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Abstract 
Usually, in undergraduate physics courses we learn that in nature there 

exist only two kinds of particles: bosons and fermions. However, it is known 

that within the framework of the Quantum Mechanics are predicted particles 

that are different from bosons and fermions. These particles are, for instance, 

paraparticles, anyons and gentileons. Due to peculiar symmetry properties of 

the gentileonic states selection rules have been deduced showing that they 

must be confined entities and that gentileonic systems are non-coalescent. In 

this paper, using these symmetry properties and assuming that gentileons are 

real particles a simple dynamical model is proposed using the color gauge 

theory and the Dirac equation to explain the physical confinement of the 

gentileons. 

 

 
(1)Introduction. 

Many papers have been published
1 

on statistics that are different from 

the traditional bosonic and fermionic. Bosons are particles with integer spins s 

= 0,1,2,.. and fermions with half−integer spins s = 1/2,3/2, …that obey 

different statistics: bosonic and  fermionic.
2 

In the quantum limit bosons and 

fermions have a completely different behavior, but, in the classical limit they 

have identical behavior. In this limit they are named maxwellons and obey the 

Maxwell−Boltzmann Statistics.
2−4

 Inside the framework of the Quantum 

Mechanics are predicted particles that are different from bosons and fermions 

that obey, for instance: Intermediate Statistics, Paraestatistics, Fractionary 

Statistics and Gentileonic Statistics.1 Since in these studies are taken into 

account systems composed by "particles" we need at the outset to make clear 

what this word means. So, use the name "particles" to refer generically to "real 

particles" (which can be observed freely) and “quasi-particles”("collective 

excitations "). Particles that can have internal structures like, for example, 

helium atoms formed by a nucleus and two electrons, hadrons composed of 

quarks and anyons are called "composite particles". Particles that have no 

internal structures such as, for example, electrons and photons, will be called 
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“elementary". If in a given system the particles have internal structures but the 

effects of these structures can be neglected they will be treated as 

“elementary”. According to large number of theoretical and experimental 

works,
1
 there is a tendency to believe that real particles can only be bosons, 

fermions and maxwellons and that all other particles would be 

quasi−particles. Up to now days, in 3−dim systems only bosons, fermions e 

maxwellons have been detected. In 2−dim systems have been detected the 

quasi−particles called anyons that have fractionary charges and fractionary 

spins which obey the Fractionary Statistics.
1 

In Section 1 we present a brief review of the Gentileonic Statistics 

showing how to obtain the fermionic, bosonic and gentileonic quantum states 

of systems formed by three identical particles. In Section 2 is proposed a 

simple dynamical model to explain the physical confinement of gentileons. In 

this model we use the symmetry properties of the smallest gentileonic system 

formed by three gentileons, the color gauge theory and the Dirac equation. In 

Section 3 we present the conclusions and discussions.  
 

 
 
(1) Gentilionic Statistics. 
 We have developed for 3−dim systems, according to the postulates of 

quantum mechanics and the Principle of Indistinguishability, a general 

statistics that was named Gentileonic Statistics.
1,5−11

 According to this 

statistics three kinds of particles could exist in nature: bosons, fermions and 

gentileons. Bosons and fermions are represented by horizontal and vertical 

Young shapes, respectively, and gentileons would be represented by 

intermediate Young shapes. Bosonic and fermionic systems are described by 

one−dimensional totally symmetric (Ψs) and totally anti−symmetric (Ψa) 

wavefunctions, respectively. Gentileonic systems would be described by 

wavefunctions (Y) with mixed symmetries. In preceding papers,
1,5-11

 based on 

very peculiar symmetry properties of the intermediate gentileonic states Y, 

selection rules have been deduced predicting that gentileons are confined 

entities and gentileonic systems are non−coalescent. The simplest physical 

explanation for these properties is that gentileons are quasi−particles 

(collective excitations). On the other hand, if they are real particles it would be 

necessary to develop a confinement mechanism to explain the confinement. In 

this paper assuming gentileons as real particles a very simple dynamical 

model will be constructed taking into account symmetry properties of the Y+ = 

Y(123) states, the color gauge theory 
12−14

 and the Dirac equation.
15,16

 We will 

see that at least for three gentileons systems our model gives a fair explanation 

for the physical confinement of gentileons.  
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Thus, according to preceding papers
1,5−11

 the wavefunction Y+  = 

Y(1,2,3) = Y(uvw) that represent three identical weakly interacting gentileons 

that occupy three different states | u >,  | v > and | w > is given by  
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Y                                   (1.1), where  

