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Abstract.  

This article was written for undergraduate and postgraduate students 
of physics. We analyze the electric dipole moments (EDM) of atoms and 
molecules when they are isolated and when are placed in a uniform static 

electric field. This was done this because usually in text books and articles 
this separation is not clearly displayed.  
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(I) Introduction. 
Our goal is to write an article for undergraduate and postgraduate 

students of physics to study the electric dipole moments (EDM) of atoms 
and molecules when they are isolated and when they are placed in a 
uniform static electric field. We have done this because many times in text 
books and articles this separation is not clearly displayed. The dipole of an 
isolated system will be named natural or permanent EDM and that one 
which is generated by an external field will be named induced EDM.  

 So, we begin recalling the definition of EDM adopted in basic 
physics courses1−4 for an isolated aggregate of charges. If in a given system 
positive charges + q and negative −q are concentrated at different points we 
say that it has an EDM. It is mathematically defined by the vector p = qd, 
where d is the distance between the centers of charges positively oriented 
from −q to + q.  

In general case, in classical electrodynamics,5,6 p is defined by  
 
                                   p = ∫ V dr r ρ(r)                                        (I.1), 
 

where ρ(r) is the charge density and V is the volume of the system. From 
(I.1) we see that p = 0 or p ≠ 0 depending on the charge distribution ρ(r). 

 Let us consider the simplest case of the hydrogen−like atom where a 
single eletron describes, according to classical mechanics,7,8 an elliptical 
orbit r = r(t) around a nucleus which is at the origin of the coordinate 
system. In this case the EDM of the atom p(t) = e r(t), where e is the 
electron charge, depends on the time t. In spite of p(t) ≠ 0 for each time t its  
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average value < p(t) > = < p > = 0. The expected (or observed) EDM value 
is < p > = 0 because the effective center of negative charges coincides with 
the center of positive charges, the nucleus. As will be seen in section 1, 
within the framework of quantum mechanics, depending on the atomic 
state we can have < p > ≠ 0. 

In quantum mechanics9−12 an atom or molecule is represented by a 
wavefunction |Ψ(r) > which obeys the equation Ho |Ψ(r) > = E |Ψ(r) >, 
where Ho and E are, respectively, the Hamiltonian operator and the energy 
of the isolated system. The expected (average) value < p > in the state  

|Ψ(r) > is defined by 
 
                    < p > = ∫ V dr Ψ*(r) r Ψ(r) = < Ψ(r)| r | Ψ(r) >              (I.2).  
 

Since Pr = − r, where P is the parity operator we verify from (I.2) that  
< p > = 0 if |Ψ(r)> has a definite parity, that is, if P|Ψ(r)> = +|Ψ(r)> or 
−|Ψ(r)>. The EDM  can be < p > ≠ 0 only when |Ψ(r)> does not have a 
definite parity.  

In Section 1 the EDM of the isolated hydrogen−like atom will be 
calculated in the non−relativistic and the relativistic quantum approaches.  
It will be shown that < p > = 0 for the nondegenerate energy ground−state 
and that < p > ≠ 0 only for degenerate excited states. When < p > ≠ 0 the 
EDM is called natural or permanent. This feature is found not only for the 
hydrogen−like atoms but also for all multielectron atoms10−12 as will be 
commented at the end of Section 1.  

Even though the total charge of an isolated molecule is zero, the 
nature of chemical bonds is such that the positive and negative charges do 
not completely overlap in most molecules. These non-uniform distributions 
of positive and negative charges, with different electronegativity, can create 
permanent electric dipoles, that is, < p > ≠ 0 at molecular ground−states.13 

Molecules with permanent EDM are called polar molecules like H2O,14 
HF,…, NaCl.  In Section 2 we present a simple model to explain the 
existence of natural EDM in ground states of polar molecules.13,14  It will 
be also calculated the expected values of these EDM for spherical and 
symmetrical top molecules turning freely in the space. In Section 3 we 
study the EDM of free polar molecules.  

Even if atoms and non polar molecules do not have  natural EDM it 
is possible to induce dipoles by the application, for instance, of a static 
electric field E. These dipoles are called induced EDM. E produces a shift 
of the energy levels of the systems known as Stark effect 

10−12 that will 
studied in Section 4. 
    Following the procedure adopted in our preceding didactical papers a 
number minimum of references (articles and books) will be cited. 
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 Many sensitive experiments have been developed to search EDM of 
atoms, molecules and elementary particles.15 These experiments are of 
fundamental importance in order to decide which of the myriad theoretical 
models correctly describes violations of time−reversal (T) invariance that 
have been observed in the in the K2

o → 2π decay. It is known that the 
existence of EDM on an elementary particle would violate both parity (P) 
and time−reversal invariances.15 Since the parity is well known to be 
violated there is no reason why an elementary particle should not have a 
natural (or intrinsic) EDM. This situation has stimulated considerable 
interest for search of the intrinsic EDM of elementary particles. Much 
theoretical and experimental research has been performed15 to determine 
the intrinsic de of electrons. The present experimental upper limit on de is 
|de| ≤ 1.6 10−27 e cm.15  

The analysis to search EDM of atoms, molecules and elementary 
particles can be performed assuming from beginning the CPT symmetry 
principle.15 In this paper we take into account only the parity operation. 
 
(1) EDM of Isolated Hydrogen−like and Multielectrons Atoms.  

 The parity operator P introduced in quantum mechanics,10−12 which 
has no classical analogue, is defined as an operator that reflects the 
coordinates of all particles through the origin: 
 
                                    Pf(r1,r2,…,t) = f(−r1,−r2,…,t)                             (1.1). 
 
From (1.1) we see that P2 is the unit operator 1. Note that Pf is not 
necessarily equal to ± f, that is, f can have an indefinite parity. Functions 
with definite parity obey the condition Pf = + f or Pf = − f.  

