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Abstract.  

We present a brief review of two theoretical models adopted to interpret the 

experimental scattering intensity results I(q) obtained with the SAXS (small angle 

X-ray scattering) technique. They will be used to determine the fundamental 

structure of our nanoheterogeneous thin films fabricated by implanting gold ions 

into PMMA (polymethylmethacrylate) polymer and into DLC (diamond-like 

carbon).  
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I. Introduction 
 In this paper we present a brief review of two different models, within the 

framework of the SAXS theory, that will be used to determine the structural 

properties of our heterogeneous PMMA-Au and DLC-Au thin films. The PMMA-

Au and DLC-Au composite thin films have been fabricated by implanting Au ions 

into polymer and DLC.  It will be assumed that the films are isotropic and formed 

by clusters of gold nanometric spherical particles named monomers. Usually, 

monomers are defined as the smallest gold nanoparticles found in the film. They 

have radius R and electronic density ρ(r). The films are composed by an ensemble 

of clusters of monomers. All clusters form an aggregate or sample.  

Detailed information about the structural properties of the films can be 

obtained, for instance, using the small angle X-ray scattering (SAXS)
1,2

 technique. 

The X-ray scattering intensity I(q) is experimentally determined as a function of the 

scattering vector q whose modulus is given by q = (4π/λ)sin(θ/2), where λ is the X-

ray wavelength and θ is the scattering angle. Since our composite films are 

macroscopically isotropic the intensities will depend only on the modulus of q that 

for SAXS is given by q ≈ (2π/λ) θ. The SAXS technique is useful if relevant 

structural features are at a superatomic level, from a few tenths up to 100 nm. As 

well known, the SAXS measurements analyzed with suitable theoretical models 
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that accounts for disordered systems peculiarities are of fundamental importance in 

the characterization of nanostructured materials.
3 
 

In Section 1 is shown how to calculate the scattered intensity Is(q) due to a 

single spherical monomer. In Section 2 we see how to obtain the scattered intensity 

Is(q) due to a dilute cluster formed by N monomers. In Section 3 we present two 

different approaches to determine I(q) due to dense clusters of monomers: in 

Section (3.1) we show the Fractal Model and in Section (3.2) the Debye, Anderson 

and Brumberger Model or DAB Model.  

 
(1) Intensity Is(q) due to a single spherical monomer. 
 According, for instance, to Debye and Bueche

4
 (see also references 1 and 2) 

the intensity Is(q) of the scattered X-rays due to a single monomer is given by 

 

                   Is(q) = Ie(q) ∫v1 dv1 ∫v2 dv2 ρ(r1) ρ(r2) exp[iq·(r1 – r2)]                  (1.1),           

 

where Ie(q) is the intensity scattered by one electron,  v and ρ(r) are, respectively,  

the volume and the electronic density (or scattering power) of the monomer.  

  Assuming that z-axis is along the incident momentum q = qz , where z is unit 

vector along the z-axes (1 and 2), putting r12=|r1–r2|, ρ(r)=ρ(r,θ,φ) and dv = r
2
drdΩ 

= r
2
drsinθdθdφ, (1.1) is written as  

 

Is(q) = Ie(q) F
2 
= Ie(q) ∫v1 ∫v2 ρ(r1,θ1,φ1) ρ(r2,θ2,φ2) exp[iq(r1 – r2)·z ] dv1 dv2   (1.2),        

 

where q = (4π/λ)sin(θ/2). 

  If the monomers are spheres with radius R and homogeneous, that is, with 

electronic density ρ(r) = constant = ρ from (1.2) we get 

        Is(q) = Ie(q) ρ2
 (4π)

2
  ∫

R

0

r1
2
dr1 [sin(qr1)/qr1]  ∫

R

0

r2
2
dr2[sin(qr2)/qr2] = 

                 =  Ie(q) F(q)
2 
 =  Ie(q) {3ρR [sin(qR) − qR cos(qR)]/(qR)

3 
}

2
       (1.3), 

where v = (4π/3)R
3
 is the monomer volume and the function Fs(q), named  single-

particle form factor, is given by                                                                              

 

                          Fs(q) = 3ρv [sin(qR) − qR cos(qR)]/(qR)
3 
                   (1.4). 

