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Abstract

We describe some new exact solutions for two- and four-level systems.
In all the cases, external �elds have a restricted behavior in time. First,
we consider two types of new solutions for one-spin equation, one of them
is in a external magnetic �eld that acts during a �nite time interval.
A new solution for two interacting spins is found in the case when the
�eld di¤erence between the external �elds in each spin vary adiabatically,
vanishing on the time in�nity. The latter system can be identi�ed with a
quantum gate realized by two coupled quantum dots. The probability of
the Swap operation for such a gate can be explicitly expressed in terms
of special functions. Using the obtained expressions, we construct plots
for the Swap operation for some parameters of the external magnetic �eld
and interaction function.

1 Introduction

Finite-level systems have always played an important role in quantum physics.
In particular, two-level systems possess a wide range of applications, for ex-
ample, in the semi-classical theory of laser beams [1], optical resonance [2], and
nuclear induction experiments [3], and so on. The best known physical system
that could be identi�ed with a two-level system is a �xed spin-one-half object
interacting with a magnetic �eld. Four-level systems can be used to describe
two interacting one-half spins, e.g., the valence electrons in two coupled semi-
conductor quantum dots [4]. The most detailed theoretical study of quantum
mechanical equations for two and four-level systems, and their exact solutions,
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are presented in [5, 6]. Recently, two- and four-level systems attract even more
attention due to their relationship to the problem of quantum computation [7].
In this problem, the computation is performed by manipulation with so-called
one- and two-qubit gates [10]. The one-qubit gate can be identi�ed with a
two-level system and two-qubit gates can be identi�ed with a four-level system.
For these reasons, two- and four-level systems are crucial elements of possible
quantum computers. For physical applications, it is very important to have
explicit exact solutions of two- and four-level system equations. In [11] exact
solutions of a four-level system are used to describe the theoretical construc-
tion of a universal quantum XOR gate using two-coupled quantum dots. This
work shows how the exact solutions can be used to establish all the necessary
conditions on the external �elds needed for the implementation of the gate.
In the present work, we describe some new exact solutions for two- and

four-level systems that were not represented in our previous works [5, 6]. These
solutions are found for external �elds that have a restricted behavior in time, for
example, the �rst solution for two-level system in external �eld that acts along
a �nite time interval. In Section 2 we consider two types of new solutions for
a two-level system, and in Section 3 a new solution for a four-level system. In
the latter case the �eld di¤erence between the external �elds in each spin vary
adiabatically (vanishes with time). The latter system can be identi�ed with a
quantum gate realized by two coupled quantum dots. The probability of the
Swap operation for such a gate can be explicitly expressed in terms of special
functions. Using the obtained expressions, we construct plots for the Swap
operation for some parameters of the external magnetic �eld and interaction
functions.

2 Two-level systems

2.1 General

We recall to the reader that two-level systems are described by the so-called
spin equation

i
dv

dt
= (�F)v; � = (�1; �2; �3); F = (F1; F2; F3); (1)

where v = v(t) is a two�component spinor, �k(k = 1; 2; 3) are Pauli matrices,
Fk = Fk(t) are components of external �eld strength, see [5]. The general
solution of the spin equation reads

v(t) = R(t)v0; (2)

where 2� 2 matrix R(t) obeys the same spin equation

i
dR(t)

dt
= (�F)R(t); (3)

and v0 is an arbitrary constant spinor. If R(t = t0) = I, where I is 2� 2 unity
matrix, then R(t) = U(t), where U(t) is the evolution operator of the spin
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equation. In the general case, the evolution operator is constructed by the help
of the matrix R(t) as follows

U(t) = R(t)R�10 ; R0 = R(t = t0); U(t = t0) = I : (4)

The matrix R(t) can always be represented in the form

R(t) = Ip0 � i(� p); p = (p1; p2; p3); ps = ps(t); s = 0; 1; 2; 3 ; (5)