Indicating by |Ψ(ri)> the energy eigenfunction of the isolated atom 
where ri are the positions of the ith electrons relative to the nucleus the 
expected EDM value for the atom in the state |Ψ(ri)>, according to (I.2), is 
given by  
                         < p > = < Ψ | p | Ψ > =   ∫|Ψ(ri)|

2 p dVN                        (1.2)                     
 
where p = eΣi=1,…,N ri and is N the total number of the electrons in the atom. 
Thus, for states |Ψ(ri)> with well definite parities that is, when P|Ψ(ri)> = + 
|Ψ(ri)> or − |Ψ(ri)>, since Pp = − p, the observed EDM value (1.2) for 
these states is null , that is, < p > = 0.  When |Ψ(ri)> does not have a 
definite parity < p > is not necessarily equal to zero. 
 
(1.1) Hydrogen−like atom:Non−Relativistic Approximation 

Before to calculate the EDM of an isolated hydrogen−like atom let 
us recall the definition of degenerate and non−degenerate energy level in 
quantum mechanics.9−12 Let us indicate by Ho, un and En the Hamiltonian, 
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the energy eigenfunctions and eigenvalues, respectively, of the atom or 
molecule. The energy level En is named f−fold degenerate when there are f 
different eigenfunctions {unk}k=1,2,…,f with the same energy En.  The energy 
spectrum is said non−degenerate when to a given function un corresponds 
only one eigenvalue En, that is, when f =1. 

 Now we are in condition to answer the following question: for what 
kind of states the parity is well definite? To do this we begin analyzing the 
hydrogen−like atom in the non−relativistic approximation. In this case its 
energy eigenstates are given by |nℓm> = Ψnℓm(r,θ,φ) = Rnℓ(r) Yℓm(θ,φ).9−12  

The ground-state |100>=Rno(r)Yoo(θ,φ)=Rno(r)/√4π is non−degenerate 
with a positive parity, remembering that5,6 PYℓm(θ,φ)=(−1)ℓYℓm(θ,φ). 
Consequently, according to (1.2), the average EDM of the hydrogen in the 
ground−state is given by 

 
       < p >11 = (e/4π) ∫ r3 |Rno(r)|

2 dr ∫4π r dΩ = 0                        (1.1.1), 
 
where r = r/r is the radial unit vector and Ω is solid angle.  
 Now, let us consider the first excited state n = 2 which is a 4−fold 
degenerate energy eigenstate.9−12 So, the n =2 state Ψ2 would be given, in 
the general case, by a linear superposition of the components |200>, |210>, 
|21+1> and |21−1>, that are shown explicitly elsewhere.10−12  Supposing, 
for instance, that Ψ2 is only given by Ψ2 = (|200> + |210>)/√2, since the 
diagonal matrix elements <200|d|200> and <210|d|210> are equal to zero, 
we get   
                
< p >22 = < Ψ2| d | Ψ2 > = <200| e r cosθ |210 > z  =  

                                                                                                           (1.1.2),                            
           = e ∫ R20(r) R21(r)r

3dr∫dΩcosθY0,0(θ,φ)Y1,0(θ,φ) =3eaoz ≠ 0   
 
where ao is the Bohr radius and z is unit vector along the z axis. Similarly, 
we can be shown that < p >nn may be non null for other hydrogen excited 
states n. According to (1.1.2) the order of magnitude of the EDM for the 
 n =2 excited state is ~ e ao = 5 10−9 e cm. 
 
(1.2) Hydrogen−like Atom: Relativistic Approximation. 

 Using Dirac´s equation the stationary states wavefunctions of one 
electron in a Coulomb field are given by11 
 
                             Ψnℓjm = |nℓjm> = ψnj(r) Φℓ1/2jm(θ,φ)                         (1.2.1), 
 
where the radial functions ψnj(r) are in the zeroth approximation the same 
functions Rnℓ(r) of the non−relativistic Schrödinger´s equation for a 
spinless particle.11,12 The generalized angular momentum functions 
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Φℓ1/2jm(θ,φ) which take into account the total angular momentum j, its the  
z−component m, the orbital angular momentum ℓ and the spin ½ functions 
χ ½ ms are given by11,16 
 
      Φℓ1/2jm(θ,φ) = ∑

−= 2/1,2/1sm

(ℓ,1/2,m−ms,ms | jm)Yℓ,m−ms(θ,φ) χ ½ ms       (1.2.2), 

 
where (ℓ, m−1/2,m−ms,ms | jm) are the Clebsch−Gordan coefficients11,17−19  

and χ ½ ms  are the two components spin functions, for ms = + 1/2 and −1/2,  
  

                             χ ½,½ = χ+  = 









0

1      and      χ ½,−½ = χ− = 









1

0 .   

 
The wavefunctions (1.2.1) are simultaneously eigenfunctions of Ho, J

2, s2 
and L2 with the following eigenvalues: 
 
Enj = − (µZ4e4/2ħ2n2){1 + (α2/n)[ 1/(j + 1/2) − 3/(4n) ],     α =e2/ħc, 
 
L2 =  ħ2 ℓ (ℓ+1),   ℓ = 0,1,…, n−1                                                       (1.2.3). 
  
J2  =   ħ2 j(j+1),   j = ℓ ± ½ ,  m = −j, −j +1,…, j −1, j   and   s2 = 3ħ2/4     
 
Taking into account the Clebsch−Gordan coefficients17,18 and that  
ℓ = j ± ½ the function (1.2.1) are written as16 
 
 
(a)   j = ℓ + ½    

u− =  Ψn ℓ j= ℓ+1/2 m  = [Rn,j−1/2(r)/√(2j)]  














−

+

+1/2m1/2,-j

1/2-m1/2,-j

Y  m)  (j

Y  m)  (j
                                     

 
                                                                                                             (1.2.4)                                               
(b)   j = ℓ − ½    

u+ =  Ψn ℓ j= ℓ−1/2 m  = [Rn,j+1/2(r)/√(2j+2)]  














++−

−+

++

+

1/2m1/2,j

1/2-m1/2,j

Y  m) 1 (j

Y  m) 1 (j
                                     

 
 
For the ground−state n =1, ℓ = 0 only j = ½ is possible. For these quantum 
numbers, since m = ½ and − ½, we verify that there are two functions  
Ψ1 0 1/2 1/2 and Ψ1 0 1/2 −1/2 for the ground-state, both with the same energy E1 ½ 
given, respectively, by 
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Ψ+ = Ψ1 0 1/2 1/2 = R10(r) Yoo(θ,φ) χ+   =  (R10(r)/√4π) χ+             (spin up), 
                                                                                                             (1.2.5). 
Ψ− = Ψ1 0 1/2 −1/2 = R10(r) Yoo(θ,φ) χ− = (R10(r)/√4π) χ−          (spin down)    