 

  A different approach to obtain (1.4) is shown in the Appendix 1. This 

approach, that is more suited to the treatment of heterogeneities of the electronic 
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density of the monomers, that was developed originally by Lord Rayleigh,
5
 is 

shown in details in the paper of Stein, Wilson and Stidham.
6
 

  The calculation of the scattering function F(q) for inhomogeneous monomers 

are shown in the paper of Stein, Wilson and Stidham
6
 and also in our Appendix 2. 

                                            

(2) Intensity Is(q) due to a Dilute Cluster with N Monomers.  
If the scattering system is a cluster composed by N monomers that are 

separated from each other widely enough it is plausible that they will make 

independent contributions to the scattered intensity. In these conditions the total 

scattered intensity Is(q) due to the (dilute) cluster is given by,
1,2,7

  

 

                Is(q) = N Is(q) = N ∆ρ2
 {3v [sin(qR) − qR cos(qR)]/(qR)

3
}

2
           (2.1), 

    

omitting for simplicity, Ie(q) and where ∆ρ = ρ − ρ´ assuming that the monomers 

are embedded in a homogeneous medium with constant electric density ρ´.1,2
                            

 
(3) Intensity I(q) due to a Dense Cluster with N Monomers.  
 Equation (2.1) gives the scattering intensity produced by a cluster composed 

by N monomers widely separated. However,
1,2

 when these monomers form a dense 

cluster (as occurs, for instance, in liquids) (2.1) does not give satisfactory 

descriptions of scattering intensity. This is due to the entanglement of the scattering 

amplitudes generated by the different parts of the monomers that now are closer. 

Many theoretical models have been developed to explain this entanglement 

effects
3,7

 in heterogeneous materials. However, in this work we will take into 

account only two scattering models: Fractal Model and Debye-Anderson-

Brumberger Model. 

 

(3.1) Fractal Model. 
As well known, it is widely recognized

3,8,9
 that the complex microstructure 

and behavior of a large variety of materials and systems can be quantitatively 

characterized by using the ideas of fractal distributions. Fractal concepts give us an 

important tool for characterizing the geometry and surface structure of 

heterogeneous materials and long-range correlations that often exist in their 

morphology. Even if the material does not possess fractal properties at significant 

length scales the concepts of fractal geometry often provide useful means of 

obtaining deeper insights into the structure of the material.
3
  

It is well known
7 

the scattering amplitude I(q) for a dense fractal aggregate 

composed by N spherical homogeneous monomers with radius R is given by  

 

  I(q) = Is(q) S
v
(q)                                            (3.1.1),                                    
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where, according to (2.1), Is(q) is given by 

   

                      Is(q) = N(∆ρ)
2
 v

2
 {3[sin(qR) − qRcos(qR)]/(qR)

3
}

2  
        (3.1.2) 

                                       

and S
v
(q) is the structure factor of the particles centers defined by  

                        S
v
(q) = {1 + 4πФ ∫

∞

0

[g(r) − 1] r
2
 (sin(qr)/qr) dr }                  (3.1.3) 

and g(r) is the pair correlation function
  
defined by 

                                        g(r) = ∫V  ρ(r) ρ(r + r´) dr´                                       

where V is cluster volume and Ф = (N/V). As well known, Фg(r) represents the 

probability per unit of volume to find a particle at a distance r from a particle 

situated at the origin that for a fractal aggregate is given by 

   

                                                  Фg(r) = (D/4πro
D
) r

D−3
 exp(−r/ξ)                 (3.1.4), 

           

where D is the volume (or mass) fractal dimension of the aggregate and ξ is a 

correlation distance. Putting (3.1.4) into (3.1.3) we get 

 S
v
(q) = 1 + (D/R

D
) ∫

∞

0

r 
D−1

 exp(−r/ξ) )[sin(qr)/qr] dr  

 

            = 1 + (1/qR)
D
 {D Γ(D−1)/[ 1 + 1/(qξ)2

] 
(D-1)/2

 } sin[(D─1) tan
-1

(qξ)]  (3.1.5). 

