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Abstract

The construction of §-local superfield Lagrangian BRST quantization in non-Abelian hypergauges for
generic gauge theories based on the action principle is examined in the case of reducible local superfield
models {LSM) on the basis of embedding a gauge theory into a special §-local superfield model with anti-
symplectic constraints and a Grassmann-odd time parameter 8. We examine the problem of establishing a
new correspondence between the odd-Lagrangian and odd-Hamiltonian formulations of a local LSM in the
case of degeneracy of the Lagrangian description with respect to derivatives over @ of generalized classical
superfields A7 (#). We alsa reveal the tols of the nilpotent BRST-BFV charge for a formal dynamical system
corresponding to the BV-BEFV dual description of an LSM.

1 Introduction

Local superfield Lagrangian BRST quantization [1] was originally proposed for irreducible gauge theories and
Abelian hypergauges [2], which introduce the gauge-fixing procedure following the BV method [3}, and then
extended to arbitrary gauge models in reducible non-Abelian hypergauges of finite stage of reducibility [4].
The quantization rules [1] combine, in terms of superfields, a generalization of the “first-level” Batalin-Tyutin
formalism [5] (the case of reducible hypergauges is examined in [6]) and a geometric realization of BRST
transformations [7, 8] in the particular case of -local superfield models (LSM) of Yang—Mills-type. The concept
of an LSM [1, 2, 4], which realizes a trivial relation between the even ¢ and odd § components of the object
x = (t,8) called supertime [9], unlike the nontrivial interrelation realized by the operator D = 93 4 88; in the
Hamiltonian superfield N = 1 formalism [10] of the BFV quantization [11], provides the basis for the method of
local quantization [1, 2, 4] and proves to be fruitful in solving a number problems that restrict the applicability
of the functional superfield Lagrangian method [12] to specific gauge theories. The idea of an LSM makes it
possible to obtain an odd-Lagrangian and odd-Hamiltonian form of the classical master equation as a condition
that preserves a f-local analogue of the energy by virtue of Noether's first theorem with respect to the evolution
along the variable #, defined by superfield extensions of the extremals for an initial gauge model, i.e., by odd-
Lagrangian (L.3) and odd-Hamiltonian (HS) systems. The concept of an LSM provides an inclusion of the dual
BV-BFV description [13, 14] of a reducible gauge theory in terms of a BRST charge for formal topological
dynamical systems (i.e., systems without a definite time parameter) subject to first-class constraints of higher-
stage reducibility in the problem of embedding a gauge algebra of a special reducible LSM into that of a general!
LSM. Finally, the idea of an LSM proves to be an adequate extension of a usual gauge model in a superfield
construction of the quantum action as a superfield analogue of the Koszul-Tate complex resolution [15, 16] in
Lagrangian formalism on the basis of interpreting the reducibility relations as special gauge transformations of
ghosts transformed into a unique 6-integrable odd HS.

Along the lines of our previous works, we consider it an interesting task to solve two of the problems
mentioned in the conclusion of the first paper of Ref. [1]. The first problem is that of establishing a different
(from the one given by a Legendre transformation [1, 2, 4]) correspondence between the odd-Lagrangian and
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Lan LSM of a general type, unlike an LSM of a special type, contains the operator Jp = Bé = d/df in the structure functions
of the gauge algebra.




odd-Hamiltonian formulations of an L.SM in the case of degeneracy of the Lagrangian description with respect
to derivatives over @ of generalized classical superfields A(8), ie., Dol (#). The second problem is to reveal
the role of the nilpotent BRST-BFV charge for a formal dynamical system corresponding to the BV-BFV dual
description of an LSM.

We devote this paper to the solution of the following problems:

1. A construction of an odd-Hamiltonian formulation for an LSM starting from an odd Lagrangian in the
case of a degenerate Hessian supermatrix ||{Sf}rs|/(8) of Refs. [1, 2, 4] as the supermatrix of second
derivatives of the Lagrangian classical action, S{#) = SL(A(9), 8s.4(8),8), with respect to odd velocities
(89A!,85.47) (8) on the basis of Dirac’s algorithm in terms of a 6-local antibracket.

2. An application of the BFV method [11] to a construction of formal counterparts of the BFV-BRST
charge, gauge fermion and unitarizing Hamiltonian of a #-local field theory in terms of a f-local Dirac’s
antibracket, reflecting, in view of general gauge invariance, the presence of a subsystem of second-class
constraints among all of the antisymplectic constraints.

3. Establishing a correspondence between the resulting odd-Hamiltonian formulation of an LSM with the
BV quantum action for the gauge model corresponding to an LSM.

The paper is organized as follows. In Section 2, we apply Dirac’s algorithm [17] to realize an odd Hamiltoniza-
tion of a Lagrangian degenerate LSM, being an extension of a usual model of classical fields A%, i = 1,...,n =
ny—+n_, on a configuration space M., to a §-local theory defined on an odd tangent bundle T, 34 Mc1, = I M1,
= {A, 8, AT}, I=1,...,N=Ny +N_, (ny,n_) < (N, N_) with N4, (N_) bosonic (fermionic) superfields.
The generalized classical superfields A7(8), AT(8) = A’ + M@, parameterize the base Mo (Ma € Mer)
of the bundle IT M¢r, and transform with respect to a J-superfield representation 7" of the direct product
of supergroups J,P: J = J x P, P = exp(ippe)} [1, 2, 4], with J chosen as a spacetime SUSY group?, and
i, pg being the respective nilpotent parameter and generator of #-shifts. The non-Lorentz [18] character of
superfields A(0) defined on M = {(z™,6)} = {25}, 2™ C ¢ C I, is reflected by a possible inclusion in their
spectrum of additional (besides .A*(6)) superfields corresponding to the ghosts of the minimal sector in the BV
quantization scheme [3]. In Section 3, following the BFV prescription, we construct f-local counterparts of the
ghosts on the basis of a complete system of antisymplectic constraints and a Hamiltonian action Sy, (8) defined
on IIT* Mep, = {AI \ A}}, a bosonic BRST charge Sq(#), a unitarizing Hamiltonian action Sy (#), and a gauge
fermion Fiy(6). We specify to the case of a singular LSM a derivation of Lagrangian and Hamiltonian master
equations from Noether’s first theorem [19] applied to #-shifts, and establish a relation between the complete
Hamiltonian action, Su(8) = Su(8) + (Sa(0), Fu(6)),p, constructed via f-local Dirac’s antibracket, and the
quantum action of the BV methed [3].