                                   

and  
                                   E1 1/2 = E1(Bohr){1− Z2 α2 }                                                 
 
For the first excited state n = 2 there are the following possibilities 
 
n = 2, ℓ = 0, j = ½   →  Ψ2 0 1/2 m  → E2 ½ = E1(Bohr){1− 5Z2α2/16}  
 
n = 2, ℓ = 1, j = ½   →  Ψ2 1 1/2 m  →  E2 ½ = E1(Bohr){1− 5Z2α2/16}   (1.2.6)                 
 
n = 2, ℓ = 1, j = 3/2  →  Ψ2 1 3/2 m  →  E2 3/2 = E1(Bohr){1− Z2α2/16} 
 
where the functions Ψ seen above can be constructed using (1.2.4). The 
level E2 3/2 is 5−fold degenerate since m =−3/2,−1/2, 0, 1/2, 3/2. The level 
E2 ½ is 4−fold degenerate being represented by 4 different states Ψ2 0 1/2 m 
and Ψ2 1 1/2 m with m = +1/2 and −1/2. Note that the levels 2s1/2 and 2p1/2 are 
shifted with respect to one another by ~1040 Megacycles20 (microwave 
region). This shift which is called Lamb−shift

  is explained by the quantum 
electrodynamics.20  

Using (1.2.5) we verify that for the relativistic hydrogen 
ground−state  n =1 the EDM  expected value < p >11 = 0 because  
  
< Ψ+| r | Ψ+ > = < Ψ−| r | Ψ− > = < Ψ+| r | Ψ−> = < Ψ−| r | Ψ+ > = 0    (1.2.7). 
 

Now, let us calculate the expected value of the EDM for the 
degenerate excited states n > 1. For simplicity we calculate the EDM only 
along the z−axis, that is, < pz > = e < z > = e < r cosθ >. This value will be 
obtained calculating the matrix elements  < u−| z |u− >,  < u+| z |u+ >  and     
< u+| z |u− > =  < u−| z |u+ >, where u−  and  u+  are given by (1.2.4): 
 
 < u−| z |u− > = ∫ Rn,j−1/2(r)

2r3dr/(2j) { (j+m) ∫ dΩ cosθ |Yj−1/2,m−1/2|
2  + 

 
                                                      + (j−m) ∫ dΩ cosθ |Yj−1/2,m+1/2|

2 }                                          
 
 
  < u+| z |u+ > = ∫ Rn,j+1/2(r)

2r3dr/(2j) { (j−m) ∫ dΩ cosθ |Yj+1/2,m−1/2)|
2  + 

 
                                                      +  (j+m) ∫ dΩ cosθ |Yj+1/2,m+1/2|

2 }       
and                                                                                                        (1.2.8) 
 



 7 

  < u−| z |u+ > = ∫ Rn,j+1/2(r) Rn,j−1/2(r)r
3dr/(2√j(j+1)) x 

 
                        x {√(j+m)√(j+1−m)  ∫ dΩ cosθ Y*j−1/2,m−1/2 Yj+1/2,m−1/2 + 
 
                              √(j−m)√(j+1+m) ∫ dΩ cosθ Y*j−1/2,m+1/2 Yj+1/2,m+1/2 } 
 
 
These (1.2.8) matrix elements < u−| z |u+ > = < u−| z |u+ > are calculated 
between the states n, j, m, ℓ = j + ½ and n, j, m, ℓ = j − ½. . Since 11,16  
 
cosθ Yℓ,m(θ,φ) = [(ℓ+1+m)(ℓ+1−m)/(2ℓ+1)(2ℓ+3)]1/2 Yℓ+1,m(θ,φ)  
                                                                                                              (1.2.9) 
                               +  [(ℓ+m)(ℓ−m)/ (2ℓ+1)(2ℓ−1)]1/2 Yℓ−1,m(θ,φ) 
 
it is not difficult to verify that these matrix elements are equal to zero 
between states with different m values and that the diagonal elements  
< u−| z |u− > and < u+| z |u+ > are also null.  We also can also shown that the 
expression within the braces of  < u−| z |u+ > in (1.2.8) is equal to 
 
                [(j+m)(j−m+1)−(j+m+1)(j−m)]/ 2√j(j+1)) = m/√j(j+1)). 
 
Integrating the radial part of (1.2.8) taking into account the hydrogen 
wavefunctions10−12 Rnℓ(r) we get 
 
                                       − (3/2) n [n2 − (j +1/2)2]1/2. 
 
Finally, the matrix element < u−| z |u+ > becomes given by 
 
<Ψn j ℓ=j+1/2 m| z |Ψn j ℓ=j−1/2 m>= −(3/4)ao n m [n2 −(j +1/2)2]1/2/[j(j+1)] (1.2.10). 
  
 Note that the energy levels Enj described by the eigenfunctions u+ and 
u− defined by (1.2.4) are f−fold degenerate: 2−fold degenerate with respect 
to ℓ and ℓ±1 and 2(j+1) with respect to m (see (1.2.3)).                                              

Assuming that the n = 2 degenerate state is represented by the 
superposition of the two states with n = 2, j =½, ℓ = 1, m = −1/2 and  n = 2,  
 j = ½, ℓ = 0, m = −1/2, that is, Ψ2 = (Ψ2 ½  1 −1/2  + Ψ2 ½  0 −1/2)/√2 we can use 
(1.2.10) to calculate the z−component of the EDM,   
 
                       < pz >22 =   e < Ψ2| z |Ψ2 > = e √3 ao  ≠ 0                    (1.2.11) 
 

We can also calculate <pz>22 putting in (1.2.4) n = 2, j =½, ℓ = 0 and 
m = −1/2: 
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                         u− =  Ψ2 1/2 0 −1/2  = [R20(r)/√1]  














0,0

0,-1

Y  1

Y  0
                                     

 
and  n = 2, j =½, ℓ = 1 and m = −1/2, 
 

                              u+ =  Ψ 2 1/2 1 −1/2  = [R21(r)/√3] 














1,0

1,-1

Y  1

Y  2
                                      

we get, using  (1.2.8), 
 
 < pz >22 =  e < Ψ2| r cosθ  |Ψ2 > =  
 
 = e ∫ R20(r) R21(r)r

3dr/(√3√1) ∫ dΩ cosθ Y0,0(θ,φ) Y1,0(θ,φ) = e √3 ao  ≠ 0,               
 
which is the same result shown by (1.2.11).  