  

According to the momentum uncertainty relation (MUR) ∆p ∆r ≥ ћ where ∆p 

= ћq we see that the radius R* ~ ∆r of the region inside which the x-ray scattering 

is produced can be estimated by R* ~ 1/q. In this context, let us obtain the function 

I(q) given by (3.1.1)−(3.1.3) for some special limits of q for three q different 

regions. 

 

(I)  qξ << 1 and, consequently, qR << 1 

 In this case I(q)→N(∆ρ)2
v

2
 and S

v
(q)→Г(D+1)(ξ/R)

D
{1− [D(D+1)/6]q

2ξ2
} 

resulting a I(q) function which has a Guinier-type behavior 

 
                  I(q) = N (∆ρ)

2
 v

2
 Г(D+1)(ξ/R)

D
{1− [D(D+1)/6]q

2ξ2
} 

 

                          ≈ N (∆ρ)2
 v

2Г(D+1)(ξ/R)
D
exp[−D(D+1)ξ2

q
2
/6]                 (3.1.4). 
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According to (3.1.4) the generalized gyration radius Rg(D,ξ) for spherical 

particles is given by  

                                            Rg(D,ξ)=[D(D+1)/2]
1/2

 ξ                                     (3.1.5) 

 

instead of Rg = (3/5)
1/2

R predicted by Guinier
1
 that is valid when the fractality is 

negligible. The cluster radius is defined by (3.1.5). Inside the sphere with radius  

 Rg ~ ξ, where the monomers are assembled, there is a correlation effect between 

them. The correlation length ξ represents the characteristic distance above which 

the mass distribution is no longer described by a fractal law. 

 According to the MUR, the momentum transfer q in the cluster region is 

given approximately by q ~ 1/Rg ~ 1/ ξ. 
 

(II) 1/ξ << q << 1/R  

In this q range I(q)→ N(∆ρ)2
v

2
 , S

v
(q) ~ q

−D 
 and, consequently, I(q) ~ q

−D 
. In 

this region the log I(q) x q  plot is generally used to estimate the fractal dimension 
7
 

measuring the slope of the curve. For Euclidean (homogeneous) materials, D = 3, 

we obtain I(q) ~ q
−3

. Since D ≤ 3 we verify that as q increases, I(q) becomes larger 

for mass fractal than for homogeneous aggregates.  

In this fractal range, that is, when 1/ξ << q << 1/R*, the radius R* of the 

scattering regions are in the interval ξ > R* > R. 

 

(III) qR >> 1 

 In this case S
v
(q) → 1 and  there are two possibilities for Io(q): when the 

surfaces of the monomers are fractal, with fractality dimension Ds.  

   When the surface is rough, taking into account the monomer fractal 

boundary surface Ds > 2 the scattered intensity, instead of (3.1.6), is given by
7
 

 

                     Is(q) ≈ π No(∆ρ)
2
 Γ(5 − d) sin[π(Ds − 1)/2]/q

(6 − Ds)
                    (3.1.6), 

 

where Γ(x) is the gamma function of argument x, d is the Euclidian dimension of 

sample and Ds is the fractal dimension of the monomer surface.  

When the surface is smooth, that is, when Ds = 2 we get, from (3.1.6):  

 

                                        I(q) = 2π(∆ρ)
2 
Am/q

4
                                              (3.1.7), 

 

where Am =NoπR
2
 is the total area of the monomers. Equation (3.1.7) which 

predicts an intensity I(q) ~ 1/q
4
 is known as Porod law.

1,2
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Polydispersive Fractal Aggregates of Homogeneous Monomers.  

 As shown above, the scattered intensity I(q) due to a dense cluster formed by 

N homogeneous spherical monomers is given by (3.1.1)−(3.1.5). The cluster radius 

is defined the radius of gyration Rg
 
= [D(D+1)/2]

1/2
 ξ. If the aggregate is composed 

by an ensemble of dense clusters all them with the same Rg we say that the 

aggregate is monodispersive. When it is composed by many clusters with different 

Rg we say that an aggregate is polydispersive. All clusters are assumed to have the 

same mass fractal dimension D. 