We mostly follow the conventions of Refs. [1, 4] based on DeWitt’s condensed notation {20} and distinguish

between two types of superfield derivatives: the right (left) derivative b (@) /ore(8) (3.77 (8)/01" (9)) of a

function F(8) for a fixed ¢, and the right (left) variational derivative ‘Lc-SMF/cS@A(G) (?F/ 6@*"(9)) of a functional

F. In the same manner, superfield right {left) covariant derivatives with respect to a superfield I'?(6) are denoted
—

by ‘ﬁp(ﬂ)F (Vp (VF ) for a fixed @, and variational derivatives are denoted by 5;0 (F (_5?, (G)F). Derivatives

- with respect to super{anti)fields and their components are understood as acting from the right (left), for instance,
d/8X% or 8/d®4(8); in the opposite case we use arrows “—” (“—") for left (right) differentiation. For right-
hand derivatives with respect to A7(8) for a fixed 8, we use the notation F,y (§) = 8F(8)/8A1(0). Asin [L, 4],
following the definitions of Refs. [21, 22], a smooth supersurface 3Y, is parameterized by local coordinates 2(4),
and the rank of an even §-local supermatrix |G(#)| with Zy-grading £ is characterized by a pair of numbers
m = (my,m_): rank|G(0)]| = rank]|G(0)[|, dimE = dim¥|,_, with ¥|,_, parameterized by 2*(0). We
characterize the property of a quantity F to be bosonic or fermionic by a triplet of Zs-gradings, €= {ep,e7,¢€),
50 that the basic Grassmann parity €, according to {1, 2, 4], is given by the sum, € = £ 542 p, of Zy-gradings e 7,
£p, being the Grassmann parities of coordinates of the corresponding representation spaces of supergroups.J, P.

2In the case of a nontrivial relation between the # and #-components of supertime y by means of the operator D = 8 + 88,
[, D)4 = 284, as the generator of the supergroup J, an adequate realization of J, whose quotient is the superspace M, is made
possible in terms of (non(super)commutative with each other) J and Putriv = exp(inD) by analogy with the construction of a
simple SUSY group.

3In the infinite-dimensional case, the concept of dimension has to be clarified; for a vector bundle N7 — ./DT, itis for-
mally understood that dim A is the dimension of thefiber ng over an arbitrary p € M.




2 Classical Formulation of a Degenerate #-local Superfield Model

In order to provide an equivalent description of a general LSM degenerate with respect to superfields (89.%1)1 (&
in odd-Lagrangian and odd-Hamiltonian formulations, we consider a procedure of the odd Hamiltonization
of a Lagrangian LSM that preserves J-covariance. Using these results, in the next section we will apply the
BEFV-BRST approach in order to construct from the odd Hamiltonian formulation of an LSM a complete
Hamiltonian action Sy(f#) and extend the BV~-BFV dual description inherent in the #-local approach to the
case of a degencrate LSM. We will also establish a relation with the quantum action of the BV method for the
physical gauge model contained in an LSM.

2.1 Odd-Lagrangian Formulation

Let us recall that the Lagrangian formulation (based on the variational principle) of an L,-stage reducible LSM
of generalized classical superfields A(8), &(AT) = ((ep)1,(e7)1,€1) = £, is defined by a Lagrangian action
51, MTMer x {8} — A1(8;R), being a C°°(IIT Moy )-function taking its values in a real Grassmann algebra
A1(8;R), and (independently) by a functional Zr,[.A], whose 8-density is defined with accuracy up to an arbitrary
£-bosonic function f({A, 85.4)(8),8) € ker{dy},

Zy,[A] = 855L(0), &(Z1) = £(6) = (1,0,1), &(S1) =G, (2.1)

invariant with respect to general gauge transformations, 6,47(8) = [ d6oR_(8;00)67 (), €% € C* (M),
5(6“4“) = 5,40, Ag=1, cy My = MD+ + Mp_:

?ZL [A]

% SAL(B)

RL, (8;60) = 0, for rank ”E’J(e) (Ze)s.0)]| oo =N-Hy, (2.2)

with a superfield Fuler-Lagrange derivative <E;(t?) that determines LSM dynamics and (on the assumption of
locality and J-covariance) with functionally dependent generators 'R,IAD (8;60)

S [ o o Fl e B
FAI@) [&41(9) = (1) aem] S1(0) = L£L1(8)5L(8) =0, (2.3)
R (6;60) = Z((ae)’“s(a_eo)) Rl (A, 80.4)(8),6) for rank | S~ Ryly (0) 00| =M1 <M. (2.4)
k20 k20 LS, =0

The dependence of ’f%f% (6; 60) implies an existence {on solutions of the odd LS (2.3)) of proper zero-eigenvalue
eigenvectors, ﬁj‘: (A(Fo), B9, A(8g), 6p; 81), with a structure similar to 7:’,:10 (0;60) in (2.4), which exhaust the

zero-modes of the generators and are dependent in case rank H 3ok 2;&‘1’ (60) (84, )" ”2 = My—M_1 < M;. Thus,
a general Lg-reducible LSM is defined by the reducibility relations, for s = 1,..., Ly, As =1, ..., My = My +M,_,

f d0' 2422 (0,58 2501 (6'56,) = f 4oL (00557 (A, B6.A)(84-2), 64-2,6365)

[y

§—

Z(_l)kﬂs—k—2 < M1,

rank ”Zpo ij::f (Bs-2) (assfg)k” =
> k=0

L SL=0
LQ

J— e
= (-1)"Myp,_g-1=Mg,,
Ly 57,=0 k=0

rank

ZkZO 2kiij‘"i(9_[,g_1) (BeLgul)k

EEAT) = Eay s +Ea, +(1,0,1), 2474 (0-1;00) = Rl (6_160),
Lj;”(a_l,a’; t1) = KL (0_1,08,) = —(—1)E+DE+03I @ 01 8,). (2.5)

For L, =0, the LSM is an irreducible general gauge theory.

Due to the J-scalar nature of Zi[A] it is only S.(f), amang the objects Sp(#) and Zy[A] invariant under
the action of a J-superfield representation 7 restricted to J, T 7. that transforms nontrivially with respect to
the total representation T under A (8) — A'1(8) = (T|; A (68 — n),

5SL(0) = St, (A'(8), 5o A'(6),8) — SL(8) = —p [5’/89 + Py (8)(8s1) (9)] S1.(6). (29
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Hq. (2.6) is written [1, 2, 4] in terms of the nilpotent operator (35U)(8) = 8547 (6)B /OA(8) = (35, U (6))_,
ue) = P1AI(9)5)/6AI(9), by means of projectors onto C®(TIT™Mcr) x {8} {Pa(8) = Suo(l — 68p) +
64108, a = 0,1}. The superfield Euler-Lagrange equations (2.3) are equivalent (in view of 82.4/(8) = 0) to an
odd LS characterized by 2V formally second-order differential equations in 8,

El FSL0) _ o
010 = (17 (5000 - [ 30 4 iz 0] ) - 29)

so that the subset of formal equations (2.7) does not affect LSM dynamics, in particular, identities (2.2) and
relations (2.5); however, it determines, depending on the (non)degeneracy of the supermatrix |[(S7)rs(6)||, a pos-
sibility of presenting LS (2.3) in the normal form. The Lagrangian constraints (2.8), ©7(8) = ©1((A, 8:.4)(8), 6)
are functionally dependent as first-order equations in 8, restricting the setting of the Cauchy problem for the
LS, and thus determine the general gauge algebra of an LSM by Egs. (2.2)-(2.5).