Y1 = [u(1)v(2)w(3) + u(2)v(1)w(3) – u(2)v(3)w(1) – u(3)v(2)w(1)] /√4, 

 

Y2 = [u(1)v(2)w(3) + 2u(1)v(3)w(2) – u(2)v(1)w(3) + u(2)v(3)w(1)  

                                                        – 2u(3)v(1)w(2) – u(3)v(2)w(1)] /√12,  

 

As seen elsewhere
1,5−11

 the particles permutations operations Pi on the 

state Y(1,2,3) can be interpreted as rotations of an equilateral triangle in the 

Euclidean space E3. To show this we have assumed that in the E3 the states u,v 

and w occupy the vertices of an equilateral triangle taken in the (x,z) plane, as 

seen in Fig.1. The unit vectors along the x, y and z axes are indicated by i, j 
and k.  In Fig.1 the unit vectors m4, m5 and m6 are given by m4 = −k,  m5 = 

−(√3/2) i + (1/2) k  and m6 =  (√3/2) i + (1/2) k , respectively. 

 We represent by Y(123) the initial state whose particles 1, 2 and 3 

occupy the vertices u, v and w, respectively. The permutations PiY = UY and   

PiY = VY can be represented by unitary operators U = exp[i j.σ(θ/2)] and  

V = i exp[i mi.σ(φ/2)];  θ = ± 2π/3 are rotations angles around the unit vector 

j, φ = ± π are rotations angles around the unit vectors m4, m5 and m6 and σ are 

the Pauli matrices.
15,16 

 
Figure 1.The equilateral triangle in the Euclidean space (x,y,z) with vertices 

occupied by the states u, v and w. 
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 We have called AS3 the algebra
1,5−11

 of the symmetric group S3 .This 

algebra is spanned by 6 vectors, the irreducible matrices {D
(2)

(Pi)}i= 1,2,..,6 that 

are indicated by {ηi } i= 1,2,..,6. It was shown that associated to this algebra there 

is an algebraic invariant Kinv = η4 + η5 + η6 = ( m4 + m5 + m6 ) σ = 0.  From this 

equality results that Kinv = 0 can be represented geometrically in the (x,z) 

plane by the vector M identically equal to zero M = m4 + m5 + m6 = 0. 

Usually, for continuous groups, we define the Casimir invariants which 

commute with all of the generators (in our case the generators are η4 and η6 ) 

and are, therefore, invariants under all group transformations. These 

simultaneously diagonalized invariants are the conserved quantum operators 

associated with the symmetry group. In our discrete case we use the same 

idea. So, the operator Kinv = 0 which corresponds to the genuine gentilionic 

representation of the AS3 is identified with a quantum operator which gives a 

new conserved quantum number related to the S3.  

 

 

(2) Dynamical Confinement Model. 
 Let us consider now a gentileonic system that is formed by three 

identical gentileons with spin ½. We will assume
1,5−11

 that this system is 

represented by the wavefunction Ψ = φ Y(123) where φ is symmetric function 

that obeys Dirac´s equation Hφ = Eφ where H is the hamiltonian operator of 

the stationary state with energy E.  It will be also assumed
1,5−11

that the states u, 

v and w are the three SU(3)color states blue (b), red (r) and green (g) given by 

|b> = (√3/2)|+> − (1/2)|−>, |r> = (√3/2)|+> + (1/2)|−>, and |g> = |−> , where 

|+> = 








0

1
 and −> = 









1

0
 , that are defined in the color plane (I3,Y). The axes I3 

and Y correspond to color isospin and color hypercharge, respectively In this 

way the permutations of the particles around the unit vectors m4, m5 and m6 

correspond to discrete rotations in the SU(3)color plane (I3,Y) by angles 2π/3.. 

