Quantum deformation of the angular distributions of synchrotron radiation. Emission of particles
in the first excited state.
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The exact expressions for the characteristics of synchrotron radiation of charged particles in the first excited
state are obtained in analytical form using quantum theory methods. We performed a detailed analysis of
the angular distribution structure of radiation power and its polarization for particles with spin 0 and 1/2. It
is shown that the exact quantum calculations lead to results that differ substantially from the predictions of

classical theory.

I. INTRODUCTION

The theory of synchrotron radiation (SR) is now a very
well developed section of theoretical physics and is widely
represented in numerous scientific articles, reviews [1, 2],
monographs [3 - 6] and textbooks [7].

In particular, in the classical theory of SR it is possible to
find answers to basic questions in clear and analytical form
and to propose algorithms for numerical simulation of the
physical properties of SR: spectral - angular, spectral, angu-
lar distributions and polarization properties.

The quantum theory of SR has also provided a number
of significant achievements which have allowed the scope of
classical theory to be clearly specified. Moreover, with the use
of the quantum approach it has been possible to predict the ef-
fects of radiation induced self-polarization of electron beams
and the quantum excitation of synchrotron oscillations. Both
these phenomena where later confirmed experimentally.

However, up to now we know of very few theoretical re-
sults describing the variation of the angular distributions of
SR in regions where the quantum corrections can no longer
be regarded as small. For example, in [8, 9] quantum the-
ory is used to study the SR of non-relativistic particles at low
energy levels. It was shown that in the non-relativistic re-
gion the influence of quantum corrections is more noticeable
the smaller the initial energy level of the particles. Articles
[10 - 12] also indicate areas of possible substantial manifesta-
tion of the quantum corrections for ultra-relativistic particles.
The small number of papers on the theory of SR in regions
where quantum corrections become significant is even more
surprising, given that the spectral - angular distribution of SR
in these areas is theoretically described by exact analytical ex-
pressions.
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The urgency to fill this theoretical gap rises from the fact
that the parameters of modern accelerators are very close to
the region where quantum corrections should be taken into
account. In astrophysics, SR is currently one of the main ex-
perimental sources of our knowledge about the physical pro-
cesses in outer space and, without a doubt, the conditions of
space SR can be properly understood only through the use of
quantum theory.

Here we investigate the main characteristics of the SR for
particles in the first excited state, using exact analytical meth-
ods of quantum theory. In particular, comparative analysis of
classical and quantum theory results is performed for angular
distributions and radiation polarization.

II. RADIATED FREQUENCIES

The energy E = moyc*y (where, my is the rest mass, ¢ is
the speed of light, and v is the relativistic factor) of a spinless
particle (boson) subjected to an external constant and uniform
magnetic field with intensity H > 0 in the absence of motion
along the field is given by [3 - 6]
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For a particle with spin 1 /2 (electron) we have
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where, n = 0, 1, 2, 3, ... corresponds to different energy lev-
els, e is the algebraic value of the particle charge, 7 is Planck’s
constant. In what follows, only negatively charged (e < 0)
particles will be considered.

We will conduct a comparative analysis of the radiation
characteristics for an electron and a boson that have equal en-
ergy (the same relativistic factor y) and the same energy level
number n, which according to (1), (2), involves various inten-
sities H for the electron and the boson.

It is known [1 - 7] that the spectrum of synchrotron radi-
ation is discrete, and for bosons and electrons with relativis-
tic factor y and with the energy level number n, the possible
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frequencies of emitted photons w”, w® are determined by the
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where, v = 1, 2, 3,...,n is the number of the radiated har-
monic, and 6 is the angle between the external magnetic field
and the direction of photon emission. It is not difficult to es-
tablish the inequality w® > w”. When we consider w*’ as
functions of 6, then other fixed parameters of these functions
are maximized at 8 = 7/2 (photon moves perpendicular to the
magnetic field vector and parallel to the particle orbit plane)
and minimized at 6 = 0 (photon moves parallel to the mag-
netic field).

When a particle is in the first excited state n = 1, only the
first harmonic v = 1 may be emitted and from (1) — (3) we
find for the electron
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In what follows, a detailed study of the main characteris-
tics of SR for particles in the first excited state n = v = 1 is
performed. In this case, all particle radiation properties are
determined by its angular distribution and polarization.