For an LSM which enables one to represent St (6) in the form of a natural system in usval classical mechanics,
S1{0) =T (39.A(68)) — 5 {A(9),9), the functions B4(8), () € O (Mcy, x {0}) are given by the relations

©r(8) = —5,1 (A(8),8) (-1)* =0, (2.9)

being, for 4 = 0, the extremals of the functional Sp(Ad) = §(A(0),0), So(A4) € O (Mcr), Mcon = Mecw|e=o-
Relations (2.2) and (2.5) assume the standard (in case & = 0) form of the relations of a special gauge algebra with
linearly dependent generators Ro% (A(6),6) of special gauge transformations, 6.47(8) = Rol,, (A(6), 8 &0 (6),
that leave invariant only S(9), in contrast to T(8),

.1 (A(8),6) Roly, (A(6),8) =0, forrank ||S,r5 (A(0), 0I5, (gy=0 = N — M1, (2.10)
ZTH(A(G), ) 2457 (A(6),6) = 5,5 ()L 7 (A(6),8), E(Z4°7) = Ea,_, +E.,
(Zju_l’LAl_ ) = (Rok, X)), KL = — (1) 5, (2.11)

in the rank conditions for the special zero-eigenvalue eigenvectors Zi:’l (8):

k“ZAS : = M. o 5=0,.,L,—1. 2.12
ran 811820 g( 1)* k1 < Mg, 5= (2.12)
In case rank HZALQ ! srirms = Eﬁio(—l)kﬂerq = My,, an LSM defined by relations (2.10), (2.11) is

called a special gauge theory of L,-stage reducibility.
The special gauge algebra of this LSM is #-locally embedded into the gauge algebra of a general gauge theory
with the functional Z;.[A] = (8,T — S)(8), which leads to a relation between the eigenvectors,

20 A(Bs=1), 513 05) = 8(85 — 85_1) 24" (A(8s=1), B5—1), (2.13)

and to a possible parametric dependence of the structure functions of a special gauge theory on 8,47 (8). As
noted in {1, 4], an extended (in comparison with {P, ()}, « = 0,1) system of projectors onto C*(IITMcp
x {8}), {FP(6),00/06,U(8)}, selects in (2.10), {2.11) two kinds of gauge algebra: one is selected by means of
the subsystem {Fy(8),U(8}}, with the corresponding structure equations and functions [S, Z7°7'](A(#)) not
depending explicitly on #, and another with the help of Py (#) with the standard (incasef =0, (ep);r = (ep)a, =
0, s =1,...,L,) relations for the gauge algebra of a reducible model with quantities [SD,Zg“ '](A) under the
assumptlon of the completeness of reduced generators and eigenvectors [RY, , Za: '1(A(4)).

As shown in Refs. [1, 2, 4], a characteristic feature of the §-local extensmn of a usual field theory to
an LSM is the application of Noether’s first theorem [19] to provide the invariance of the density d6Sy(9)
under global @-translations as symmetry transformations of the superfields A’(#) and coordinates (2™,0),
(AL zM . 8) — (AL, 2M 6 + p). It is easy to see that the function

Fl 250)

I
A 3 0. AL (0) — SL(0) (2.14)

S5 (A, 05.4)(0).0) =




is an LS integral of motion, namely, a quantity preserved by 6-evolution, assuming the fulfillment of the gener-
alized Lagrangian master equation

- 51(6) + 265 (8)S1,(0) — 0, (2.15)
L18,=0

Eq. (2.15) follows from the principle of dynamical symmetry in contrast to the standard (Hamiltonian-like)
master equation in the minimal sector of the BV method [3] which is based on differential-algebraic reasons
as a generating equation encoding the standard relations of the gauge algebra and the structure functions
(50, Za:7*](A). The function Sg(¢) may also be an LS integral in the case of an explicit dependence on 8, unlike
its analogue in a {-local field theory, the energy E(t), in case SL(6) admits the representation

S1 (A, 80.4)(8),0) = ST (A, 8p.A) (8) — 20(8,U)(8)SD(8), &(SP) = . (2.16)

If 51.(f) does not depend on 8 explicitly, %SL(H) = 0, Eq. (2.15) transforms into a Lagrangian master equa-
tion, (QpU)(0)SL(9)z, 5,20 = O- As was announced in Ref. [2], a sufficient condition for the existence of a
proper solution S .(8) for the Lagrangian master equation is the presence of an independent special Lagrangian
constraints for a certain division of the index I,

(ag AA1(6), '8 5y,(0) /oA (9))

= =1 2.17
P 0, (A1U42) I (2.17)

2.2 0dd Hamiltonization

A possibility of presenting the odd LS (2.3) in the normal form (which, in a #-local field theory, provides a basis
for the generalized canonical quantization of a given dynamical system) depends on the existence of an inverse
for the supermatrix ||(S7)7,(8)| in (2.7).

2.2.1 Nondegenerate Case

In this case, the LSM is reformulated in the odd-Hamiltonian description [1, 2, 4] on the odd phase space .
IT*Mer = {TEL{8) = (AT, A¥)(8)} in terms of & Hamiltonian action being a C® (IIT* Mgy )-function, Sg:
OT*Mey, x {6} — A1(6; R), constructed from the Lagrangian formulation through a Legendre transformation
of S1,(#) with respect to D oAl (&,

EERG)

Su(Ton(0),6) = A3(0) 8 0 AX(8) — S1L(6), A1(8) = A ()
2

, E(AS) = &1 +(1,0,1). (2.18)

The action Su(f) coincides with Sg(8) in terms of the IIT* My -coordinates.
An odd HS equivalent to the LS follows from (2.3) due to transformations (2.18) and is implied by the
condition of the existence of a critical superfield configuration for a fermionic functional Zy[T'qr] identical to

ZL[A],

Zallil = [ 88 [Vo(Tu(6) BuTE(®) - Sulre(0),0)] (2.19)
% = who(Th(8)) [agrf(a) - (SH ), rg?(e))s] =0, k=CL; (2.20)

it is written in the square brackets in Eq. (2.20) with the help of a f-local antibracket and an antisym-
plectic potential, Vp(Ty(6)) = 1/2(T%wkp}(8), defined with respect to an odd Poisson bivector wy ©(0),
wh 9(0) = (1“5 (0),r7 (9))9, and a flat antisymplectic metric why (6), wPP(@)why(8) = 67q, lwi?,whol(8) =

antidiag((—d%,8%), (64, —8%)).

