} \) is a \(\theta \)-modification of the Hamiltonian form of the Berezin-Marino action [14]. It will be studied and quantized below to justify such an interpretation.

One can easily verify that \(S_{\text{spin-part}}^{(2)} \) is reparameterization invariant. Explicit form of supersymmetry transformations, which generalize ones for the Berezin-Marino action, is not so easily to derive. Their presence will be proved in an indirect way. Namely, we are going to prove the existence of two primary first-class constraints in the corresponding Hamiltonian formulation.

Let us consider \(S_{\text{spin-part}}^{(2)} \) as a Lagrangian action with generalized coordinates \(Q_A = (q^\mu, p_\mu) \), \(A = (\zeta, \mu) \), \(\zeta = 1, 2 \), \(Q_{1\mu} = q^\mu \), \(Q_{2\mu} = p_\mu \); \(X, \psi \), and \(\lambda \), and let us perform a Hamiltonization of such an action. To this end, we introduce the canonical momenta \(P \) conjugate to the generalized coordinates as follows:

\[
\begin{align*}
P_{Q_A} &= \frac{\partial L}{\partial \dot{Q}^A} = J_A(Q), \quad J_{1\mu} = p_\mu, \quad J_{2\mu} = \frac{1}{2\hbar} \partial_{\mu\nu} p_\nu, \\
P_\lambda &= \frac{\partial L}{\partial \dot{\lambda}} = 0, \quad P_X = \frac{\partial L}{\partial \dot{X}} = 0, \quad P_\lambda = \frac{\partial L}{\partial \dot{\psi}_n} = -i\psi_n.
\end{align*}
\]

(30)

It follows from equations (30) that there exist primary constraints \(\Phi^{(1)} = 0 \),

\[
\Phi^{(1)} = \left\{ \begin{array}{l}
\Phi^{(1)}_{A;1} = P_A - J_A(Q), \\
\Phi^{(1)}_{x;1} = P_x, \\
\Phi^{(1)}_{\lambda;1} = P_\lambda + i\psi_n.
\end{array} \right.
\]

(31)

The Poisson brackets of primary constraints are

\[
\{\Phi^{(1)}_{A;1}, \Phi^{(1)}_{B;1}\} = \Omega_{AB} = \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}, \quad \{\Phi^{(1)}_{\alpha;1}, \Phi^{(1)}_{\beta;1}\} = 2\theta_{\alpha\beta}.
\]

(32)

where \(\theta = \theta^{\mu\nu} \), \(\theta \) is a \(D \times D \) unit matrix, and 0 denotes an \(D \times D \) zero matrix. Note that \(\det \Omega_{AB} = 1 \), and

\[
\Omega_{AB}^{-1} = \begin{pmatrix}
\theta / \hbar & -1 \\
1 & 0
\end{pmatrix}.
\]

Now we construct the total Hamiltonian \(H^{(1)} \), according to the standard procedure [19]. Thus, we obtain:

\[
H^{(1)} = H + \lambda_1 \Phi^{(1)}_1,
\]

\[
H = -\lambda \left[(p_\mu + gA_\mu)^2 - m^2 + 2igF^\alpha_{\mu\nu}(q) \psi^\alpha \psi^\nu \right] + 2i\chi \left[(p_\mu + gA_\mu) \psi^\alpha - m \psi^D \right].
\]

(33)

where \(\lambda_1 \) The consistency conditions \(\Phi^{(1)}_{A;4,\alpha} = \left(\Phi^{(1)}_{A;4,\alpha}, H^{(1)} \right) = 0 \) for the primary constraints \(\Phi^{(1)}_{A;1} \) and \(\Phi^{(1)}_{x;1} \) allow us to fix the Lagrange multipliers \(\lambda_1^{\alpha} \) and \(\lambda_2^{\alpha} \). The consistency conditions for the constraints \(\Phi^{(1)}_{2;1} \) imply secondary constraints \(\Phi^{(2)}_{1;1} = 0 \),

\[
\Phi^{(2)}_1 = (p_\mu + gA_\mu) \psi^\alpha - m \psi^D = 0,
\]