Polarization components of the SR will be labeled by the
index s and we choose a standard [1, 5, 6] labeling method:
s = g = =1, where g = 1 is the right and g = —1 is the
left circular polarization component; s = 2, 3 is used for o—
and m— components of linear polarization respectively; s = 0
denotes the total radiated power (equal to the sum of the two
linear or the two circular polarization components).

III. ANALYTICAL EXPRESSIONS FOR THE PHYSICAL
CHARACTERISTICS OF THE RADIATED POWER

In quantum theory, general analytical expressions for
the spectral - angular distribution of the SR are known [1, 5,
6] and expressed in terms of Laguerre functions, with com-
plex dependence on n, v, B, 6. In the special case of n = v = 1
the general formulae are considerably simplified and the rel-
atively simple expressions which can be obtained are given
below.

IIL.1. Spinless particle (boson)

We introduce an intermediate parameter X and an inter-
mediate variable x
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0<%PB) <2- V3~0,26794919; 0<X(B, ) < Xo(B).

With this notation the boson angular distribution of radiated
power W” can be written as
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From (7), taking into account (6) and integrating with re-
spect to 6 (0 < 6 < m) one obtains the following expression
for the total power Wg (B) radiated by a boson
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From (7) and (6), it also follows that the power of the polar-
ization components Wf(+)(,8) radiated in the upper half plane
0 < 6 < /2 can be represented as
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where the following notation is used
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Functions f]f’(x), (k =1, 2, 3), introduced in (8) — (10), can
be represented as integrals of elementary functions, depending
on a parameter (the function flb (x) is elementary itself, how-
ever, the functions f2” (%), f3b (x) can not be expressed in terms



of elementary functions)
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Quantities ¢?(8) determine the contribution of the o—
component of polarization to the total radiation in the upper
half-plane, which determines the degree of polarization in the
upper half-plane.

For numerical calculations of the functions f7(x), f7(x) it
is convenient to perform the following substitution in the in-
tegrals (11)
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after which we have
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When |x| < 1 the integrand in (13) and (14) remains finite
for all values of the integration variable, whereas in (11) the
second integral is improper.

For the power of polarization components Wf(f)(ﬂ) (s =
-1, 1, 2, 3) emitted in the lower half plane 7/2 < 6 < 7, we
obtain
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Using expression (8), the angular distribution of radiated
power (7) can be represented as
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Functions p?(B; 6) have the properties

PiB:0) = ph(Bim—0) (s=0,2,3); phB;6) = p" (Bix—0).

Here the quantities p’(8; 6) dQ determine the contribution to
the total radiated power of the s— polarization component

emitted within a small solid angle d€ around the direction
defined by angle 6, which means that p’(8; ) are distribution
functions of §. We give some special values of the functions
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from which it follows that it is sufficient to study the behavior
of q? (B; 6) and qg(ﬂ; 6) only. The functions ¢2(8; 6) determine
the contribution of the s—polarization component to the angu-
lar distribution of radiation in the direction given by 6, and
determine the degree of polarization for each fixed 8 and 6.
We find some particular values of the functions ¢°(8; 6)
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Note that for functions f2(8), ¢%(8;6), p°(B;6), ¢>(B; 6)
point 8 = 1 is not singular, and at this point there exist contin-
uous derivatives with respect to S for all these functions.

IILI.2. Spinor particle (electron)

We introduce an intermediate parameter x, and an interme-
diate variable x
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0<xB)<1; 0<x(B,0) < x(B).



For an electron, the SR characteristics depend also on spin
orientation. We will consider the transverse [1, 3-7] orienta-
tion of electron spin, defining it with the spin quantum number
{ = x1. Let { = 1 correspond to the orientation of electron
spin in the initial state along the direction of the magnetic field
and { = —1 correspond to the orientation of electron spin in
the initial state opposite to the direction of the magnetic field.
Itis known [1, 5, 6] that, in the case under consideration, in the
final state (for which n” = 0) the electron spin can be aligned
only against the direction of the magnetic field, ' = —1. Thus,
for { = —1 the transition to the ground state occurs without
spin flip, and for { = 1 the transition is necessarily accom-
panied by spin flip. With this in mind, the electron angular
distribution of radiated power W¢ can be written as
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Here, we introduce the function
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By integrating expressions (22) with respect to 6 (0 < 6 <

m) and taking (21) into account we obtain the following ex-
pression for total radiated power of an electron
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The power of the polarization components W (+)(§ ; B) emitted
by an electron in the upper half plane 0 < 6 < 7/2 can be
represented similarly to (9), (10),
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where we have the following relations
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The functions f;(x) f5(x), introduced in (23) — (26), are ex-
pressed as integrals depending on a parameter (but can not

be expressed through elementary functions), but the function
f{(x) is elementary
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For the power of the polarization components Wf(_)({ 3 B)
emitted in the lower half plane /2 < 6 < 1, the relations (15)
are valid.