These rotations can now be interpreted as being produced by color exchange 

between gentileons. If we were in a quantum field theory context we would 

say that the color exchange between gentileons is due to gluons.
11,12 

 

Following the Yang−Mills gauge theory
12−14

 we will write the gauge field 

Aµ(x) that acts on the internal color space represented by Y(brg) as 

 

                                        Aµ (x) = Σk [∂θ
k
(x)/∂xµ] Fk                                  (2.1), 

 

where θk
(x) are the rotation angles in (I3,Y) and Fk the generators of the 

internal symmetry of the SU(3)color group.  
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 In this context
1,5−11

 the constant of motion, that is, Kinv = 0 would be an 

invariant named color Casimir. This invariant has now a beautiful and simple  

interpretation in the color space: “the color charge is an equal to zero constant 

of motion”. This color charge conservation would be a selection rule for 

gentileons confinement. In this scheme, color charge conservation and 

gentileons confinement rules are dictated by the symmetry of the gentileonic 

state Y(brg). Taking into account these properties we will propose a simple 

phenomenological dynamical model to explain the gentileon confinement. 

This model will elaborated within the framework of the Dirac equation 

assuming that the gentileons are submitted to an external gauge field Aµ (x) 

given by (2.1). So, putting in a first approximation Fk = constant = C the 

statefunction ψ(x) of the gentileon will be given by
12,13,15,16

 

 

                         [γµ (pµ − g aµ(x)) − im] ψ(x)= 0                          (2.2), 

 

where aµ(x) =∂θ(x)/∂xµ, g is the coupling constant for the color exchange 

between gentileons and m the rest mass of the gentileon. It will be also 

assumed that aµ(x) is a vector field, that is, aµ(x) = (0,a(x))= (0, gradθ(x)). 

Now we suppose that the gentileon moves freely in the region r < ro, where ro 

is the radius of the 3−gentileon system and that it interacts with the field a(x) 

only when it reaches the frontier r = ro. In this interaction the gentileon color is 

abruptly changed. Analyzing this interaction in terms of rotations in the (I3,Y) 

plane we see that one color state is effectively transformed into another when 

a rotation by an angle 2π/3 is accomplished. Thus, we could imagine θ(x) as a 

step function that at the point r = ro varies from zero up to 2π/3. This would 

imply that  

 

                                     a(r)  = gradθ(x) = δ(r − ro) r                                 (2.3), 

 

where r is the unit vector along the radial direction. In these conditions (2.2) 

becomes 

 

                     [ i γo
 + i γ·grad − i g γ·r δ(r − ro) − m] ψ(x)= 0                      (2.4). 

 

In order to solve (2.4) we use the polar co−ordinates and write
16 

 

                                                          ψ(x) = exp(−iEt) 








Ω

Ω

2

1

)(

)(

rg

rf
                                      (2.5), 
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where Ω1 = ΩJ ℓ m  and Ω2 = (−1) 
(1+ ℓ − ℓ´)/2

  ΩJ ℓ´m  are the spinor spherical 

harmonics, ℓ = J ± ½  and ℓ´ = 2J − ℓ.   
 Taking into account (2.4) and using the property

16
 

 

                                         ΩJ ℓ´m =  (−1)
ℓ − ℓ´

 ΩJ ℓ m                     

we get from (2.4):
17

 

 

                df(r)/dr + (1 + K)f(r)/r – i g δ(r − ro)f(r)/2 − (E−m)g(r) = 0, 

                                                                                                                  (2.6), 

                dg(r)/dr + (1− K)g(r)/r – i g δ(r − ro)g(r)/2 + (E−m)f(r) = 0 

 

where K = −(ℓ +1) when  J =ℓ + ½  and K =ℓ when J = ℓ−1/2. 