 Thus, let us assume that our aggregate is polydispersive formed by a  
collection i = 1,2,..,n of fractal clusters which have radius {Rci}i=1,..,n, each one with 

Ni monomers. Indicating by N(i)i=1,..,n the number of clusters with radius Rci=Rgi we 

see, following the formalism presented in Section (3.1), that the SAXS intensity 

generated by this polydispersive aggregate is proportional to Ipol(q) that is given by: 

 

                                        Ipol(q) = ∑i =1..n  N(i) Ii(q)                                           (3.1.7), 

 

where, according to (2.1) and (3.1.5), Ii(q) = Isi(q) Si
v
(q),  

 

Isi(q) = Ni (∆ρ)
2
 v

2
 P(q) = Ni (∆ρ)

2
 v

2
 {3[sin(qR) − qR cos(qR)]/(qR)

3
}

2
     and  

                                                                                                                     

 

Si
v
(q) = 1 + (1/qR)

D
 {D Γ(D−1)/[ 1 + 1/(qξi)

2
] 

(D-1)/2
 } sin[(D─1) tan

-1
(q ξ)]  (3.1.8).                                 

 

Note that all clusters have the same fractal dimension D but different
 
clusters 

have a different correlation length ξi since Rci = [D(D+1)/2]
1/2

 ξi. 

 Taking into account that the factor (∆ρ)2
 v

2
 P(q) is the same for all clusters  

Ipol(q) , given by (3.1.7), can be put in a more compact form: 

 

                          Ipol(q) =  (∆ρ)2
 v

2
 P(q) ∑i =1..n  N(i) Ni Si

v
(q)                          (3.1.9). 

 

 For a monodispersive sample formed by J identical clusters the intensity 

Imon(q), using(4.3) is simply given by  

 

                                             Imon(q) = J Is(q) P(q) S
v
(q)                                 (3.1.10). 

 

 Now, let us apply (3.1.9) to study the simplest polydispersive aggregate 

formed only by two clusters with radius Rc1 and Rc2. Supposing Rc1 > Rc2 we have 

ξ1 > ξ2. In the q region where qξ1<< 1 and qR << 1 we have  

 

                            I1(q) ~ Г(D+1)(ξ1/R)
D
exp[−Rc1

2
q

2
/3] ,                               (3.1.11) 
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where Rc1=[D(D+1)/2]
1/2ξ1, according to (2.1.4) and (2.1.5),respectively. Similarly, 

in the region where qξ2< 1 and qro << 1 we have  

 

                              I2(q) ~ Г(D+1)(ξ2/R)
D
exp[−Rc2

2
q

2
/3] ,                               (3.1.12) 

 

with Rc2=[D(D+1)/2]
1/2ξ2. Consequently, 

   

                                        Ipol(q) ~ f1 I1(q) + f2 I2(q),                                         (3.1.13) 

 

where f1 and f2 ,with f1+ f2 =1, are the percentages of clusters 1 and 2 , respectively.  

 With a log Ipol(q) x q
2
 plot

7,10,11 
we can estimate the clusters radius Rc1 and Rc2 

measuring the slopes of the curves I1(q) and I2(q). 

If f1 and f2 are known the equation Ipol(q) ~ P(q) [f1 S1(q) + f2 S2(q)] can be 

used to fit the experimental data I(q) in terms of the adjustable parameters D, ξ1, ξ2 

and R  that, in this way, can be determined. 