(34)

\[
\Phi^{(2)}_2 = (p_\mu + gA_\mu)^2 - m^2 + 2igF^\alpha_{\mu\nu} \psi^\alpha \psi^\nu = 0.
\]

(35)

Thus, the Hamiltonian \(H \) appears to be proportional to constraints, as always in the case of a reparametrization invariant theory,

\[
H = 2i\chi \Phi^{(2)}_1 - \lambda \Phi^{(2)}_2.
\]

No more secondary constraints arise from the Dirac procedure, and the Lagrange multipliers \(\lambda_1^{\alpha} \) and \(\lambda_2^{\alpha} \) remain undetermined, in perfect correspondence with the fact that the number of gauge transformations parameters equals two for the theory in question.

One can go over from the initial set of constraints \((\Phi^{(1)}, \Phi^{(2)}) \) to the equivalent one \((\Phi^{(1)}, T) \), where:

\[
T = \Phi^{(2)}_1 + \frac{\partial \Phi^{(2)}_2}{\partial \psi^\alpha} \omega^{AB} \Phi^{(1)}_{AB} + \frac{i}{2} \frac{\partial \Phi^{(2)}_2}{\partial \psi^\alpha} \Phi^{(1)}_{\alpha\beta}.
\]

(36)
The new set of constraints can be explicitly divided in a set of first-class constraints, which is \(\left(\Phi_{1,1}^{(1)}, T \right) \) and in a set of second-class constraints, which is \(\left(\Phi_{2,1}^{(1)}, \Phi_{4,1}^{(1)} \right) \).

Now we consider an operator quantization. To this end we perform a partial gauge fixing, imposing gauge conditions \(\Phi_{2,1}^{G} = 0 \) to the primary first-class constraints \(\Phi_{2,1}^{(1)} \),
\[
\Phi_{2}^{G} = \chi = 0, \quad \Phi_{2}^{G} = \lambda = 1/m. \tag{37}
\]

One can check that the consistency conditions for the gauge conditions (37) lead to fixing the Lagrange multipliers \(\lambda_2 \) and \(\lambda_3 \). Thus, on this stage we reduced our Hamiltonian theory to one with the first-class constraints \(T \) and second-class ones \(\psi = (\Phi^{(1)}, \Phi^{G}) \). Then, we apply the so called Dirac method for systems with first-class constraints [20], which, being generalized to the presence of second-class constraints, can be formulated as follows: the commutation relations between operators are calculated according to the Dirac brackets with respect to the second-class constraints only; second-class constraints as operators equal zero; first-class constraints as operators are not zero, but, are considered in sense of restrictions on state vectors. All the operator equations have to be realized in a Hilbert space.

The subset of the second-class constraints \(\left(\Phi_{2,3}^{(1)}, \Phi_{3,3}^{(1)} \right) \) has a special form [19], so that one can use it for eliminating of the variables \(\lambda, P_{\lambda}, \chi, P_{\chi} \), from the consideration, then, for the rest of the variables \(q, p, \psi \), the Dirac brackets with respect to the constraints \(\psi \) reduce to ones with respect to the constraints \(\Phi_{1,1}^{(1)} \) and \(\Phi_{4,1}^{(1)} \) only and can be easy calculated,
\[
\{ Q^A, Q^B \}_{D(\Phi^{(1)})} = \omega^{AB}, \quad \{ \psi^n, \psi^m \}_{D(\Phi^{(1)})} = \frac{i}{2} \eta^{nm}, \]

while all other Dirac brackets vanish. Thus, the commutation relations for the operators \(\hat{q}^\mu, \hat{p}_\mu, \hat{\psi} \), which correspond to the variables \(q^\mu, p_\mu, \psi \) respectively, are
\[
[\hat{q}^\mu, \hat{p}_\nu]_+ = i \hbar \delta^\mu_\nu, \quad [\hat{q}^\mu, \hat{\psi}]_+ = i \hbar \omega^{\mu\nu} \hat{\psi}_\nu, \quad [\hat{p}_\mu, \hat{\psi}]_+ = 0, \]
\[
[\hat{\psi}^m, \hat{\psi}^n]_+ = i \{ \psi^m, \psi^n \}_{D(\Phi^{(1)})} = -\frac{i}{2} \eta^{mn}. \tag{38}
\]