The equivalence of HS (2.20) and 1.8 (2.7), (2.8) is provided by the fact that the Lagrangian constraints
©1(6) transformed into the Hamiltonian constraints ©¥(8) in terms of the IIT* Mcr.-coordinates coincide with
half of the HS equations due to transformations (2.18) and their consequences:

OF (I'e(8),6) = O1(A(8), B0 ALk (), 6),6), OF(T(6),8) = — 3 9A3(8) ~ Suw,r (B)(~1). - @)




The equivalence between the LS and HS is guaranteed by the corresponding [formal, in view of the degeneracy
conditions (2.2)] setting of the Cauchy problem (¢ = 0, k = CL) for integral curves A(8), I'f (8), modulo the
continuous part of I,

(41, 3,41) (0) = (If,?ﬁf>,f£(0)=(zf,zf) A = [E(g%%)—)] (Zﬁ?ﬂ*’).: 2 |

The definition of a special gauge algebra (2.10), (2.11) remains the same in the Hamiltonian formulation, whereas
the definition (2.2), (2.3) of a general L,-stage reducible LSM is transformed by the rule

21—1 _AE ! (I‘k(gs 1) 93 1} ) ZAs ' ('A(e l)a605_1A(Pk(93—1))93—1);93——1;98) y 8 =0!'f'!Lg! : (223)

 SZiJA]  67ulT4] T Zullr]
5AI(0) ~ SAL() / W51

Ritla, Tk (8),6; 60) = 0. | ) (2.24)

The fulfillment of the generalized Lagrangian master equation (2.15) for Sp(¢) implies, in view of definition
(2.14), transformations (2.18) and their consequence, Z(Sy + Su)(#) = 0, that the Hamiltonian action is an
HS integral of motion (i.e., & quantity invariant under #-shifts along arbitrary solutions fkp (#) by (ep,e)-odd p)
due to a generalized Hamiltonian master equation,

Qeomp () Su(8) = [8/08 — (Su(B), )l Sulf) =0 = (5;LSH(9)|f'k(9) = Qcompl () Su (6} = O) - (225)

The equation Qeompi(6)Su(f) = 0, written in terms of an odd operator Qeompl(#), holds true also in the case of
an explicit dependence of Sy (#) on f, according to (2.16),

Su (Tx(8),0) = Skt (Te(6)) -+ 6 (Sk (Te(8)) , Siy (Ve (6))) 5, (2.26)

where S5(8) is a Legendre transform of S2(6), and (8sU)(0)SL(8) = 3 (Su(#),Su(8)),. If Su(f) does not
depend on & explicitly, (8/86) Sy () = 0; then Eq. (2.25) transforms into the Hamiltonian master equation
{Su(8}, Su(f)) ¢ = 0. This imposes the condition 3] for Sy (f) to be proper, which has no counterpart in a t-local
field theory. Sufficient conditions of the solvability of the latter equation is the presence of irreducible special
Hamiltonian constraints ¢, (T'x{8)) [2], equivalent to the constraints (2.17), being of first-class with respect to
the antibracket:

A% (6) 0.A%(8)

9 s (9)
are(6)

pal8) = ( 054(0) 85"”)) =0, (pa(6), 23(6))s = C2(Th(8)6(0),

= TP < T+ (N.,Ny), M = %N. (2.27)

Ya (‘9)=0.f‘k

rnk‘

As a consequence, the 8-superfield integrability of HS (2.20) is guaranteed by the properties of the antibracket,
including the Jacobi identity

(Fol’TL6) = 5 (LE(0), (Su(Ts(60)), Sa(Tx(6)), = 0 (2.28)

and the @-translation formula written in terms of a nilpotent BRST-like generator 3'(8) of 8-shifts along an
{ep,£)-0dd vector field Q(#) = adSu() = (Su(8), - Je, acting on C°(TIT*Mcy, % {#}), namely,

3uF (O, 0y = HQeompi (8)F (6) = u' (6)F (8). (2.29)

Following Refs. [1, 2, 4] and depending on the realization of additional properties of a gauge theory, we assume
the fulfillment of the equation

— —

g
oary (9}

o1 (6) (L£ @), 0 (1), -), ), (2.30)

e(I'F)
Ak(E)5a(0) =0, AH0) = EH 7 g (] ) TL(0)

(=1
S

for a irivial (in the case of a flat odd phase-space) choice of the density function p(I'(8)), p = 1, which is
equivalent to a vanishing antisymplectic divergence of Q(8), (5) jery (9)) Q(8) = 2AF(8)Su(8) =

6




2.2.2 Degenerate Case

The degeneracy of ||(S]')77(8)|! implies the impossibility of applying the above procedure of odd Hamiltonization
and requires the use of an odd counterpart of Dirac’s algorithm in order to reduce the odd LS (2.3) to a normal
form (with only J-covariance preservation). Let the degree of degeneracy of ||(S¢)1;(8)] be given by the relation

rank||(Sf)”(9)||<EKS _o=IN-—F_;, IN = (N..,Ny) (2.31)

valid almost everywhere in HT¢r,. It means the impossibility to express cach 8 g.AI {6) as a function of T¥ (8)

using equations A}{#) = (8SL(0)) /8( 8 B oAl (8)} in (2.18), which is equivalent to a functional dependence among
the antiflelds .4}(6) in the form of primary antisymplectic constraints,

20(TE(6),6)=0, Ao =1,..,RD, 58V =2y, rank1|(¢f;0,r (e))ew;gQ —R., <R (232

lag
#()=0

In view of the preservation of J-covariance, the constraints '11( 7(6) may be dependent for R_y < R(O) and

assuming the existence of an analog of the regularity condltlons [16], these constraints define a (2N — B_1)-
dimensional submanifold smoothly embedded in TI7g;,. The above regularity conditions imply the existence of

an open covering of the constraints surface, @gg (6) = 0, by open regions on each of which there exists a local
separation of constraints: :

20)0) = (8%, 2) ) : rank | (21, 1 @), o, oo = R 20 = 2O T40).0), (253

where Ap = (Ah,0) = (1, .., R_1,1,..., R — B_)).

For an LSM with primary constraints, there hold the following statements:
Theorem 1 For any C™(IIT* Mcr,)-funetion F(LaL(8), 8) vanishing on the constraint surfoce, .7:(9)]@541)=0 =
0, there exist functions f40(Ter(8),8) € C®(IIT* May) such that F(8) is a linear combination of consiraints:
F(8) = 85)(6)14°(6).

Theorem 2 Due to the solution of the equation Ap(Tcr,(6),8)6TEL () = 0 for arbitrary variations STE(8),
the functions

Ap(Te(6),0) = U (Tu(6),6) (2)(0), T(9)) wbp(6), k= CL (2.34)
are tangent to the constraints surface.

A sketch of a proof: the validity of Theorem 1 follows from the partition of unity on IIT* My, and from the fact
that from the local validity of representation (2.33) follows the existence of an invertible change of variables,

TP6) - I'P(@) = (tI’E;g,XMD) (T4(8)), Mo = 1,...,2N — R_y, so that $L(0, XMe) = 0. Therefore, in a

regular coordinate system I'j, one has

Fre) = [oreel) X0 =230 ] gﬁ%@f@ G, x) @)
0

20 (0)145(1 (T (9)),8) = F(8) = (85) 1%)(8) with f76(8) = 0.