 

(3.2) Debye−Anderson−Brumberger Model. 
 Let us suppose that the monomers which are implanted at random in the film 

are, in average, almost equally distant one from another forming an aggregate that 

can be taken approximately as a periodic lattice with period d. In these conditions, 

we will assume that the scattered intensity I(q) due to this kind of aggregate could 

be explained by the Debye, Anderson and Brumberger model
12−14 

:  

                               I(q) = 4π V <η2
 >∫

∞

0

γ(r) [sin(qr)/(qr)] r 
2

 dr                  (3.2.1),       

where V is the volume of the sample “illuminated” by the X−rays,  < η2
> =  

< (ρ − ρav)
2 

> is the mean square fluctuation of the scattering density ρ, ρav is the 

average value of ρ − ρ´, r is the distance between inhomogeneous regions of the 

sample and γ(r) is a the correlation function defined by 

                                              

                                γ(r) = [sin(2π/d)/(d/2πr)] exp(−r/δ),         
 

δ being a correlation length.  It is clear that there are two length scales involved in 

γ(r): d, which is characteristic of the domain size or periodicity of the 

inhomogeneous regions of the film (due to monomers) and δ is the correlation 

length which is responsible for the decay of the correlations between these regions 

as r increases. Integrating (3.2.1) one can verify that 
13,14

 I(q) is given by a function 

 

                              I(q) ~ 1/( a2 + c1 q
2
 + c2 q

4
)                                      (3.2.2), 
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where a and ci (i=1,2) are coefficients that can obtained from the expansion of the 

phenomenological Landau
13−15

 free energy F for an heterogeneous medium in terms 

of the order parameter ψ:  

                                          F = ∫ f(ψ, Ψ∇Ψ∇
2 , ) d

3
r,   

 

where   f = ao + a1ψ + a2 ψ
2
 +… + c1 ( Ψ∇ ) + c2( Ψ∇

2 )
2
 + ....   

 

 Fourier transform (3.2.1) fixes the proportionality constant C of (3.2.2),
13

 

 

                                       I(q) = C/( a2 + c1 q
2
 + c2 q

4
), 

 

where C = 8π V <η2
 > c2 /ξ . In this general case the parameters ξ and d are given by 

 

       ξ = [(a2/c2)
1/2

/2 + (c1/c2)/4]
 −1/2          

and     d =
 
[(a2/c2)

1/2
/2 − (c1/c2)/4]

 −1/2   
.
                  

        

                                 

It can be shown
13,14

 that when c1 < 0 the intensity function I(q) given by 

(3.2.2) yields a single broad maximum Imax at q = qmax. In the neighborhood of qmax 

the function  I(q) would be represented by  

 

                             I(q) = Io/{(1−Io/Imax)(q
2
/qmax

2
 −1)

2
 + Io/Imax}                  (3.2.3),  

 

decaying proportional to q
4
, according to Porod law for q > qmax.  Imax and qmax can 

easily obtained from the experimental data and Io is an adjustable parameter which 

can be used to narrow or broaden the peak. The two characteristic lengths, d and δ, 
within the material that can be obtained by fitting (3.2.3) are given by 

13,14
 

 

                          d = 2π{(1/2)qmax
2
[ 1/(1−Io/Imax)

1/2
 + 1]}

−1/2
 

and                                                                                                                (3.2.4). 

 

                           δ = {(1/2)qmax
2
[ 1/(1−Io/Imax)

1/2
 − 1]}

−1/2
 

                           

The relations between the parameters d and δ with the coefficients ai and ci (i = 

1,2,…) that appear in the expansion of F in term of ψ are shown explicitly in papers 

mentioned above.
13,14
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APPENDIX 1. Calculation of Fs(q) following Lord Rayleigh. 
  In this approach is taken into account a correlation function for the internal 

structure of the monomers. If the product of the ρ´s depends only upon the 

separation of the scattering elements, one may integrate over angle and the 

coordinates of one of the scattering elements, keeping the separation between them 

constant. In these conditions from (2.1.2) we obtain,
4,6,12

  

 

                         Fs(q)
2 
= 4π v ∫

∞

0

<ρ1 ρ2 >12  [sin(qr12)/qr12] r12 
2

 dr12                (2.1.5), 

 

where r12=|r1–r2|, ρn=ρ(rn,θn,φn), and ρ1ρ2stands for the product at a fixed value of 

r12 averaged over all positions of one of the scattering elements. 