Besides, the following operator equations hold:
\[
\hat{\Phi}_{1,1}^{(1)} = \hat{P}_A - j_A \left(\hat{Q} \right), \quad \hat{\Phi}_{4,1}^{(1)} = \hat{P}_n + i \hat{\psi}_n = 0. \tag{39}
\]

Taking that into account, one can construct a realization of the commutation relations (38) in a Hilbert space whose elements \(\Psi \) are \(2^d \)-component columns dependent only on \(x \), such that
\[
\hat{q}^\mu = \left(x^\mu + \frac{i}{2} \gamma^\mu_\nu \partial_\nu \right) I, \quad \hat{p}_\mu = -i \partial_\mu I, \quad \hat{\psi}^n = \frac{i}{2} \Gamma^n, \tag{40}
\]
where \(I \) is \(2^d \times 2^d \) unit matrix, and \(\Gamma^n \), are gamma-matrices (23). The first-class constraints \(\hat{T} \) as operators have to annihilate physical vectors; in virtue of (39) and (36) that implies the equations:
\[
\hat{\Phi}_{1,2}^{(2)} \Psi = 0, \quad \hat{\Phi}_{4,2}^{(2)} \Psi = 0, \tag{41}
\]
where \(\hat{\Phi}_{1,2}^{(2)} \) are operators, which correspond to constraints (34), (35). Taking into account the realizations of the commutation relations (38), one easily can see that the first equation (41) takes the form of the \(\theta \)-modified Dirac equation,
\[
\left(\hat{P}_\mu \gamma^\mu - m \gamma^{D+1} \right) \Psi = 0 \iff (\hat{P}_\mu \gamma^\mu + m) \Psi = 0, \tag{42}
\]

Since \(\hat{\Phi}_{2,2}^{(2)} = \left(\hat{\Phi}_{1,2}^{(2)} \right)^2 \), the second equation (41) is a consequence of the first one.

Thus, we have constructed a \(\theta \)-modification of the Berezin-Marinov action (29a) which, being quantized, leads to a quantum theory based on the \(\theta \)-modified Dirac equation.

Note that space-time non-commutativity \([\hat{q}^\mu, \hat{q}^\nu] = i \theta^{\mu\nu} \) can be obtained also from the canonical quantization of the conventional Lagrangian action of a relativistic spinless particle by imposing a special gauge condition \(\Phi_{A} = x^\mu + \theta^{\mu}_\nu p_\nu - \tau = 0 \), see [21].
4 Path integral in nonrelativistic quantum mechanics on a noncommutative space

In this section, we construct a path integral representation for the propagation function (a symbol of the evolution operator) in nonrelativistic QM on a noncommutative space. We compare our result with some previous constructions and use it to extract a θ-modified first-order classical Hamiltonian action for such a system.

We consider a d-dimensional nonrelativistic QM with basic canonical operators of coordinates \hat{q}^k, momenta \hat{p}_j, $k, j = 1, \ldots, d$ that obey the following commutation relations

$$[\hat{q}^k, \hat{p}_j] = i\hbar \delta^k_j, \quad [\hat{q}^k, \hat{q}^l] = i\hbar \delta^k_l, \quad [\hat{p}_k, \hat{p}_j] = 0. \quad (43)$$

It is supposed that the nonzeroth commutation relations for the coordinate operators in (43) have emerged from the noncommutative properties of the position space. The time evolution of the system under consideration is governed by a self-adjoint Hamiltonian \hat{H}. We believe that behind such a QM there exist a classical theory which is going to restore in what follows, such that a quantization of this action leads to the QM.