Finally, let us comment about the hyperfine structure due to the 
interaction of the magnetic moment µ (“Zeeman effect”) of the nucleus 
with the total angular momentum J of the orbital electrons.11 Since the 
nuclear momentum µ is around 103 smaller than orbital magnetic moment 
of the electron this nuclear effect produces an energy splitting about 103 

smaller than the splitting due to spin−orbit interaction (the fine structure). 
The atomic ground state energies are only slightly decreased and the 
respective s−functions are only slightly modified.11  The hyperfine structure 
effect is so small that the value < p >11 = 0 is not modified for the atomic 
ground−states. 
 So, for the hydrogen−like atom we verified that <p>11 = 0 for the 
ground−state (nondegenerate state) and that it can be <p>nn ≠ 0 for excited 
states n >1 (degenerate states). That is, only excited states can have natural 
dipole moments. 
 
(1.3) Multielectron Atoms. 

Many extensive theoretical and experimental studies that have been 
performed for multielectron atoms12 have shown that all ground−states of 
all atoms (and nuclei) are very likely to be nondegenerate and that atoms 
(and nuclei) in its ground−states do not possess natural EDM, and none has 
ever been found experimentally. Only a degenerate state may, in general, 
have a non−vanishing < p >, provided the state has not got a well defined 
parity. So, only excited atomic states can have a natural  EDM.   

In multielectron atoms the field acting upon an electron is, in 
general, different from the Coulomb field and the levels pertaining to 
different ℓ (and thus with different parity) always have different energies. 
The average EDM vanishes in these states. An interesting case extensively 
studied is that of the alkali atoms.12,21 The ground−state configuration 
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consists of a series of full shells followed by a single s electron. The inner 
rare−gas configuration is so stable that all but quite high excited states of 
the atom involve only the valence electron. Thus, alkalis can be treated to 
quite good approximation in terms of a model in which a single electron 
moves in a spherically symmetric non−Coulomb potential V(r) with an 
additional spin−orbit interaction L·S. The EDM in alkali atoms has been 
extensively studied21 in order to verify the existence of an intrinsic EDM of 
the electrons. 

 
 
  

(3) EDM of Isolated Polar Molecules. 

 As explained in the Introduction, even though the total charge of 
isolated molecules is zero, the nature of chemical bonds is such that the 
positive and negative charges do not completely overlap in most 
molecules.13,14 These non−uniform distributions of positive and negative 
charges on the various atoms can create permanent electric dipoles, that is, 
< p > ≠ 0 in molecular ground−states. Molecules with permanent EDM are 
called polar molecules. First we present a simple model to explain the 
origin these EDM in polar molecules. After we calculate the expected 
values of these EDM assuming that the polar molecules are freely rotating 
rigid bodies. Electronic and vibrational effects will be neglected and only 
spherical top and symmetrical top molecules will be studied.  

Let us explain qualitatively (since the exact description would 
involve a many body theory) how can be formed a permanent EDM in the 
simplest case of diatomic molecules.13 We assume that the two centers of 
charges +q and −q, created by the exchange of electrons between the atoms 
of the molecule, like in the heteropolar bonding, are separated by distance 
r. Between these two centers there is a Coulomb potential V(r) = −q2/r at 
large distances r > R.  At short distances r < R due to the interpenetration of 
the electronic clouds involving the charges + and −, there appear a strong 
repulsive potential U(r) for r → 0. In this way the two atoms move 
submitted to an effective potential Veff(r) = U(r) + V(r). This potential 
Veff(r) which is responsible for the atomic bonding, has a minimum at a 
certain point rmin around of which the two atoms oscillate harmonically10−12 
with frequency ω and energies En = (n + 1/2)ћω. The average distance r 
between the atoms increases as n increases but at the ground−state n = 0 
this distance assumes the minimum average value rmin. Thus, at the 
ground−state the dipole moment of the molecule is p = e rmin ≠ 0. 
 We recall that in classical mechanics the rotational energy E of a 
rigid body is given by the equation 7,11  
 
                                  E = [Lξ 

2/Iξ + Lη 
2/Iη + Lζ 

2/Iζ]/2                             (3.1), 
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where ξηζ is the system of coordinates (principal axes of inertia) in the 
rigid body and the orientations of the body is determined by angles of Euler 
αβγ which characterize the position of the ξηζ−axes with respect with the 
laboratory xyz−system; Iξ , Iη and Iζ are the principal moments of inertia 
and Lξ ,Lη and Lζ 

 are the components of the angular momentum along the 
ξηζ−axes, respectively. In quantum mechanics the angular momentum 
components Lξ, , Lη and Lζ will be substituted by the angular momentum 
operators Jξ,  Jη and Jζ and the Hamiltonian operator H is written as 
 
                                      H = (aJξ 

2+ bJη 
2 + cJζ 

2)/2                               (3.2), 
 
where a =1/Iξ , b =1/Iη and c = 1/Iζ  and the operators  Jξ,  Jη and Jζ obey the 
commutation relations  [Jξ,, Jη] = − iћJζ ,…. Note that in (3.2) we have used 
the angular momentum J instead of L because in the general case J 
represents the total angular momentum of the molecule which is given by 
the sum of the rotational angular momentum, the electronic angular 
momentum and the spin of the molecular components.   
 
(3.1) Spherical Top.  
 A rigid body is called spherical top7,11 when it has three equal 
moments of inertia a = b = c = I−1. In this case the Hamiltonian (3.2) 
becomes 
                                                     H = J2/2I                                            (3.3). 
 
