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Abstract 
 We present a brief review of our preceding theoretical predictions 

where is shown that the weak interaction which is responsible for the left-right 

chiral symmetry breaking can generate chiral stability. 
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(I)Introduction  

In a recent paper
1
 we have presented a detailed study, in the framework 

of the Schrödinger`s equation, of the effect of the intermolecular interactions 

U on tunneling racemization of an optical active chiral molecule. This 

molecule is assumed as a two−level system and the left−right isomerism is 

viewed in terms of a double−bottomed harmonic potential well. The 

difference of energy due to the spontaneous tunneling between left(L) and 

right(R) configurations is indicated by δ.  In our model we take into account 

the difference of energy (ε) between the L and R configurations due to the 

weak interactions. In Section 1 we present the basic equations involving these 

parameters. In Section 2 we assume that the perturbing potential U is due to 

random binary collisions and in Section 3 that U is created by a cooperative 

effect between the interacting molecules. Depending on the parameters ε, δ 
and φ there is racemization, chiral stability and intermediate cases when the 

“optical activity” or “optical rotation” (Op) can assume any value in the range 

−1 ≤ Op ≤ 1. 
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(1) Basic Equations  

 As is well known 
1−3

 the optical activity of an optically active material 

changes with time. The sample, containing predominantly one stereoisomer, 

will become a mixture of equal amounts of each isomer. This relaxation 

process, which is called racemization, occurs spontaneously or is due to the 

interaction of the active molecule with the environment.  

 

(1.A) Intrinsic Properties of the Chiral Molecule 

 Optical activity occurs when the molecule has two distinct left and right 

configurations, | L > and | R >, which are degenerate for a parity operations, 

i.e., P(x)| L > = | R > and P | R > = | L >.  Left − right isomerism can be 

viewed in terms of a double − bottomed potential well and the states | L > and  

| R > may be pictured as molecular configurations that are concentrated in the 

left or right potential well. The two enantiomers of a chiral molecule are 

described by superpositions of the odd and even parity eigenstates of the 

double well localized around the potential minima, x = a and x = −a. The 

coordinate x is involved in the parity operation P = P(x) and connects the two 

potential minima. It may represent the position of an atom, the rotation of a 

group around a bond, some other coordinate, or a collective coordinate of the 

molecule. 

Let us define by Ho the Hamiltonian of each side of the double well and 

by Vo(x) the potential barrier separating the two minima of the double well. In 

this picture, | L > and | R > are eigenstates of Ho, i.e., < L | Ho | L >  = 

 < R| Ho | R > = Eo and there is a small overlap of these states inside the barrier 

Vo(x) so that , < L | Vo | R >  = < R |Vo | L > = δ. 
 Let us assume that the double−bottomed potential well has the shape of 

two overlapping harmonic potentials.
4 
  Indicating by ω the fundamental 

frequency of each harmonic oscillator and by µ the reduced mass of the 

particles vibrating between x = a and x = − a, the fundamental vibrational 

states | Φ(x) > of the left and right harmonic oscillators are written, 

respectively, as: 
4
 

 

  │ΦL(x) > = (µω/πh)
1/4

 exp[−(µω/2h)( x + a)
2 
],  

                                                                                            (A.1) 

  │ΦR(x) > = (µω/πh)
1/4

 exp[−(µω/2h)( x − a)
2 
]. 

 

 The left and right configurations states of the active molecule will be 

written in a Born−Oppenheimer approximation (adiabatic approximation) 
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as | L > = | ψL > | ΦL(x) > and | R > =   | ψR> | ΦR(x) >, where | ψ > describes 

all internal degrees of freedom of the active molecule except x . 

 In these conditions, δ = < L | Vo(x) | R >  = < R | Vo(x) | L >  is given 

by:
4
 

                      δ = (hω/π3/2
) (µ ω a

2
/h)

1/2
 exp(−µ ω a

2
/h)                    (A.2), 

 

that gives the natural tunneling frequency δ/h of the transition between the  L  

and  | R > configurations.
4
 

 In general case, if at a time t the state molecule is | Ψ(t) > and at t = 0 it 

was prepared at the state | L > or | R > we define a function r(t) named  

“racemization” by   

                                       r(t) = | < Q | Ψ(t) > | 
2  

                                     (A.3), 

 

where Q = L or R.  The “optical activity” or “optical rotation” Op(t) of the 

molecule is defined by the function  

 

                                          Op(t) = 1 − 2 r(t)                                             (A.4). 