In conventional nonrelativistic QM, one constructs a path integral representations for matrix elements (in a coordinate representation) of the evolution operator $\hat{U}(t, t')$. In the QM under consideration, we also start with such an operator. It obeys the Schrödinger equation and for time independent \hat{H} (which we consider for simplicity in what follows) has the form

$$\hat{U}(t', t) = \exp \left\{-\frac{i}{\hbar} \hat{H} (t' - t) \right\}. \quad (44)$$

Since the coordinate operators \hat{q} do not commute, they do not possess a common complete set of eigenvectors. Therefore, there is no q-coordinate representation and one cannot speak about matrix elements of the evolution operator in such a representation. Consequently, one cannot define a probability amplitude of a transition between two points in the position space. Nevertheless, one can consider another types of matrix elements of the evolution operator that are probability amplitudes (evolution functions) and can be represented via path integrals. Below, we consider two types of such matrix elements,

$$G_p = \langle p_{out} \mid \hat{U} (t_{out}, t_{in}) \mid p_{in} \rangle \quad \text{and} \quad G_x = \langle x_{out} \mid \hat{U} (t_{out}, t_{in}) \mid x_{in} \rangle. \quad (45)$$

In (45) $|p\rangle$ is a complete set of eigenvectors of commuting operators \hat{q},

$$\hat{p}_j |p\rangle = p_j |p\rangle, \quad \langle p | p' \rangle = \delta (p - p'), \quad \int |p| < p dp = I, \quad dp = \prod_i dp_i,$$

$$\langle p | x \rangle = \frac{1}{(2\pi\hbar)^{d/2}} \exp \left\{-\frac{i}{\hbar} \oint p_i x_i \right\}, \quad \langle p | x | p' \rangle = i\hbar \frac{\partial}{\partial p} \langle p | p' \rangle,$$

and $|x\rangle$ is a complete set of eigenvectors of some commuting and canonically conjugated to \hat{p} operators \hat{x}^k. We chose these operators as follows:

$$\hat{x}^k = \hat{q}^k + \frac{\theta \hat{p}_j \hat{p}_j}{2\hbar}, \quad [\hat{x}^k, \hat{x}^l] = 0, \quad [\hat{x}^k, \hat{p}_j] = i\hbar \delta^k_j,$$

$$\hat{x}^k |x\rangle = x^k |x\rangle, \quad \langle x | y \rangle = \delta^D (x - y), \quad \int |x| dx = I, \quad dx = \prod_i dx_i. \quad (47)$$

First, let us construct a path integral representation for the evolution function G_p. To this end, as usual, we divide the time interval $T = t_{out} - t_{in}$ in N equal parts $\Delta t = T/N$ by means of the points $t_k, k = 1, \ldots, N - 1$, such that $t_0 = t_{out} + k\Delta t$. Using the group property of the evolution operator and the completeness relation (see (46)) for the set $|p\rangle$, one can write

$$G_p = \lim_{N \to \infty} \int_{-\infty}^{\infty} dp^{(1)} \ldots dp^{(N-1)} \prod_{k=1}^{N} \langle p^{(k)} | \exp \left\{-\frac{i}{\hbar} \hat{H} (t_k - t_{k-1}) \right\} | p^{(k-1)} \rangle, \quad (48)$$

\footnote{For the first time the commuting operators \hat{x}^k were introduced in [4].}
where \(p^{(0)} = p^{(n)} \), \(p^{(N)} = p^{(out)} \), and \(p^{(k)} = p^{(k)}_1 \). Bearing in mind the limiting process \(N \to \infty \) or \(\Delta t \to 0 \) and using the completeness relation (47) for the eigenvectors \(|x\rangle \), one can approximately calculate the matrix element from (48),

\[
< p^{(k)} | \exp \left\{ \frac{i}{\hbar} \hat{H} \Delta t \right\} | p^{(k-1)} > \approx \int dx^{(k)} | p^{(k-1)} > \left[1 - \frac{i}{\hbar} \hat{H} \Delta t | x^{(k)} > \right] < x^{(k)} | p^{(k-1)} > ,
\]