By analogy with (16), for an electron one can also introduce
Pi(L; B; 0) — the distribution of radiated power as a function of
the angle 6. Then expression (22) for radiated power W¢ for
an electron takes the following form
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For an electron, one can also introduce (by analogy with
(19)) the functions ¢({;B; 6), which determine the contribu-
tion of the s—polarization component to the angular distribu-
tion of radiation in the direction given by 6, and a degree of
radiation polarization for each fixed £,(,6. Taking into ac-
count (22) and (29) we find
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IV. THE MAIN FEATURES OF THE PHYSICAL
CHARACTERISTICS OF THE RADIATED POWER

We will analyze the main features of the various physical
characteristics of the SR for our case, based on the above the-
oretical expressions.

1. It is important to note that the angular distribution func-
tions p’(B;6) and pé(¢; B; 6) are finite for all values of 8 and
6 (including the point § = 1, which is not the case in classical
theory). For a boson it clearly follows from (16) and for an
electron from (29) that for all the functions p¢(B;6) there is
a finite limit p{(8 — 1;6) lgzz= p$(6). The functions p $(6)
have the form

_ — - ()
P5(6) = D50) = 5P5(6) = 5.
_ () cos 8
‘0= ———1|1 s 33
P () 28—3( * |c059|) (33)
where we use the notation
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O0) = . 34
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The function ®(6) is continuous at any 6 and its derivative
has a finite gap at 6 = 7 . In particular, we have
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whereas from (28), (30) it follows that
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which indicates the ambiguity of the double limit3 — 1, 6 —
/2.

2. First we should note the following remarkable feature.
As follows from the second and third rows of the formulae
(22) and (26), the function of angular distribution of the o—
component of polarization of SR for an electron with spin
{ = -1 coincides exactly with the function of the angular
distribution of the m—linear polarization component of SR for
an electron with spin { = 1. Accordingly, the function of the
angular distribution of the 7—component of linear polarization
for SR of an electron with spin { = —1 coincides exactly with
the function of the angular distribution of the o—linear polar-
ization component for SR of an electron with spin { = 1.

We can say that the angular distributions of linear polariza-
tion for an electron with spin { = —1 and an electron with
spin { = 1 ”switch places”. It is possible that this feature of
the angular distributions for electron SR takes place not only
for the initial state n = 1.

This angular distribution feature of the linear polarization
component of electron SR provides a physical explanation for
the following known fact. In classical SR theory and quantum
SR theory for spinless particles, the emission of the n-linear
polarization component is absent in the orbit plane (6 = 3)
(according to these theories the radiation in this direction is
completely linearly polarized and only the o—component of
linear polarization is emitted). This is not the case for elec-
trons and quantum SR theory tell us that for spinor particles
the emission of the m—linear polarization component is not
equal to zero at 6 = 7.

This result was first obtained (but has not been specifically
emphasized) in [13, 14], and in [15] this discrepancy with
classical theory was first noted, but no physical analysis of
this fact was carried out. Only in [16] was such an analysis
conducted. In particular, it was found that non-zero emission
of the 7—component of linear polarization in the orbit plane is
due solely to an electron transition with transverse spin. This
fact can be used as a possible indicator of spin orientation.
However, in [16] the possibility of the angular distributions
between the linear polarization components “switch places”
depending on the orientation of electron spin was not found.

We established here that the linear polarization components
of SR ”switch places”, depending on the orientation of the
transverse electron spin. This fact reveals a physical cause for
the presence of the m—linear polarization component of elec-
tron SR in the orbit plane.

3. The presence of a factor d({; (), defined by (23), in the
expressions for the power of electron SR, (22) and (24), indi-
cates that an electron with spin ¢ = 1 (in this case, the radia-
tion is accompanied by a spin flip) always radiates xy(8) times
less than an electron with spin { = —1 (radiation without a
spin flip). Thus, spin-flip transitions are always xo(8) times



less probable than transitions without spin flip. Since

1
xo(B) ~ Zﬁz < 1, when g« 1;
xo(B) ~ 1, when 1 -2 < 1, (37)

then in the non relativistic approximation only electrons with
spin { = —1 emit, whereas electrons with spin { = 1 in prac-
tice do not emit (remain in a quasi-stable state). In the rela-
tivistic case y > 1, the dependence of SR power on the spin
orientation disappears; transitions with and without spin flip
are equiprobable (however exchange of places between o—
and m—components of SR linear polarization, which depends
on the initial spin state, is preserved at all energies).