The functions ps(t) obey the set of equations

_p0 + (pF) = 0; _p+ [p� F]� p0F = 0; (6)

which follows from (3). Equations (6) imply that � = detR(t) = p20 + p
2 is an

integral of motion.
Let us suppose that spin equation (3) is self-adjoint, which means that the

external �eld F is real. In such a case we can chose the functions ps(t) to be
real. Without loss of generality, in such a case, we can set � = 1, which means
that R(t) is nonsingular. Under the condition � = 1; the functions ps(t) can be
expressed via three real parameters � = �(t); � = �(t); and ' = '(t) as follows

p0 = cos
'� �
2

cos
�

2
; p1 = � sin

'+ �

2
sin

�

2
;

p2 = cos
'+ �

2
sin

�

2
; p3 = sin

'� �
2

cos
�

2
: (7)

2.2 Exact solutions for some restricted in time external
�elds

I. Let the external �eld be zero at jtj � T , where T is a constant, and for jtj < T
reads

F1(t) =
�

8T
[(�0 � �1) sin � cos'+ (�0 � �1) sin'] cos

�t

2T
;

F2(t) =
�

8T
[(�0 � �1) sin � sin'� (�0 � �1) cos'] cos

�t

2T
;

F3(t) =
�

8T
[(�0 � �1) cos � + '1 � '0] cos

�t

2T
; (8)

Here �0; �1; �0; �1; '0; and '1 are arbitrary constants, and the functions � =
�(t); ' = '(t) have the forms

�(t) = �0 ; '(t) = '0; t � �T;

�(t) =
�1 � �0
2

sin
�t

2T
+
�1 + �0
2

; jtj < T;

'(t) =
'1 � '0
2

sin
�t

2T
+
'1 + '0
2

; jtj < T;

�(t) = �1 ; '(t) = '1 ; t � T:
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The external �eld under consideration is not zero only on a �nite interval
jtj < T and is continuous for all t.
For such an external �eld there exist an exact solution of equation (3). It is

given by expression (5), where the functions ps(t) have the form (7) with

�(t) = �0; t � �T ; �(t) = �1; t � T ;

�(t) =
�1 � �0
2

sin
�t

2T
+
�1 + �0
2

; jtj < T:

II. Let the external �eld have the form

F1 (t) = �
�0
T1

"
1� 2

�
t

T1

�2#
exp

"
�
�
t

T1

�2#
sin'

� �0
T3

"
1� 2

�
t

T3

�2#
exp

"
�
�
t

T3

�2#
sin � cos' ;

F2 (t) =
�0
T1

"
1� 2

�
t

T1

�2#
exp

"
�
�
t

T1

�2#
cos'

� �0
T3

"
1� 2

�
t

T3

�2#
exp

"
�
�
t

T3

�2#
sin � sin' ;

F3 (t) =
'0
T2

"
1� 2

�
t

T2

�2#
exp

"
�
�
t

T2

�2#

� �0
T3

"
1� 2

�
t

T3

�2#
exp

"
�
�
t

T3

�2#
cos � ; (9)

where the functions � = �(t) and' = '(t) are de�ned as

�(t) =
�0t

T1
exp

"
�
�
t

T1

�2#
+ �1 ; '(t) =

'0t

T2
exp

"
�
�
t

T2

�2#
+ '1 ; (10)

and �0; �1; '0; '1; �0; and Tk; k = 1; 2; 3) are arbitrary constants.
The external �eld under consideration vanishes at t! �1.
For such an external �eld there exists an exact solution of equation (3). It

is given by expression (5), where the functions ps(t) have the form (7) with

�(t) =
�0t

T3
exp

"
�
�
t

T3

�2#
+ �1; �1 = const:

4



3 Four-level systems

3.1 General

We write the Schrödinger equation for a four-level system in the following form1

(see [6]):

i
d	

dt
= Ĥ (G;F;J)	 ;

Ĥ = (��G) + (��F) + J
2
(���) : (11)