The validity of Theorem 2 follows from the fact that the variations 6T'F (0) tangent to the surface 'Ilgg =0
at a certain point form a (2N — ﬁ_l)fdimensional superspace so that there exist R_; independent solutions
of {ApéT'¥)(8) = 0. By virtue of the regularity conditions (2.33), the above solutions may be chosen as

a linear combination (2.34} of the antisymplectic gradients, [(@g,),FP (6’)) w PQ] (8), with functions U%(8)

unambiguously defined for R((]O) >H_y.
The Hamiltonian action Sy(L'x(6),#) in (2.18) is well-defined as a Legendre transformation of S.(¢) only on

the surface <I>£110) (8} = 0. The definition of the Hamiltonian action by the rule (2.18) on the entire ITT™* My is
possible due to an extension of Sy(#) by the addition of linear combination of constraiuts:

STk, 4)(0),6) = Su(6) + A (9)2L)(8), E(A%) = 4. (2.35)




Actually, Egs. (2.18) implies the following equations under o variation on the censtraints surface:

(Si,1 (68) + Sp,1 (8)) SAL(G) + 5.43(6) (5—2—% - <53,41(6‘)) =0,

which, in accordance with Theorem 2, admit the solution
[‘3_9,41; —St1 ] @) = [adSH(Af ) + A0ad® P (AT); S,y +AY0ad @) (A})] ). (2.36)

In the case of independent constraints, the unknown functions A#9(6) can be uniquely obtained from the first
equations for EQAI in (2.36) as functions on ITMcyr, Ade = A4a(A4,8p.A) for A} = AF(A, 8 A) in contrast
to dependent @gg (6).

The invertible Legendre transformation, corresponding to Egs. {2.36), of SL(#) from IITM¢y, to the surface
@%3 (8) = 0 of THE bundle Noy = IIT*Mcr @ Ma = {(Tf, A%0)} and its inverse are given by the relations

R L 1) N .
(‘A ’ I=A )(6) (A ,3(39AI(9)),A (A: 89-'4)) (9)5 (2 37)
(4, T, 2)) (6) = (A7, 245 (47),0) (9). (2.38)

We assume that the local consideration of the Legendre transformation made in Eqs. (2.36)—(2.38) holds
globally.
The corresponding odd HS equivalent to LS (2.3) is implied by relations (2.18), (2.35)—(2.38) following from

the variational principle for a fermionic functional Z]EIl)[l"k, A] extended, as compared with Zy[['x] in (2.19), by
means of linear combinations of the constraints @gu} (9) with superfields A%°(8) as Lagrangian multipliers,

2P = [ a0 [VEELE) Tar ) - ST 0)(0),0)] (2.39)

Tl 1)
(;%;9) %) = (whomu(e) [r20) - (5P @),12®) | ~2L@) =0 (240)

A relation between the Cauchy problem (or the boundary problem) for an LS and HS should be specified in
view of i)gg (9), whereas the restriction of the action Sg ) ()| g _, remains an expression of the function Sg(f)
in terms of HT™* M ap-coordinates. "

By the Legendre transformation, the consequence (2.37) is a change of Su,r (6) by S!({1 M (8) in expression
(2.21) for the Hamiltonian constraints @ (T, A)(6),8) = @ETI)H(H), preserving the equivalence of a generalized
1S that consists of the constraints @EI)H(E)) and HS (2.40} itself. In this case, the definition of the gauge algebra
(2.23) in case of a nondegenerate supermatrix [[(54);7(0)|| is not affected by the change Zu[I'z] — ZI(; )Tk, A]
by virtue of the identities 6Zg/3.A1(8) = 521(11) /8.A%(8) implied by Egs. (2.37).

Locally, having assumed that condition (2.31) is fulfilled in a vicinity of the configurations (Ab, 30 ALY = (0,0)
the structure of the primary constraints tbgg can be specified. Now, as the regularity conditions {2.33), one

can asswme, while neglecting J-covariance, that there exists a separation of the superfields (Af, 9547, A%)
compatible with (2.31),

(AT, B A", A7) = ((AI°,AA5},(69,410,89,4"3),(A}D,Aj;é)) : rank [{(S1) 1000 (O 5, oo = IV — R—1. (2.41)

In this case, the action Su((I'w}(8),6) = Su((A, A7, )(6),6) depends neither on the antifields A%, nor on the
primary non-expressible superfields 8p.4% due to the direct Legendre transformation (2.37), in which, instead
of Ao, one writes 95.A%, and due to the fact that the action Si(6) is at most homogeneous of degree 1 with
respect to dg.A40. The action SS )((I‘k, A){@), 8) has the form

B5L(8)

s10) = (5 + A% 30} (0), W (0) = A%, () - ———nt —
( 0) ¢ ’ o(a pAA0 () %9A10=39Afo DA,A;() ,8p.A40

. (2.42)

where the odd velocities 8.4 (8) are resolved from the relations A} (6) = R%' In turn, Egs. (2.38)
a8

imply the coincidence of the Lagrangian multipliers A% and 8, 4%,
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Having obtained an equivalent description of the LSM in terms of the Hamiltonian action SI({I)(H), and
following the #-local analog of Dirac’s algorithm, we need to check the compatibility of the odd HS in (2.40),

being the preservation of the constraints by the f-evolution generated by the vector field Qgi)mpl (9}, Qg)mpl(ﬁ) =
[8/66 — 3d58(6)] = Qeomp1(8) — A% ad® (),

3%)(6) = Qeorern(6) (2)(8)) - A% (85)(0), 80(0)) = . . (243)

Eqgs. (2.43) may contain a subsystem with Ra{l) equations independent from A4 with residual (R(()O) — Rf)(l))
equations permitting to find a part of A4 as functions of I'f (9) if ( (1)(9), <I> (9)) law—o # 0. In the former
case, if a subsystem of Rm < Ry /(1) equations does not depend on & )(6‘) i.e., if there exists a set {‘I) (9)} of
{i-(l){ﬂ)} such that

(@ 25)) 0 = (Quom®)) (6) = UZ(T(8),6)25)(6), A1 = L,..., B for UE2(6) =0.
The above expression defines dependent (in general) secondary antisymplectic constraints ‘I’fl) (8) € C°(TIT*Mz),

2 1
@_(41) (9) = (Qcomplq)fq,f) (6) =1{. (2.44)
The constraints @fl) {4}, in contrast to ‘I'gg (#), are not valid identically in the entire TI7T™M;, but only on

solutions of the odd HS (2.40).