4. Using (8) and (24) we find the ratio of the total radiated
power of electron SR to the total radiated power of boson SR,
when an electron and a boson in the initial state are at energy
level n = 1 and have the same energy

Wi B) 27 f(B)

k(Z; = 0—§ k(-1; = 5 a0

@ =g LD =T F
k(13 B) = xok(=1; B) < k(=15 B). (38)

Numerical calculation, for which the results are summa-
rized in Table 1, shows that 3,375 < k(-1; 8) < 3,717. For
the function k(1; 8) we have: k(1; 8) < 1 when 8 < By =
0,8199913 (y < yo = 1,7471034) and k(1; ) > 1 when
B>Bo (v > o)

Thus, an electron with spin antiparallel to the field emits at
all energies almost four times more than a boson, and an elec-
tron with spin along the field begins to emit more than a boson
only in the relativistic domain. The radiated power for elec-
trons significantly depends on spin in the weakly relativistic
region, but with increasing particle energy, this dependence
disappears.

Table 1. Calculated values
Bl B | fB [k(=1; B k(1; p)
0.0[1.00000[1.00000(3.37500[0.00000
0.1]/1.00167|1.00002 | 3.37783 |0.00849
0.2]1.00673|1.01016|3.38651|0.03456
0.3/1.01532|1.02333|3.40164 |0.08019
0.4]1.02769|1.04272(3.42438 |0.14917
0.5]1.04423|1.06948 | 3.45661 |0.24817
0.6]1.06550|1.10543|3.50147 |0.38905
0.7/1.09533|1.15920| 3.56422 |0.59438
0.8]1.12581|1.21899|3.65435 |0.91359
0.9]1.16774|1.31125|3.78977 | 1.48887
1.0/1.22085|1.34454|3.71695 |3.71695

5. Consider the energy dependence of the functions
a>(B), ¢¢(B) (s = 1, 2), which determine the polarization of
the total radiation. Graphs of these functions are shown in the
Figure 1.

A quite unusual feature of the case under consideration is
that for the ultra-relativistic electron (8 — 1), according to
the precise limits (28), just the right-handed polarized radia-
tion remains in the upper half plane (in the ultra-relativistic
limit, the left-handed polarized radiation in the upper half
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FIG. 1. Functions q_(B), q(B), (s=1, 2).

plane is vanishingly small compared with the right-handed po-
larized radiation). In contrast, in the lower half plane the right-
handed polarized radiation is vanishingly small, and only the
left-handed polarization is emitted. The preferential linear po-
larization is completely absent. For bosons (also in classical
theory), there is no such phenomenon.

In the entire field of finite energy, the degree of right-
handed circular polarization in the upper half plane increases
with energy for both the electron and for the boson (whereas
in classical theory it decreases). The degree of linear polar-
ization of the electron and boson decreases with increasing
energy (in classical theory it increases).

6. The structure of the angular distribution functions
p(B;0) and p¢(B;0) is illustrated in Figures 2 — 9, which
demonstrate the evolution of these functions with particle en-
ergy.

The dependence of functions plz’ (B 6) and p5(B; 6) on S has
the simplest form (see the Fig.2 and 3). Moreover, both these
functions are monotonically increasing functions of 6 in the
region of 0 < 6 < 7 (qualitatively this behavior is consistent
with classical theory). Function pg(ﬂ; 0) is a monotonically
decreasing function of S for each fixed 6, whereas in classi-
cal theory there is no such monotony. For function p5(8; 6)
there is no monotonous behavior on 3, and though this shows
the influence of particle spin, the behavior of the electronic
functions is closer to classical theory than that of the bosonic
functions.

The evolution of functions pg’(ﬂ; ) and p5(B;0) is repre-
sented in Figures 4 and 5 respectively. Function pg(ﬂ; 0) is
monotonically decreasing with 6 in the 0 < 6 < 7 interval for
each fixed f, whereas function p§(B; 6) is monotonically de-
creasing only for 8% < 3/4, (y < 2). For 8% > 3/4, (y > 2),
the functions are not monotonous any more, and an internal
maximum point appears for these functions at Hg"‘”‘)(ﬁ). For
this case, the behavior of the electron distribution functions is
closer to classical theory compared to the boson ones.