The eigenfunctions |jmk> = ψj

mk(αβγ) and eigenvalues Ej of H are given 
by11,16,17 
                             H |jmk> = Ej |jmk> = [ћ j(j+1)/2I] |jmk>         
           
where      
                                  |jmk> = ψj

mk(αβγ) = √(2j+1)/8π2 Dj
mk(αβγ)          (3.4), 

 
 
                              Dj

mk(αβγ) = exp(imα) dj
mk(θ) exp(ikγ)               

with        
                      
                                               k, m = 0, ±1, ±2,..., ±j  
 
which implies that for each eigenvalue Ej the energy levels j ≠ 0 are 
2(2j+1)−fold degenerate. The functions Dj

mk(αβγ) that are called 
generalized spherical functions describe finite rotations over the Euler 
angles αβγ of the system of coordinates ξηζ with respect to the laboratory 
system of coordinates xyz. They obey the following conditions 11,17,18 
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                      J

2 Dj
mk = ћ j(j+1) Dj

mk ,      Jζ D
j
mk =  ћ k Dj

mk   
                                                                                                               (3.5). 
               Jz D

j
mk = ћ m Dj

mk     with     <jmk|j´m´k´> = δjj´ δmm´ δkk´  
 
(3.5) shows that ћk is the J−component along the ζ−axis and that ћm is 
the J−component along the z−axis. Note that the polar coordinates (φ,θ) 
with respect to the original frame S (laboratory) of the z−axis in its final 
position are identical with the Euler angles (α,β), respectively.17 

Since j = integer = ℓ if k = 0 or m = 0 we have,11,17,18  
                                
       <jm0| = <ℓm| = Dℓ

mo= [4π/(2ℓ+1)]1/2 Y*ℓm(θ,φ)                   
                                                                                                                (3.6) 
                 <j0k| = <ℓk| = Dℓ

ok = [4π/(2ℓ+1)]1/2 Yℓk(θ,φ)    
 
where θ is the angle between the axes z and ζ and φ is the angle between 
the projection of the ζ−axis in the xy plane and the x−axis.  
 The spherical functions Dj

mk obey the following property11,17,18,24 
 
     ∫ dΩ DJ*MK(θ) Dj

mk(θ) D
v
rq(θ) =[8π2/(2j+1)] (jvmr|JM)(jvkq|JK)    (3.7), 

 
where θ = (α,θ,γ) and dΩ  = sinθ dθ dα dγ . For the spherical top molecules 
since j = ℓ, we have Dj

mk(θ) = Dℓ
mk(θ) = |ℓmk>.  

 Putting  ζ−axis along the dipole p its  xyz  components will be   
pz = p cosθ, px = p sinθ cosφ and px = pζ sinθ sinφ. In this way, their average 
values are given by p <ℓmk|cosθ|ℓmk>,  p <ℓmk|sinθcosφ|ℓmk>   and  
p <ℓmk|sinθsinφ |ℓmk>. Using (3.7) we verify that <ℓmk|cosθ|ℓmk> = 
<ℓmk|sinθcosφ|ℓmk> = <ℓmk|sinθsinφ|ℓmk> = 0. Consequently, for a 
freely rotating spherical top polar molecule we have always 
 
                                                < p > = 0.                                              (3.8). 
 
(3.2) Symmetrical Top.  
 For a symmetrical top7,11 which has a = b ≠ c the Hamiltonian of the 
free molecule (3.2) is written as 
 
                                      H = [aJ 

2 + (c − a)Jζ 
2]/2                                   (3.9), 

 
where c = b =1/Iη = 1/Iξ  and a = 1/Iζ choosing the ζ−axis as the symmetry 
axis of the molecule named axis of the top. One can verify that the 
eigenfunctions11,17,18 of (3.9) are |jmk> = ψj

mk(αβγ) defined by (3.4) and 
have energy eigenvalues Ej|k|  given by 
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                                    Ej|k|  = ћ2 [a j(j+1) + (c − a)k2]                           (3.10). 
 
There are j + 1 sublevels for each value of j with different energies and  
|k| = 0,1,2,…, j. The energy levels (3.10) are independent of the value of 
the quantum number m and of the signal of the quantum number k. If k ≠ 0 
each level is thus 2(2j+1)−fold degenerate. The two−fold degeneracy with 
respect to the sign of k, that is, with respect to the sign of the projection of 
the angular momentum J along the ζ−axis occurs because H (3.9) is 
invariant under a coordinate reflection through the axis of symmetry ζ of 
the molecule. Let us denote by Pζ the operator responsible for this 
reflection.  

The eigenfunctions |jmk> are not eigenfunctions of Pζ but it is easily 
to verify that the following functions  

 
 

                             |jmk + > = ( |jmk > + |jm −k >)/√2 
and                                                                                                       (3.11)                                                
                             |jmk − > = ( |jmk > − |jm −k >)/√2 
 
are simultaneously eigenfunctions of Pζ and H (3.9) noting that Pζ |jmk + > 
= |jmk + > and Pζ |jmk − > = − |jmk − >. So, since <jmk −| ζ |jmk −> ≠ 0 a 
permanent EDM pζ = eζ along the symmetry axis of the molecule is not 
forbidden in the state |jmk − >. Only for k = 0 there is only one kind of 
spherical function: |j m 0> = |j m 0 + > = [(2j+1)/8π2]1/2 Dj

mo. 
 Assuming (to simplify the calculations) that p is along the ζ−axis let 
us obtain the expected value <pz> along the z−axis which is given by 
 
     <pz> = <jmk|pz|jmk> = p <cosθ> = p ∫ dΩ  Dj*

mk(θ) cosθ Dj
mk(θ)   (3.12), 

      
where θ = (α,θ,γ) and dΩ  = sinθ dθ dα dγ . Let us calculate this integral 
taking into account (3.7) remembering that cosθ = √4π/3 Y10(θ,φ) = 
D1

00(θ,φ), according to (3.6), and using Clebsh−Gordan coefficients17,18. 
We can shown that,22−24 
 
            <pz> = <jmk|pz|jmk> = − pkm/[j(j+1)] = − pζ m/√j(j+1)          (3.13), 
 
where  pζ = pk/√j(j+1) is the projection of p is along the ζ−axis. This shows 
that <pz> is the projection of pζ along the z−axis which is null only for  
k = 0 or m = 0.  
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(4) Stark Effect: Atoms and Molecules Placed in a Static Electric Field. 