Here 	 is a four-component column; in the general case the interaction function
J , as well as, the external �elds (two three vectorsG and F) are time-dependent;
and 4� 4 matrices � and � have the forms

� = I 
 � ; � = � 
 I ; (� � �) = � 
 � =
3X
i=1

�i 
 �i ;

where � = (�1; �2; �3) are the Pauli matrices, and I is the 2�2 identity matrices.
The Hamiltonian matrix reads

Ĥ =

0BB@
F3 +G3 +

J
2 F1 � iF2 G1 � iG2 0

F1 + iF2 G3 � F3 � J
2 J G1 � iG2

G1 + iG2 J F3 �G3 � J
2 F1 � iF2

0 G1 + iG2 F1 + iF2
J
2 �G3 � F3

1CCA : (12)

Such a model is used to describe two spins, subject to the external magnetic
�elds F andG, and interacting with each other through a spherically symmetric
Heisenberg interaction whose intensity is given by the interaction function J .
In particular, this model was used to describe two coupled quantum dots [4].
In our work [6] a series of exact solution of equation (11) for di¤erent choices of
the interaction function and the external �elds are found for the �rst time.

3.2 Reduction to the two-level system case

For a special case of two spins subject to parallel external magnetic �elds, which
we write as

G = (0; 0; �Bg1B1) ; F = (0; 0; �Bg2B2) ; B1;2 = B1;2 (t) ; (13)

where �B is the Bohr magneton and g1 and g2 are g-factors for the corresponding
spins, one can show that the evolution operator Û (t) for the equation (11) can
be reduced to an evolution operator û (t) for the Schrödinger equation of a

1~ = 1
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two-level system [6]. Such a reduction is given by the equation

Û (t) = exp

�
� i
2
[(�3 + �3) � (t) + �3�3� (t)]

�
M (t) ;

� (t) =

Z t

0

B+ (�) d� ; � (t) =

Z t

0

J (t) d� ; B+ = �B (g1B1 + g2B2) ;

M =

0BB@
1 0 0 0
0 u11 u12 0
0 u21 u22 0
0 0 0 1

1CCA ; (14)

where û (t) = jjuij jj obeys the Schrödinger equation for a two-level system (see
[5])

i
dû

dt
= (��K) û ; û (0) = I ;

K (t) = (J (t) ; 0; B� (t)) ; B� = �B (g1B1 � g2B2) ; (15)

Thus, in the case under consideration, the four-level system problem is reduced
to solve the two-level system problem (15) with an e¤ective magnetic �eld K.

3.3 An adiabatic variation of the �eld di¤erence in each
spin

Consider a four-level system in which the �eld di¤erence varies adiabatically
with time, while the interaction function is constant. Namely, we chose

J = a ; B� (t) = c= cosh!t ; (16)

where a; c and ! are real constants. In practical application the pulse applied
to the system (e.g., two coupled quantum dots) needs to be shorter than the
decoherence time of the system. But such fast pulse can cause a transition of
the system to higher energy levels and, consequently, its dynamic can no longer
be described by the Hamiltonian (12). The c= cosh!t dependence is the most
adequate kind of a variation to avoid this higher energy level transition [12].
In addition, it is reasonable to infer that if the only quantity that varies is
B�, and B+ � B�, the interaction function will remain constant [11]. With
regard to the variation of B�, there are some proposals for the application of
localized magnetic �elds [13] and some techniques that permit the manipulation
of the g-factor by changing the size of the dots or by the application of external
electromagnetic �elds [14, 15].
From the previous Sect., we know that the evolution operator (14) of a four-

level system with the parameters (16) is expressed via an evolution operator of
a two-level system with e¤ective �eld

K (t) = (a; 0; c= cosh!t) : (17)
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The exact solution for the evolution operator with such a �eld can be constructed
using our previous results [5]. It has the form

û (t) =
1

jG01j
2
+ jG02j

2

�
G1 (z) � �G2 (z)
G2 (z) �G1 (z)