The consistency conditions for the secondary constraints @5421) (#) of the form (2.43), (Q @fl)) 9 =0,

compl
lead to new (generally dependent) secondary antisymplectic constraints, ¢ )( 8 = (Qcompﬁ) )(9)

Ay =1,.., R{()z), R[(f) < Ra(z) = Rg(l) - Rgl) among Rf)(z) equations not containing A4° in the relations for the
subset {(I’fg} - {@Sg},

(Q502D) 6) = (Quomn @) (6) = (USe2) + U BE)) (0), for U (0) = UE:(0) =0,

The remaining part of (Ra R(l) R( )) equations in (Q(l) 2)) (8) = 0 permits one to define, in the case of

compl

(‘I’,(AB (&), 'I-gl) (6)) . |@—@@—p 7 0, a part of the superfields A4 as functions of I'f (#). A proof of consistency

conditions for the constraints '115433 (#) permits one to obtain new secondary antisymplectic constraints ‘I’Efg (6)

and a part from A%, etc. .
As a result of this algorithmn, the complete set of Ry dependent antisymplectic constraints $,{T'%(8),8) =0

consisting of the primary ‘I‘Sg (#) and the remaining 'I'fl':l)(ﬂ), called secondary ones, is defined as
85,0) = (24),9%7) 0), 8% = (28, 8%)...) . =1, B, . Ro, &(87,) =85, (2.45)
From the nonhomogeneous linear equations with unknowns A4°(8), whose number is Rgl),
221,(6) = (AP0 ) (0) = (Quomp B1,) (6) — A% (21 (0), 22,(0)) ~ 0, - (2.46)

with the symbol “~” for a weak equality in view of Theorem 1, F(8) =~ G(8) < (F ~G}(8) = C%o(I',(8)) 1, (6),
the consistency of Dirac’s algorithm implies the existence of a general solution in the form

A% (6) = ALE(T(6),6) + A3 (O)ELy (e (6),0), a0 =1,...,70 < R, (2.47)

Here, Apart(ﬂ) is a particular solution of the nonhomogeneous equations and the functions EAU (@) define
linearly independent solutions of homogeneous equations associated to (2.46), with (anmplégﬂ) (9) 0 for
( (1}(9) LA (6‘))9’ - = const?. The coefficients A§°(6) in Egs. (2.47} are arbitrary.

7o =0
Relations (2.47) allow one to rewrite HS (2.40) in terms of a total Hamiltonian action S% ((Tw, A)(8),6)),

rank, ;

8Ty, (0) = (Su(6),T£(6)), = adSn, (O)(TF (6)) + A3 (6)ad @S (6)(IE (6)) = 0, (2.48)

4Here, the rank of a supermatrix is calculated with respect to the Grassmann parity € 3
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with Sy, (Tk{8),8) = (SH + Ao tI’(l ) (8} and linearly dependent constraints 3 )( 8) = (EA"@ 1)) {#), and

part

proper zero-eigenvalue eigenvectors, Z32(I'x(8),9),01 = 1,...,71 2 Rgo o "0(1) — 7 for a rigorous inequality
being dependent as well.

- Following Dirac’s terminology, the concept of {6-local) quantities of first and second classes is defined by the
fact that an arbitrary C°(IIT™* My )-function F(T'x(8),6) either obeys the relations

(B2,(8), F(6))y ~ 0 == (1, (8), F(9))y = 972 (6)2.7,(6) (2.49)

(and is said to be a first-class function) or is a second-class one if it does not obey Egs. (2.49). Jacobi’s identity
for the antibracket (-, }s implies that the set of first-class functions forms a Lie algebra Gy with a multiplication
with respect to the antibracket, i.e., for any F(9), G(8) € G, (F(9),6(6 )) € G1. By definition, it follows that

the total action S% (@) is the sum of certain quantities Sy, (f) and ()\“"‘I'a y H#) in view of the non-uniqueness
of the particular solutlon Apart of Egs. {2.46) which are given by the gauge algebra of reducible antisymplectic
primary first-class constraints [Sg,, @5‘?](9):

(2l0),29®), = Uz

apbo

2 ©), (51,6, 20®) = Vi ©20), (80)2n) ©) =0, (250

with £0dd quantities (U, V) and geven Z.

The primary constraints <I> (9) may be related with the reducible antlsymplectic gauge transformations,
§**TF(9), in C=(IIT* M},) (dlfferent from general gauge transformations, 8,47 (8) = f doRu’y (6;00)€°(8o))
which correspond to the difference between the values of T'£{8) at 8 and at (9 + ,u) under two different choices
of the Lagrangian multipliers Ag®(9), ASe(8): EAE(B) = (MG — M%) = p® () with arbitrary functions p®(6)
on M,

0=T(6) =32 (0) (2D 0), L)), = = (0) (B O TEO)) , &™) = Fap +(1,0,1).  (251)

For the choice u%(¢) = (u™Z50)(#) with arbitrary functions u® (6) on M, being the Grassmann parities
Eun) = &, + (1,0,1) if &(Z5°) = (&5, + &,), the above transformations vanish on the constraint surface,
55T (8) ~ 0.

The functional Z [Tk, A], given by

230k A = [ a0 [Ve(Tu(0) BorE(©) - SE(Lw N0).0)],

is invariant not only with respect to the transformations §,.4/(8), in view of the relation Zy = Zy 1 - = Z and
Egs. (2.23), but also with respect to extended antisymplectic transformations in C*° (IIT* Mgy @ M),

STE(9)
5A5°(8)

—u(0) (2)0),T£©))
—pu(8) (6;‘389 - Ve - )\b"Uggba (9}(—1)) — (™ Z30)(0), E(u™) = &, . {2.52)

Following an analog of “Dirac’s conjecture” in the usual Hamiltonian treatment of a gauge model, one may
suggest that the structure of 51,(6) for an LSM be such that secondary first-class antisymplectic constraints are
generators of antisymplectic gauge transformations as well.

A characteristic feature of odd Hamiltonization is the possibility of an explicit identification of so-called
antisymplectic gauge freedom in comparison with the odd-Lagrangian formulation of an LSM which is related
to the construction of an extended Hamiltonian action SE(8) and a functional ZE, including all the constraints

B4, (6),
2500 A) = [ d8 [Ve(Tu@)TorE(®) - SE(Th,0)6),0)], SBE) = (Sm +A%85) ). (259)
The variational principle for ZE encodes an HS, which is not entirely equivalent to LS (2.3),
BeT'% (0) = (SH(6),I'f (8)), =0, ®1,(8) =0. (2.54)

The system of antisymplectic constraints {®7,(#)} contains two subsystems {&1,} = {O4,, 5} of first-class
B4,{f) and second-class Er,(f) constraints extracted from the initial system by means of certain guantities
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Jé‘;“ (@) ©4,(8) = (Ji" ®1,)(6) so that only the functions A% (6) from the set of Lagrangian multipliers AT (9),
Ao (g) = (Ao Jgg")(ﬂ), remain completely undetermined by the evolution of HS (2.54).