 Now, for a homogeneous sphere, ρ1 = ρ2 = constant = ρ, since both scattering 

elements of volume lie within the sphere, one can show that 
4,6,12

 

 

                                         <ρ1 ρ2 >12 = ρ2
 γo(r)                                                 (2.1.6), 

 

where  γo(r) is a correlation function given by 

 

 γo(r) = 1 − (3/4)[r12/R] + (1/16)[r12/R]
3
  ,   for r12  < 2R   

 

and                                                                                                                   (2.1.7). 

 

γo(r) = 0  ,      for   r12  ≥ 2R   

                           

If a scattering element of volume is taken at the point 1, (2.7) expresses the 

probability to find an element 2 at a distance r12 from 1. 

 Thus, (2.1.5) is written as 

 

Fs(q)
2 
= 4π v ρ2

 ∫
R 2

0

γo(r12) [sin(qr12)/qr12] r12 
2

 dr12   

              = 4π v ρ2
 ∫

R 2

0

{1 − (3/4)[r12/R] + (1/16)[r12/R]
3
} [sin(qr12)/qr12] r12 

2
 dr12  

 

               = {3ρv [sin(qR) − qR cos(qR)]/(qR)
3 
}

2
                                            (2.1.8), 

 

which is identical to (2.1.3). 
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APPENDIX 2. Inhomogeneous Monomers.    
 Let us assume now that the scattering power ρ of the monomers are 

inhomogeneous but with a radial symmetry, that is, ρ= ρ(r). In this case, integrating 

(2.1.2) over angles we obtain, instead of (2.1.5) 

 

                 Fsi(q)
2 
= 4π v ∫

R

0

<ρ(r1) ρ(r2)>12  [sin(qr12)/qr12] r12 
2

 dr12                 (2.1.9), 

 

where <ρ(r1) ρ(r2)>12 is the average over all positions 1 and 2 of the scattering 

elements separated by the distance r12. If the sphere has internal structure, one may 

write 
6
 

                    ρ(r1) = ρ1 (1 + µ1)             and          ρ(r2) = ρ2 (1 + µ2)                 (2.1.10), 

 

where ρi
 
is the scattering power of the homogeneous sphere at the position ri and µi 

are the fluctuations from this due to non homogeneous structure of the sphere. 

Then,  

 

     <ρ(r1) ρ(r2)>12 = <ρ1 ρ2>12 + <ρ1 ρ2 µ1>12 + <ρ1 ρ2 µ2>12 + <ρ1 ρ2µ1 µ2>12    (2.1.11). 

 

If the internal fluctuations µn are random, positive and negative with equal 

probabilities, independent of the positions rn we have 

 

                                   <ρ1 ρ2 µ1>12 = <ρ1 ρ2 µ2>12 = 0                                     (2.1.12). 

 

If the internal correlations µ1 µ2  are independent of the correlations ρ1 ρ2 , then 

 

                                <ρ1 ρ2µ1 µ2>12  = <ρ1 ρ2>12  <µ1 µ2>12                             (2.1.13). 

 

Writing the internal correlations as  

 

                                          <µ1 µ2>12 = <µ2
>av γi(r12)                                       (2.1.14), 

 

where γi(r12) is the correlation function for internal fluctuations and <µ2
>av is the 

mean square amplitude of fractional refractive index variation. Thus, taking into 

account (2.1.6),(2.1.11)−(2.1.14) one obtains  

 

                      <ρ(r1) ρ(r2)>12 = ρ2
 γo(r12)+ ρ2

 γo(r12) <µ
2
>av γi(r12)                  (2.1.15). 

 

In this way, (2.1.9) is written as 
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                       Fsi(q)
2 
= 4π v ρ2

 ∫
R

0

γeff(r12) [sin(qr12)/qr12] r12 
2

 dr12                 (2.1.16), 

 

where  γeff(r12) = γo(r12) [ 1 +  <µ2
>av γi(r12)].  According to studies performed on 

scattering at large angles,
6
 Debye and Bueche

4 
 have shown that the function  

γi(r) = exp(−r/ξ), where ξ is correlation distance, fits very well the experimental 

results.  
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