The energy levels of systems of charges are shifted when placed in 
an external static electric field E. This shift is named “Stark Effect”. When 
E is switched on, the Hamiltonian of the atom or molecule becomes given 
by10−12 
                                        

               H = Ho − p·E                                            (4.1), 

where Ho is the Hamiltonian of the isolated system. It will be assumed that 
the perturbation created by the uniform E is weak so that its effects can be 
calculated using the quantum perturbation theory9−12 (see Appendix) up to 
the second order approximation in the operator p·E. For the hydrogen−like 
atoms the Stark effect can be calculated solving the equation HΨ = EΨ.10,25   

We will analyze only the Stark effect on the electronic states of the 
systems. Let us indicate by |nℓjm> the electronic eigenfunctions and by Ho 
and Enℓjm the corresponding Hamiltonian and eigenvalues for an isolated 
atom or molecule. Due to E the energy Enℓjm is modified becoming Єnℓjm. 
Up to the second order approximation, (see Appendix, putting v = p·E and  
un =|nℓjm>) Єnℓjm is given  by, choosing the z−axis along the field E:                                           

 
Єnℓjm =  Enℓjm + E  <nℓjm| pz |nℓjm>    
 
          + e2

E
2 ∑

′′′′ mjn l

<nℓjm|z|n´ℓ´j´m´>< n´ℓ´j´m´|z|nℓjm>/( Enj− En´j´) (4.2).  

 
The first term, proportional to E is called linear Stark effect and the second 
one proportional to E2 is called quadratic Stark effect.            
 

(4.1) Non−Relativistic Hydrogen−like atom 
 For the non−relativistic hydrogen−like atom in accordance with 
Section 1.1 the expected dipole moment <nℓjm|p|nℓjm> in the ground-state 
level is equal to zero. So, there is no linear Stark effect for the ground-state.  

The first excited state n =2 is 4−fold degenerate. This level n = 2 is 
represented 9−12 by the state functions {ψi }i=1…4 ={|210>, |210>, |211> , 
|21−1>}. As is shown in section (A.4) of the Appendix, when the external 
electric field E is switched on, the 4−fold degenerate level n = 2 is split into 
three levels. One of these levels with m = ± 1, is 2−fold degenerate: in 
agreement with the z−symmetry of the problem. The four energy shifts 
Єnℓm (see Eq. (A.4.5) of the Appendix) due to the perturbative potential eEz 
are given by  
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                      Є200 = E2 + 3eEao, Є210 = E2 −3eEao  and  Є211= Є21−1 =  E2         (4.3), 
 
where E2 = −Z2e2/2aon

2 is the Bohr energy of the level n = 2. Since the 
magnitude of the splitting of the levels, according to (4.2), is proportional 
to E the state n =2 presents a linear Stark effect. 
 
(4.2) Relativistic Hydrogen−like Atom.  

 According to Section (1.2) the relativistic energy states |nℓjm> of the 
hydrogen−like atom are given by u− = Ψn ℓ j= ℓ+1/2 m and  u+ =  Ψn ℓ j= ℓ−1/2 m 
(see (1.2.4)). Taking into account these functions it was shown that for the 
ground−state level (n = 1) <nℓjm| p |nℓjm> = 0.  So, there is no linear Stark 

effect for the energy ground−state. 
 As pointed out in Section (1.2) the energy levels of the excited states 
u+ and u−, for n ≥ 2, are f−fold degenerate: 2−fold degenerate with respect 
to ℓ and ℓ+1 and 2(j+1)−fold degenerate with respect to m.  However, since 
< u−| z |u− > = < u+| z |u+ > = 0 and < u+| z |u− > = < u−| z |u+ > ≠ 0 we see that 
the matrix elements between states with ℓ and ℓ+1 and are equal to zero 
only between states with different m values. In these conditions we easily 
verify that, in the Stark effect context, the f−fold degenerate perturbation 
approach reduces (see Appendix (A.2)) simply to a 2−fold degenerate 
case,16 only for the levels ℓ and ℓ+1. In this way, according to (A.5.1) the 
energy shift Єnℓjm due to the perturbation potential eEz and using (1.2.10) is 
given by: 
 
               Єnℓjm = Enℓjm

 ± eE< u−| z | u+>  
 
                         = Enj ± eE(3/4)ao n m [n2 − (j +1/2)2]1/2/[j(j+1)]         (4.4), 
 
using the matrix element (2.10).  Eq. (4.4) shows that also in the relativistic 
approximation the excited states of the hydrogen−like atom present a linear 

Stark effect.  
 
 
(4.3) Multielectron Atoms and Non−Polar Molecules. 

 The linear Stark effect is observed only in a system with a Coulomb 
potential energy (the hydrogen−like atom) where there is degeneracy with 
respect to the quantum number ℓ.  

In multielectron atoms and molecules the field acting upon an 
electron is, in general, different from the Coulomb field (see comments at 
Section 1.3). The electron eigenstates will be represented by |nℓjm>.  In 
these conditions the levels pertaining to different ℓ (and thus with different 
parity) always have different energies. Since the average EDM vanishes in 
these states they present no linear Stark effect. The influence of E will 
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affect the energy levels only in the second order approximation that 
according to (4.2) are given as  

 
Єnℓjm = Enj

  
                     
             + e2

E
2 ∑

′′′′ mjn l

<nℓjm|z|n´ℓ´j´m´>< n´ℓ´j´m´|z|nℓjm>/( Enj− En´j´)  (4.5). 

Taking into account that z = r cosθ and using (2.9), we verify that  
 
                          cosθ Yℓ,m(θ,φ) = A Yℓ+1,m(θ,φ)  + B Yℓ−1,m(θ,φ), 
 
the z−matrix elements in (4.5) will be non−vanishing only between states 
for which ℓ´= ℓ ± 1 and m´ = m. Consequently, it will remain in the 
summation (4.5) only the energy shifts Єnℓjm depending on m. Taking into 
account the degeneracy of levels with m and −m we see that the coefficient 
of proportionality of the energy shift can only be an even function of m. So, 
we get10,11 
                                     Єnℓjm = Enj

 − e2
E

2(αnℓ + βnℓ m
2)/2                      (4.6), 

 
showing  a quadratic Stark effect.  
 Let the Hamiltonian H of the system be a function10 of a parameter λ; 
its eigenvalues En are then functions of  λ too. It can be shown that the 
mean value < ∂H/∂λ> = <ψn|∂H/∂λ|ψn> = ∂En/∂λ. Indeed, to show this let us 
differentiate ∂(H −En)|ψn>/∂λ = 0 : 
 
                           (∂H/∂λ −∂En/∂λ)|ψn> + (H −En) (∂ψn/∂λ) = 0. 
 