By definition, we consider that an (L3%, L5%)-stage reducible system of antisymplectic constraints ®z,(6) =
{Oay,Exy)(0) s divided to a subsystem of L25-stage reducible first-class constraints {@,,(8)} and that of L3-
stage reducible second-class ones {E.,)(8)} for (L3°, L8) € N2 if

(060 (6), 85, (8))0 = [U12; G)cﬂ-i-U“’”“f"Hm:go]( )s (S0 0), @ao 6))e = [V152 0, + VB 20, s, | (6), (2.55)
(Zro (6): Eoo 6))e = [ By + U280, | (6), (S50 (6),Ery ()0 = [VIE0, | (6), (2.56)

where ”E,-Uo-0||q,1020 #* ”01'00'0 ||, &o,bo,éo =1, ...,?‘é < Ry, 10,00 =1,...,Hy — o = T(I)I and

rank ||(@ao,rf(9))ewfgq||% _o =T <7, rank || (S, (9),rf(a))9wng||% =7l < 7l (2.57)
(0a2'%) () =0, (7472207 ) (6) = 3, L™, s =1, L 80 = ... 7,
s—1 . Ln-_l
Qg— ajas__ _
m_mk}zla: 2 G)Heﬁoz (~1)FF e, <7, rank“ZILIi: *(6) He = Z VPt = Phse,
- k=0
(€ eh) 215! = (&,_, +&5,, ~ghs, _, +8h;.) (ZIZJ’ La_lzm,r 1) (@au,o r) (2.58)

where we have used the standard distribution [1, 3] of ghost number in ITT* AMy..
A complete definition of the subsystem of second-class antisymplectic constraints {E.,(¢)} may be obtained

directly from Eqs. (2.57) under the change (@aD,ZIa”'l,ng"‘bn, i,Las) — (B, 25, L7270, r1 L3,
For L§* = 0 (L§ = 0), the subsystem {O,{8)} ({E,,(0)}), is referred to as irreducible first-class (second-
class) antisymplectlc constraints. The definitions in Eqs. (2.55)—(2.58) generalize, to the case of reducible
mixed antisymplectic constraints in the context of a dynamical LSM, the formal definition [6, 23] of irreducible
second-class antisymplectic constraints for § =0 .

The presence of the reducible constraints {=,, } permits one to construct a so-called weak Dirac’s antibracket
possessing all the properties of the odd Poisson bracket on the constraint surface =, = 0 by means of a

degenerate odd Poisson—Dirac bivector:

iR () = (EO.120), =wb*@) (wST(e) - SR (e)%?k%%l) W00, ()

with the quantities E709(T'x(8)) determined on the surface 2, = 0, (A(l'%(8)),Z2,(8))ep = 0, for any
A(Tr(9)) € C=(IIT* M), characterizing the Dirac antibracket, by the equations

E770(6) (00 (0), 250 (6))g = 67 po — (21 743%) 0) (2.60)

"The functions d7t (T (8)), €(d]: ) = &, +&5, in (2.60) may be specified due to the consequence (Er,0, Z1197) (8) ~
0 of relations (2.56), (2.58), applied to the constraints Z,,(f) in the form (Z17d2t) () = 622,

The fact that Dirac’s antibracket obeys the generalized Jacobi identity in the entire IIT*Ad or on the
surface Z,,(8) = 0 can be extended according to the construction of a weak even Dirac bracket for infinitely
reducible second-class symplectic constraints [24] used to quantize the N = 1 Brink—Schwarz superparticle and
the N = 1,d = 9 massive superparticle with the Wess—Zumino term.

As in the case of the initial antibracket, there exists an odd weak nilpotent (on E.,(¢) = 0} Laplacian A%(8),
corresponding to antibracket (-, -)op, such that Dirac’s antibracket weakly equals to the failure of A% (8) to act
as a derivative an the product of two functions in C°{IT* M),

Sl 7 5 _ () a
-1 Pg -1 P .
Ab©O) = 7 g PO g = g rp ke O(TE @ (126 ), ),
| (2.61)
with an £-even density function pp(T%(#)). The operator A (0) generalizes the properties of its analogue for
irreducible antisymplectic second-class constraints in Ref. [6] for Ulleo =0 in Egs. (2.56).

From the definition of Dirac’s antibracket and relations (2.56}—(2.59), there follows, for any first-class
C(IIT* M )-functions [F, G}(0) and arbitrary C°° (117 M. )-function R(#), the validity of the weak equal-

ities
(F(6),6(0))ep = (F(8),6(8))y, (F(8),(G(8),R()gplap = (F(6),(G(6), R(E))g), - (2.62)
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By virtue of the fact that SE(4) is a first-class quantity, the Dirac antibracket generates the odd HS (2.54),
where it is possible to change the antibracket (-,-)g by {-,-)ep. Int turn, the definition of the first-class constraint
subsystem (2.55), with allowance for relations (ref2.61), may be rewritten in terms of Dirac’s antibracket with
a weak equality which means an equality modulo Z.,(#). Note that in view of the inequality ZI'.II' # ZE, the
functional Z§ is not invariant under the general gauge transformations §,.47(6) due to the presence of the
secondary constraints 'I)?q';“ ().

3 Odd-Lagrangian Form of BFV-BRST Method Application
to Odd-Hamiltonian LSM

Let us apply the BFV-BRST method [11] to an LSM in the odd Hamiltonian formulation which has been made
more complex by the presence of the (L3°, L3%)-reducible first- and second-class antisymplectic constraints.
The construction of an analog Sq(6) of the BFV-BRST charge, encoding, in terms of Dirac’s antibracket,
“the gauge algebra structure functions of the antisymplectic first-class constraints ©z, and the eigenvectors

ZI“"‘ Y,s = 0,.., L%, as well as the enhanced antisymplectic gauge transformations, can be described by a
superﬁeld algonthm similar to the construction of the superfield BV action in Refs. [1, 4]. Let us consider the
gauge transformations (2.52) restricted in the minimal sector of superfields {I'f'(6)} = TIT™* M, for all first-class
constraints ©;,,

5aSF£(9) = (Ff(9)= 650(6))913 Man (B)v (é‘; gh)“ﬁo - (gﬁo + (1= Oa 1): -1- ghan)a ghao = gh(@&0)1 (3'63)
which, due to the definition 6TP(0) = I'P(6 + ) — IP(8) = 8PP () (£,gh)p = ((1,0,1), 1) and the
io

substitution, instead of arbitrary p% (8}, p(8) = di®(8), of the ghosts di%(8) = C%(9)df, (£,gh)Co =
(£ay» —ghy, ), are embedded into the odd HS in II7™ M, with 2N equations (for = df)

9oTL(0) ~ (T£(6),508(6)) 1> Sal(8) = (2,C™) (8), (€,2h)5al(6) = (G,0). (3.64)

In view of {2.58), the function Sg{(#) is invariant, modulo Z,,(6), with respect to antisymplectic gauge trans-
formations of ghosts C% (), with arbitrary functions p¥(8) € C°M, (&, gh)u® = (&;,, —gh;,),

59C%(8) = (C™(8), 82y (6)) o % (6), O3, = C5 2129, (5,80)C5, — (Sao + (1,0,1),ghs, — 1) . (3.65)

Making the substitution p# () = di® (8) = C%(6)d# and extending r}, first-order equations in § with respect
to unknown C%(0) in transformations (3.65) to an HS-like set of 2rf equations with the even Hamiltonian
Sal(Tx, C§,C1) = (Cg, 2%0C%)(8) for unknown ) T8 (8), Tg® = (Cf, Cx ), we obtain a system of the form
(3.64). An extension of the union of the latter HS with Eqgs. (3.64) is formally identical to the system (3.64)
under the replacement
P g 0 Plop el _ P Py TP — (oo or 1t _ g0 1
(To" Sa1(0)) — (P[n] 139-[1]) { o] =~ T, Tp%), T =(C 1ca1): Sﬂm = So; +Sﬂl}-