��
�G01

�G02
�G02 G01

�
; (18)

where

G1 (z) = i (2c+ !) z
� (1� z)� F (�; �; ; z) ;

G2 (z) = 2az
�+1=2 (1� z)� F (�; � + 1;  + 1; z) ; G01;2 = G1;2 (�1) ;

z =

�
e' + i

e' � i

�2
; ' = !t; � =  + � ;

� =
c

2!
; � = i

jaj
!
;  =

1

2
+ 2� : (19)

F (�; �; ; z) is the Gauss hypergeometric function, and complex conjugate quant-
ities are designated by a bar above.
Substituting (19) into (15), we obtain

R̂ (t) = exp

�
ict

2

�0BB@
exp [�i (ct+ � (t))] 0 0 0

0
0

û (t)
0
0

0 0 0 exp [�i (ct� � (t))]

1CCA ;

with û (t) give in (18).
Thus, any transition amplitude for the four-level system can be calculated

with the help of the evolution operator. Let us, for example, calculate the
transition amplitude between the states j"#i and j#"i ; which have the form

j"#i = j"i 
 j#i =

0BB@
0
1
0
0

1CCA ; j#"i = j#i 
 j"i =
0BB@
0
0
1
0

1CCA : (20)

This transition between these states represents, in quantum computation, the
so called Swap operation and can be experimentally measured [16]. From the
general expression (14), we see that

h"#j R̂ j#"i = h"j û j#i ; h#"j R̂ j"#i = h#j û j"i ; j"i =
�
1
0

�
; j#i =

�
0
1

�
:

(21)
Therefore, in the case of the Swap operation between the states (20), we need
only to calculate matrix elements of the two-level system evolution operator.
One has also to stress that in this case the Swap operation does not depend on
the �elds�sum B+ .
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Using (18), we calculate the probability amplitude for the Swap operation
with the adiabatic variation (16),

jh#j û j"ij2 =
��G2 (z) �G01 � �G1 (z)G

0
2

��2�
jG02j

2
+ jG01j

2
�2

In order to use the adiabatic pulse to implement some quantum operations
(like the Swap or the XOR gate) the duration of the pulse needs to be shorter
than the dephasing time of the system. E.g. in GaAs quantum dots this time is
about 10 ns [16], which correspond to ! ' 1GHz. In typical experimental condi-
tions, we have �elds of about 5T, J = 2� 10�3 eV and, to satisfy the condition
B+ � B�, we can set the amplitude jB�j = 11mT. So, some characteristic
values for our system are

jaj
!
=
jJ j
~!

' 3 ; c
!
=
�B jB�j
~!

' 1 :

In Figure 1 we have plots of the probability as a function of time for the
above values of the parameters. The �rst maximum occurs at t = 0:5 ns with a
probability of P = 90%. For larger time, as the cosh�1 approaches to zero, this
probability varies as A1 sin2 (at)+A2 where Ai = Ai (!; a; c). The amplitude A1
decreases as c increases while the shift A2 increases. The functions Ai change
signi�cantly with ! only for c > 10a.

Figure 1 - Probability of the Swap
operation as a function of time for
J = 2� 10�3 eV, ! = 1GHz and

B� = 11� 10�3 T.

Figure 2 - Probability as a function of
! for the values c = 1 (dashed line)
and c = 12 (solid line) in t = 0:8ns

and a = 2.

The dependence of the probability on the parameter ! become noticeable for
c > 4a. In Figure 2 we plot this dependence for a=c = 2 and a=c = 1=6. The
parameter ! can be used to signi�cantly attenuate the Swap transition for values
of c > 10a.
A numerical study shows a strong dependence of the maximum values with

the parameter a. This fact can be used to measure the interaction J . In Figure
3 we plot the dependence of the probability on J . The attenuation of the second
maximum can be achieved by increasing the ratio c=a.
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Figure 1: Figure 3 - Probability as a function of the interaction J for the c = 30,
t = 1ns and ! = 15GHz.
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