 From (2.6) we verify that for r ≈ ro we obtain, considering f(r) and g(r) 

as exact solutions of (2.6), 

 

                                      df(r)/dr ≈ i g δ(r − ro)f(r)/2    

and                                                                                                            (2.7) 

                                      dg(r)/dr ≈ i g δ(r − ro)g(r)/2    

 

At the neighborhood of ro an obvious solution of (2.7) is that f(r) = g(r). 

Consequently, at r = ro we must have 

  

        f(ro) = g(ro)                                                (2.8), 

 

This result, as will be shown below, is a necessary condition to explain the 

confinement of the gentileons. Indeed, let us calculate the radial flux Jr(r)
15,16

 

of the gentileons through the surface of a sphere with radius r that is given by 

 

                                          Jr(r)= Ψa (r γ)Ψ = ΨaγrΨ                                   (2.9).  

Taking into account that Ψa = Ψ+γ4 = Ψ+β ,  β = 








1-  0

0    1
 and that  

γr = 








0    

-    0 r

rσ

σ
 we see that (2.9) is written as  

             Jr = Ψ+βγrΨ =  −i(f* Ω1*  − i g* Ω2*)  








Ω

Ω

)(

)(

1

2

r

r

f

ig

σ

σ
  

 

                                =  [f*g (σrΩ2) Ω1* − f g*(σrΩ1)Ω2*]                         (2.10), 

 

where Ω1 = ΩJ ℓ m and  Ω2 
 
= ΩJ ℓ´m = (−1)

ℓ − ℓ´
 ΩJ ℓ m.= (−1)

ℓ − ℓ´
 Ω1. Since

16
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ΩJ ℓ´m = (−1)
ℓ − ℓ´

 (σrΩJ ℓ m) we verify that (2.10) becomes 

 

                                Jr =   = ( f*g |Ω1|
2
− f g*|Ω2|

2
)                                      (2.11). 

 

As ΩJ ℓ´m  = (−1)
ℓ´− ℓ

(σ n)ΩJ ℓ m we see that |Ω2|
2
 = |(σ n)|

2
 |Ω1|

2
. Since for a 

generic unit vector n we have
15,16

 |(σ n)|
2
 = (σ n) (σ n) = n n + i σ (n x n) we 

verify that |(σ n)|
2 
 = 1 which implies that |Ω2|

2
 = |(σ n)|

2
|Ω1|

2 
= |Ω1|

2
 . This 

means that the radial flux Jr (r) given by (2.11) becomes    

 

                             Jr(r) = [f*(r)g(r)
 
− f(r)g*(r)] |Ω1|

2
                        (2.12). 

 

Consequently, if at the boundary r = ro the condition f(ro) = g(ro) is obeyed , 

according to (2.8), we get Jr(ro) = 0, that is, there is no flux of gentileons 

through the boundary surface of the system. So, gentileons are confined. This 

can be interpreted as the manifestation in Lorentz space of the confinement 

selection rule predicted by the Casimir Kinv = 0 defined in the color space.  

 

 

(3)Conclusions and Discussions. 
 In preceding papers,

1,5-11
 based on peculiar symmetry properties of the 

intermediate gentileonic states Y we have deduced selection rules,
1,5−11

 which 

predict that gentileons are confined entities and gentileonic systems are 

non−coalescent. The simplest physical explanation (probably the more 

plausible) for these properties is that gentileons are quasi−particles (collective 

excitations). However, assuming gentileons as real particles we have proposed 

a simple dynamical model taking into account the symmetry properties of the 

Y(123) states, the color gauge theory and the Dirac equation. We have shown 

that (at least for three gentileons systems our model is able to explain the 

physical confinement of gentileons.  

Finally it is interesting to remark that in the “MIT bag model” to get the 

confinement of quarks in hadrons it is necessary to assume the boundary 

condition
18  

 

γrΨ = iΨ.                                               (3.1). 

 

Following similar calculations performed in Section 2 and using the relation
16  

σr ΩJ ℓ´m = i
( ℓ − ℓ´)

 ΩJ ℓm it can verify that from (3.1) we have   

 

                                            f(r) = (−1) 
(1+ ℓ − ℓ´)

 g(r),  

 

that, using (2.12), also would be able to explain the gentileonic confinement.  
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