The iteration sequence related to a reformulation of the antisymplectic gauge transformations of ghost variables
Cl, ., C%-2 obtained from relations (2.58), leads, for an L3-stage reducible LSM at the s-th step, with
0<s<LandTE, = Ff{l, to invariance transformations for ng‘l(ﬁ), modulo the constraints ©;,, namely,

55081 () = (C%=(8), 04, (6))y 1 (O)s [Oe,Sa3™) (0) = [Ch,_, 257 (Tw), @, O™ | (0),
(& gh) [u®, S5 = [(£a, + (s — 1)(1,0,1), —gh,_ +s—1), (G, 0)]. (3.66)

The substitution p?(f) = df® (f) = C%(0)d0 transforms the antisymplectic gauge transformations (3.66) to
Ts-.1 equations for unknown C%-2(8), extended by the superantifields of odd momenta C3,_ (), into an HS on

IT* M, = {T ')

BT 0) = ( ‘11(0),&1;(9))”, Saj(0) = (C},_ 251 (Tk)C)(9), Ti2y' = (€%, CF, ). (3.67)
Having combined the system (3.67) with an HS in IIT*My,_y) = {1"[1:["_1;]} of the same form with (591";:“9'1}” (8)

and the even BFV-BRST charge {(Hamiltonian) Sg?ﬁi(@) = Sqfy)(6} and having expressed the result for
2(N + 3 _,m) equations with Safy Lgy = (S'gfﬂ1 + 805)(9), we obtain, by induction, the following HS:

L
Ppas P L?ﬂ as &, as 4
EPy ey (6) = ( () 9, Sayg (6))91), Sapt (6) = (@aoc o+ N Cr  ZrTTwC ) @).  (3.68)
s=0
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The even function Sgﬁ? (8) quadratic in the powers of ©4,, i o TP (8)= (4, &4 N0, Av=1,...,N+

. [y =
Zf:lo ri, k=MIN} with vanishing ghost number provided by the (£, gh}-spectrum for II7* M -coordinates
(€,8h) C% = (&5, + 5(1,0,1), —gh,, +5), (£,gh) &%, = (8(@*) 4 (1,0,1), -1 — gh(@)),

is a solution of the classical master equation written in terms of Dirac’s antibracket trivially extended in
T Mp={T%*(0) , k = MIN} with accuracy up to O(C%), modulo ®1,(8),

LDE Lﬂﬂ &
(50t ), Saff @), ~o(C™). (3.69)
Additionally, the function SQEE{B) is subject to the BFV-like condition of properness in the sense that

= a8 ]
¥ asnﬁi @) ~ 22[L“:+1]?I .
OTEE(0) 8Tk (8) || =0 s=0 25—(L3 mod 3) — L1,

ar,,

rank

1 L&S
L= E(COdim-i- + codim _)TIT*E%° + ~21~ E io(dim_,. + dim _)IIT* M, (3.70)

where the codimension of the surface T3 = {I'5; (8)|©;,(8) = 0} is calculated with respect to II7* Mcr.. The
integrability of the HS in (3.70) is guaranteed by a double deformation of ngﬁ (8): first in the powers of

@% . (#) and then in the powers of C%(8), in the framework of the existence theorem [3] for the classical master
equation in the minimal sector, in the case of a purely topological theory (i.e., one without the potential term
So(A) = S (A(0),0) in Sec. 2.1 presenting the classical action of a standard gauge model for (ep); = (ep)z =
(ep)a, =0

(San (T (8)), St (Ta(6)))gp ~ 0, (& h) S = (6,0}, k= MIN. (3.71)

Theorepl 3: Thej"e ewists a solution of equation (3.71), in TIT* My, as a power series in the ghost coordi-
nates @5, () = {C%(0), s =0, ..., L{°}, subject to the boundary conditions

[Stua(6), (S4(0).C2,0)) 5y (€ 0),50() g+ 2, O] w80 = [0, 030 257] @, (072

and to the condition of properness (8.70) written for Sq.x(6).

A sketch of a proof: the proof of Theorem 3 repeats the Koszul-Tate construction in Hamiltonian formalism
[15] for the antisymplectic case.

4 Conclusion

Let us summarize the main results of the present work.

We have examined a 0-local description of an arbitrary degenerate reducible superfield theory as a natural
extension of a usual gauge theory, defined on & configuration space Mal|,_o of classical fields At to a local
superfield model. Namely, we apply Dirac’s algorithm to realize an odd Hamiltonization of a Lagrangian
degenerate local superfield model (LSM), being an extension of a usual gauge model of classical fields A%,
i =1,..,n =ny +n_, on a configuration space Mg, to a f-local theory defined on an odd tangent bundle
TodeMer = DT Mer, = { AL, AT}, T=1,...,N = Ny + N_, (ny,n_}) < (N3, N_) with N, (N_-) bosonic
(fermionic) superfields. The generalized classical superfields A(6), A?(9) = AT + A7, parameterize the base
Mo (Mo © Map) of the bundle IIT Mqy, and transform with respect to a J-superfield representation T
of the direct product of supergroups J,P: J = J x P, P = exp(iupy), with J chosen as a spacetime SUSY
group, and p, pg being the respective nilpotent parameter and generator of 8-shifts. The non-Lorentz character
of superfields A/(#) defined on M = {(M,8)} = {2X}, 2M < i C I, is reflected by a possible inclusion in
their spectrum of additional, besides A%(8), superfields corresponding to the ghosts of the minimal sector in the
BV quantization scheme. Following the BFV prescription, we construct their 6-local counterparts on the basis
of a complete system of antisymplectic constraints and a Hamiltonian action Sy, (¢) defined on IIT*Mcy, =
{Al, A7}, a bosonic BRST charge Sq(6), a unitarizing Hamiltonian action Sy(6), and a gauge fermion Fy(6).
We specify to the case of a singular LSM a derivation of Lagrangian and Hamiltonian master equations from
Noether’s first theorem applied to 0-shifts, and establish a relation between the complete Hamiltonian action,
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Su(f) = 51(8) + (Sa(8), Fu(8))sp, constructed via §-local Dirac’s antibracket, and the quantum action of the
BV method.

We have constructed an odd-Hamiltonian formulation for an LSM starting from an odd Lagrangian in
the case of a degenerate Hessian supermatrix |[(S]}rs|| (8) as the supermatrix of second derivatives of the
Lagrangian classical action, St,(8) = S.(A(8), 85.4(6),8), with respect to odd velocities (85.47,8,.47) (8) on
the basis of Dirac’s algorithm in terms of a 8-local antibracket. We apply the BF'V method to a construction
of formal counterparts of the BFV-BRST charge, gauge fermion and unitarizing Hamiltonian of a #-local fleld
theory in terms of a @-local Dirac’s antibracket, reflecting, in view of general gauge invariance, the presence
of a subsystem of second-class constraints among all of the antisymplectic constraints. We present a plan
of establishing a correspondence between the resulting odd-Hamiltonian formulation of an LSM with the BV
quantum action for a gauge model corresponding to an LSM.
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