In this way, < ∂H/∂λ>nn − ∂En/∂λ +  <ψn|(H −En) (∂ψn/∂λ)|ψn> = 0. Since H  
is Hermitean the second term of this last equation is equal to  
<ψn|(∂ψn/∂λ)| (H −En)|ψn> = 0, resulting that < ∂H/∂λ>nn = ∂En/∂λ.  
 Considering that the parameter λ is the E field the derivative of  
H = Ho − E pz with respect to it is − pz. Thus, from (4.6) we obtain 
 
                                        < pz >nn= e2 (αnℓ + βnℓ m

2)E                            (4.7), 
 
where < pz >nn is the induced EDM of the system in the state |Ψn> and  
e2 (αnℓ + βnℓ m

2) its polarizability. 
Eq.(4.5) can be written generically as   

 
       Єn

(2) = En 
 +  ∑

≠nk

< Ψn | p·E | Ψk > < Ψk | p·E | Ψn >/(En − Ek) 

  
               = − (1/2) ∑

= 3,2,1, ji

Ei αij Ej                                                          (4.8), 
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where αij is polarizability tensor for the |Ψn> state is defined by  
 
             αij = −2∑

≠nk

< Ψn | pi | Ψk > < Ψk | pj | Ψn >/(En − Ek)             (4.9), 

 
and < pi >nn  in the state Ψn is given by  < pi >nn =  αij Ej . 

For atoms, due to a spherical symmetry, the polarizability tensor for 
atoms is isotropic, that is, αij =  αo

 δij. Consequently, from (4.7) we get 
  
                               Єn

(2) = En 
 − (1/2) αo E

2, 
 
which is the quadratic Stark shift for atoms. For many molecules this 
expression is a good approximation because the molecular tensors αij are 
often reasonably isotropic.  

 
(4.4) Polar Molecules. 

 

Spherical top molecules.  
According to Section (3.1) the expected EDM for spherical top polar 

molecules is <ℓm| p |ℓm> = 0. This means that they do not present linear 

Stark effect. Considering (A.1.2) the second order perturbation Stark shift is 
written as  

 
          Єℓ = Eℓ +  e2

E
2 ∑

′′ml

'<ℓm|pz|ℓ´m´>< ℓ´m´|pz|ℓm>/( Eℓ− Eℓ´)     (4.10), 

 
where Eℓ = ℓ(ℓ+1)ћ2/2I and |ℓm>, according to (3.6),  is given by  
|ℓm> = Dℓ

om = [4π/(2ℓ+1)]1/2 Yℓm(θ,φ). Putting pz = p cosθ at (4.10), using 
(1.2.9) and calculating the matrix elements taking into account that m´= m  
and ℓ´= ℓ ± 1 result24 
 
     Єℓ = Eℓ + (I/ћ2) p2

E
2 {[ℓ(ℓ+1) −3m2]/[ ℓ(ℓ+1)( 2ℓ−1) (2ℓ+3)]}    (4.11), 

 
showing a quadratic Stark effect. 
 
Symmetrical top molecules. 

 According to Section (3.2) the expected EDM value <jmk| pz |jmk> 
for symmetrical top polar molecules is given by (3.13): 
 
                                       <jmk| pz |jmk> = − pkm/[j(j+1)]. 
 
This implies that these molecules present a linear Stark effect. Calculating 
Stark shift up to the second order we get22−24  
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Єjmk = Ejk − [pkm/(2j+1)] E +  
 
         + (I/ћ2) p2 {[(j2 −m2)(j2−k2)]/[j3(2j−1)(2j+1)]− 
 
                            [((j−1)2−m2)((j+1)2−k2)]/[(j+1)3 (2j+1)(2j+3)]} E2   (4.12), 
 
where Ejk is defined by (3.9). Eq.(4.11) shows both linear and quadratic 

Stark effects. 

  
Asymmetrical Top Molecules. 

 Asymmetrical top molecules have three different principal moments 
of inertia. General principles involved in the motion of such rotors are of 
course the same as for symmetrical tops, but the details turn out to be much 
more complex (see Townes and Schawlow26). This complexity shows up 
not only in the quantum−mechanical behavior, but also in its classical 
motion. The dipole matrix elements and the Stark effect for these 
molecules can be seen elsewhere.26  
 
 
 
 
 
 
 
 
 Appendix.  Brief Review of the Stationary Perturbation Theory. 

Let us indicate by Ho, un and En the Hamiltonian, the energy 
eigenfunctions and eigenvalues, respectively, of an isolated atom or 
molecule. The level En is f−fold degenerate when there are f different 
eigenfunctions {unk}k=1,2,…,f with the same energy En.  The energy spectrum 
is non−degenerate when to a given function un corresponds only one 
eigenvalue En, that is, when f =1. Indicating by v the external perturbing 
potential, the new Hamiltonian is now given by H = Ho + v.  

According to the usual perturbation theory, 9−12 the new energy 
eigenfunctions Ψ and eigenvalues Є due to the perturbation created by v for 
non−degenerate and degenerate cases. 
 
(A.1) Non−Degenerate Case. 
  The new eigenfunctions ψn and the energies Єn of n states are now 
given, respectively, by 

 
                    ψn  = un + Σn≠ p  <up | v | un > un /(Ep−En)  + ….           (A.1.1), 
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where ψn  is estimated only up to the first order correction and 
 
Єn = En

 +  < up | v | un >  +  Σn≠ p  | <up| v | un>|2/(Ep−En) +…         (A.1.2), 
 
and the shift of the level Єn only up to the second order correction.  
 
(A.2) Degenerate case. 