Figures 6 and 7 show the evolution of the functions pll’ B;6)
and p{(B;0) in the 0 < 6 < m interval. From Fig. 6 it is
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clear that pl]’(,B; 6) are monotonically decreasing functions of
6, whereas the functions p{(8;6) for BE > 1/2, (% > 2)

lose their monotony and an internal maximum point 9(1’””)(ﬁ)
appears for these functions, which also qualitatively corre-
sponds to classical theory. For 8 — 1 the electron function
approaches 0 in the § < 6 < & interval, which corresponds
to the disappearance of the right-handed polarization in the

lower half plane.

Lastly, the distribution functions of total radiation pg(ﬁ; 0)
and p{(B; 0) are shown on Fig. 8 and 9, from which it fol-
lows that the bosonic function is a monotonically decreasing
function of 6 in the 0 < 6 < 7 interval (qualitatively the be-
havior is contrary to classical theory). The behavior of elec-
tron functions is qualitatively closer to classical theory and for
small g these functions are monotonically decreasing. Still for
B% > 1/2, (y* > 2) they lose monotony and there is an inter-

nal point of maximum for these functions at Gg"“x)(ﬂ) .

Figure 10 presents graphs of the functions 6" (8) (s
0, 1,3). For 8 - 1 (y — o) all the angles 6"?(8) —

[STET

of B in the following order: { 0.0, 0.4, 0.7, ¥3/2, 0.96, 0.99, 0.999, 1}

depend on 3 in the following way

ax T 2 o b4 -1/3
6B x5 BB~ - (7))
g 1
anax(ﬂ) =~ z - W . (39)

Figure 11 shows graphs of the maximum value for
25" @), piB).

Classical theory predicts the phenomenon of SR concentra-
tion at a narrow angle in the vicinity of the orbital plane for an
ultra-relativistic particle. A necessary (but not sufficient) con-
dition for this concentration is the tendency of angles 6" (3)
to approach 7 for § — 1 (y — o). Although for an electron
(and o—components of the boson radiation) this condition is
satisfied, it is clear from the behavior of the functions p? B;6)
and p$(B; 6), shown in the Fig.2 — 9, that there is not a signif-
icant concentration of radiated power in the orbital plane (in
the vicinity of 6§ = g) in this case, which contradicts classical
theory.
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7. Lack of emission concentration in the vicinity of § = 7
is also confirmed by the dependence of the effective angles
AL(B), A%(B) on energy (the notion of an effective angle for
SR was introduced in [17 — 20]). Figure 12 shows graphs
of these functions, from which it follows that for s = 0, 1, 2,
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FIG. 7. Functions pT([S, 0). Curve numbers correspond to increasing values
of B in the following order: { 0.0, 0.6, 0.1/+2, 0.8, 0.9, 0.96, 0.99, 0.999}
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these functions are weakly decreasing, tending to a finite value
at 8 — 1. In the relativistic case, an arbitrarily large con-
centration of radiation in the orbit plane does not occur, in
contrast to the conclusions of classical theory. The functions
Ag’(ﬁ), A5(B) are increasing with 8, which means that the 7—
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component of emission is diverging.

8. The most qualitative agreement with the results of
classical theory is observed in the evolution of functions
a°(B; 0), ¢¢(B; H), (s = 1, 2), which determine the polariza-
tion of radiation for each fixed § at an angle 6. Graphs of these

of B in the following order: { 0.0, 0.8, 0.95, 0.99, 0.999, 0.999999}
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FIG. 16. Functions qZ(B, 0). Curve numbers correspond to increasing values
of B in the following order: { 0.0, 0.8, 0.95, 0.99, 0.999, 0.9999, 0.999999}

functions are shown in Figures 13 — 16. From these graphs it
follows that in the field direction (§ = 0), the radiation has
completely right-handed polarization and preferential linear
polarization in this direction is missing. In the orbital plane
(6 = %) there is a complete linear polarization, and the pref-



erential circular one is absent, which coincides with the con-
clusions of classical theory. Quantitative differences between
¢2(B; ) and ¢%(B; ), (s = 1, 2) become noticeable only for
B — 1

1
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