(49)

where \(x^{(k)} = \left(x^{(k)}_i \right) \) and \(dx^{(k)} = \prod_i dx^{(k)}_i \). A result of this calculation can be expressed in terms of a classical Hamiltonian \(\hat{H} \), however, in general case, it will depend on the choice of the correspondence rule between the classical function and quantum operator. For our calculations we choose the Weyl ordering. In this case the matrix element (49) will take the form

\[
\int \frac{dx^{(k)}}{(2\pi \hbar)^d} \exp \left\{ \frac{i}{\hbar} \left[-x^i \frac{p_i^{(k)}}{\Delta t} - \hat{H} \left(x^{(k)} - \frac{\theta p^{(k)\prime}}{2\hbar}, p^{(k)\prime} \right) \right] \Delta t + O (\Delta t^2) \right\} ,
\]

where \(p^{(k)\prime} = \frac{\partial p^{(k-1)}}{\partial x^{(k-1)}} \), and \(\hat{H} \left(x - \frac{\theta p}{2\hbar}, p \right) \) is the Weyl symbol of the operator \(\hat{H} \). Using the above formula and taking the limit \(N \to \infty \) in the integral (48), we get for \(G_p \) the following path integral representation:

\[
G_p = \int \frac{p^{(out)}}{p^{(in)}} \int Dx \exp \left\{ \frac{i}{\hbar} \int dt \left[-x^j \frac{p_j}{\Delta t} - \hat{H} \left(x - \frac{\theta p}{2\hbar}, p \right) \right] \right\} .
\]

(50)

In the same manner, one can construct a path integral representation for the evolution function \(G_x \), which, is

\[
G_x = \int Dp \int x^{(out)} \int Dx \exp \left\{ \frac{i}{\hbar} \int dt \left[p_j \dot{x}^j - \hat{H} \left(x - \frac{\theta p}{2\hbar}, p \right) \right] \right\} .
\]

(51)

Let us pass to the integration over trajectories \(q = x - \frac{\theta p}{2\hbar} \) in path integrals (50) and (51). Then we get

\[
G_x = \int Dp \int x^{(out)} - \frac{\theta p}{2\hbar} \int Dq \exp \left\{ \frac{i}{\hbar} S^\theta \right\} ,
\]

(52)

\[
G_p = \int Dp \int Dq \exp \left\{ \frac{i}{\hbar} \tilde{S}^\theta \right\} ,
\]

(53)

where

\[
S^\theta \right\} = \int dt \left[p_j \dot{q}^j - \hat{H} \left(q, p \right) + \frac{\theta p_j \theta^i \theta^m p_i}{2\hbar} \right] ,
\]

(54)

\[
\tilde{S}^\theta \right\} = \int dt \left[-q_j \dot{p}^j - \hat{H} \left(q, p \right) - \frac{\theta^2 q_j \theta^i \theta^m p_i}{2\hbar} \right] .
\]

(55)

One ought to stress that the actions \(S^\theta \) and \(\tilde{S}^\theta \) differ by a total time derivative.

The path-integral (52) is a generalization of the result obtained in [8] for arbitrary nonrelativistic system and without any restrictions on the matrix \(\theta \). One ought to say that path integrals on noncommutative plane for matrix elements of the evolution operator in coherent state representations were studied in [10] and [11]. They have specific forms which is difficult to compare with our results.

In the conventional "commutative" nonsingular QM the action \(S^\theta \) (at \(\theta = 0 \)) is just the Hamiltonian action of the classical system under consideration. The canonical quantization of this action reproduces the initial QM of the system. In the noncommutative case this action is modified by a new term \(\theta p \theta^i \theta^m p_i / 2\hbar \). One can treat the action (54) as a the \(\theta \)-modified Hamiltonian action of the classical system under consideration (see the Introduction). This interpretation can be justified by the canonical quantization of the action, see [15].
References