In the first step, due to v, the degeneracy of the level is partially or 
totally removed. Here it will be assumed as totally removed. The case of 
partial degeneracy lifting can be seen elsewhere.11,12 So, after obtained 
these non−degenerate wavefunctions, in a second step, we use them to 
determine the new functions and energy levels following the procedure 
used in case (A.1.1) for non-degenerate states. First, let us see how 
degeneracy is removed. For the f−fold degenerate level En we take for the 
zeroth order the function ψn  the linear combination11 
 
                                   ψn  = ∑

= fk ,...1

ank unk                                 (A.2.1), 

 
where unk  satisfies the equation (Ho − En) unk = 0 e ak are unknown 
constants. Substituting ψn given by (A.2.1) into the Schrödinger equation 
with the operator H = Ho + v we obtain a set of  f  linear, homogeneous 
equations 
                    ∑

= fk ,...1

( Hmk − Єn δmk) ank = 0       (m =1,2,.., f )      (A.2.2), 

 
where   Hmk = < unm| H | unk > = < unm| Ho + v | unk > = En +  < unm| v | unk >. 
 
 This set of equations has a non−vanishing solution provided the 
determinant of the coefficients of the unknown ak a vanishes. From the 
determinant we get an equation of f −degree for the unknown value of En. 
This equation is called secular equation and has f real roots. When all roots 
are different the f − fold degenerate level En is split into f different levels 
Enk and for each of them we have the corresponding function 
 
                                     ψnk  = ∑

= fm ,...1

amk unm                              (A.2.3), 

where the coefficients  amk are determined from the equations (A.2.2) after 
we have  substituted for Єn the value Enk.  In this case, when v has 
completely lifted the degeneracy, the wavefunctions ψnk belonging to 
different roots of the secular equation are mutually orthogonal. All off 
−diagonal elements of H involving the functions ψnk vanish. So, the 
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functions ψnk, in a second step, can be used to calculate the new functions 
Ψ and energies Є according to the equations (A.1.1) and (A.1.2).    
 
 
 
 
 
Examples   

(A.3) 2−fold degeneracy. 

Let us apply the (A.2) formalism to study the simplest case for a 
2−fold degenerate level. In this case, according to (A.2.1), we have  
ψn = an1 un1 + an2 un2. In this way from (A.2.2) we get, 

                       
                           (En + Єn + v11)an1 

 − v12 an2  = 0 
                                                                                                         (A.3.1) 
                           (En + Єn + v22)an2 −  v21 an1

 = 0, 
  
 where ani are constants. Evaluating the determinant of the secular equation 
(A.2.2) we find (En + Єn + v11)(En + Єn + v22) + v12 v21 = 0. This is a 
quadratic equation that has two solutions for the energy Єn :  
 
                                    Єn

(1) = En + v11 + v12  
and                                                                                                  (A.3.2) 
                                    Єn

(2) = En + v11 − v12 .  
 
Substituting Єn

(1) into the first equation (A.3.1) we verify that an1 = an2 .This 
implies that, using (A.2.3), that ψn1  = an1[un1 + un2]. Adjusting the 
coefficient an1 in order to normalize ψn1 we get 
 
                                     ψn1  =  [un1 + un2]/√2                                       (A.3.3). 
 
Substituting Єn

(2) given by (A.3.2) in the second equation (A.3.1) and using 
the same procedure adopted above we can show that 
 
                                       ψn2  =  [un1 − un2]/√2                                      (A.3.4). 
 
(A.4) 4−fold degeneracy hydrogen−like non−relativistic atom  

 The first excited state n = 2, in the non−relativistic approximation, is 
4−fold degenerate represented9−12 by the state functions {ui }i=1…4 ={|210>, 
|210>, |211> , |21−1>}. To determine the shifts levels in the first−order 
perturbation theory we must consider a linear combination of the 
degenerate states, 
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                                         Ψ = ∑
= 4,...1j

bi ui                                          (A.4.1), 

 
where  ui  obey satisfies the unperturbed equation Houi = E2ui. Substituting  
into (Ho+ v) Ψ =0 we find the set of equations (see case b). 
 
                      ∑

= 2,1j

( vik − ε δik) bi = 0       (k=1,2)                         (A.4.2), 

where ε =  Є − E2 and vik = <ui|v|uk>. The matrix elements v11=v22 = 0. 
The non−vanishing matrix elements are (see Section 1.1), putting, for 
instance, v = eEz: 
 
                       v12 = v21 = −eE <200| z |210> = −3eEao                       (A.4.3). 
 
 The correction ε to the energy levels follows from the condition that 
the set of equations (A.4.2) be soluble. This condition reduces to the 
equation 
                                  (ε 2 − 9e2E2ao

2) ε 2 = 0                                        (A.4.4). 
 
The four roots of (A.4.4) are respectively, equal to 
 
ε 

1 = 3eEao (m = 0), ε 
2 = −3eEao (m = 0) and ε 

3 = ε 
4 = 0 (m = ±1)     (A.4.5) 

 
Thus, when the external electric field E is switched on, the 4−fold 
degenerate level n = 2 is split into three levels. The states with m = ± 1 are 
two−fold degenerate due to the z−symmetry of the problem. 
 
(A.5) 2−fold degeneracy hydrogen−like relativistic atom. 

 As seen in Section (1.2) the relativistic non−perturbed energy 
hydrogen−like atom eigenfunctions |nℓjm> are given by u− = Ψn ℓ j= ℓ+1/2 m 
and  u+ =  Ψn ℓ j= ℓ−1/2 m (see (1.2.4)). As explained in (4.3) the excited states 
n ≥ 2 present effectively only a 2−fold degeneracy15 with respect to the 
states with ℓ and ℓ±1 in the Stark effect context. Putting u1 = u− and u2 = u+  
and using the 2−level approach (A.3) with v = −eEz, v11= −eE < u−| z | u−>  
=  v22 = −eE< u+| z | u+> = 0 and  v12 = −eE < u−| z | u+> = v21 we get, 
according to (A.3.2)  
 
                Єn

(1) = En + v11 + v12  = En + eE < u−| z | u+>  
and                                                                                                     (A.5.1). 
                 Єn

(2) = En + v11 − v12 =  En − eE < u+| z | u−>    
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