 

Since r(t) ≤ 1  we see that Op(t) values are is in the interval  −1 ≤ Op(t) ≤ 1. 

 Recent optical experiments
5,6

 have demonstrated cases in which mirror 

symmetry in stable atoms is broken during absorption of light. These results 

support the theory of unification of the electromagnetic and weak forces. The 

discovery of parity violation in an atomic process was the outcome of many 

years of experimental effort. After the emergence of unified theories in the 

early 1970´s, many experiments were designed to test the new theories, to 

choose between them, and to measure the fundamental constants involved.
5
 

 If weak interaction effects are present, parity is violated and the left and 

right sides of the double-bottomed potential are no longer symmetrical. In this 

way, < L | Ho| L >  = EL = Eo – ε  and < R | Ho | R > = ER = Eo + ε , where 2ε is 
the difference of energy between the left and right configurations due to the 

parity-violating interaction.  According to recent calculations performed by Di 

Giacomo et al.
7
, ε/h is typically of the order of 10

−3
 Hz for rotational and 

vibrational transitions and of the order of 10
−6

 Hz for nuclear magnetic 

transitions.
8−13

   
  

(1.B) Chiral Molecule Interacting with the Environment.  

Let us assume now that the chiral molecule is embedded in a gas, liquid 

or solid where it is submitted to a generic external field U(t).  In our approach 

we have assumed that the racemization is produced essentially by transitions 
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between the two vibrational states | L > and | R >. In this way, the state 

function | Ψ(t) > of the active molecule, is represented by  

 

                           | Ψ(t) > = aL(t) | L >   +  aR(t) | R > ,                    (B.1) 

 

and obey the Schrödinger´s equation  

 

                       i h ∂ | Ψ(t) >/∂ t = [Ho + Vo(x) + U(t)] | Ψ(t) >.        (B.2) 

 

So, aL(t) and aR(t) are governed by the following differential equations: 

 

        daL(t)/dt = −(i/h)[aL(t) (Eo −  ε + ULL) + aR(t) (δ + ULR)], 

                                                                                                     (B.2) 

        daR(t)/dt = −(i/h)[aR(t) (Eo  + ε + URR) + aL(t) (δ + URL)], 

 

where the matrix elements Unk, with n, k = L and R , are given by Unk =  

< n│U(t)│k >.  

Since the homochiral and heterochiral interactions are equal,
14

 we 

define  u = ULL = URR and φ = ULR = URL. In this way Eq.(B.2) are written as: 

 

           daL(t)/dt = −(i/h)[aL(t) (Eo  − ε +  u) + aR(t) (δ + φ)], 

                                                                                                      (B.3). 

           daR(t)/dt = −(i/h)[aR(t) (Eo  + ε  + u) + aL(t) (δ + φ)] 

 

These general equations (B.3) will be used in Sections 2, 3, 4 and 5 to 

calculate the racemization r(t) and the optical stability Op(t) of active 

molecules embedded in a medium submitted to random collisions, in a dense 

medium submitted to a collective interaction and isolated. In section 6 we 

present the Conclusions and Discussions.  

 

 

(2) Active Molecule Submitted to Binary Random Collisions and ε = 0.  
 In this section we assume that ε = 0 and that the active molecule is 

embedded, for instance, in a dilute and compressed gas or liquid where the 

potential U(t) is due to binary collisions
15,16 

between molecules of the sample 

that are taken as additive, independent and at random. In dilute gases the 

collisions have very short duration (around 10
-11

s for a system at room 

temperature) but with a very high collision frequency, for molecular densities 

N ~ 10
17

/cm
3
. The molecular collisions induce transitions between L and R 
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configurations, described by φ = ULR. The spontaneous transitions between L 

and R are described by δ given by (A.2).  Putting ε = 0 into (5), these 

equations can be solved exactly. It is assumed that the molecule at t = 0 is at 

initial state | Ψ(0) > = | L >. 

The interaction U(t) is written as a sum of binary interactions given 

simply by u(t) = γ/R(t)
p
 , where γ represents the force constant for the 

interacting particles, R(t) the distance between them as a function of the time 

t, p = 4,5,…if the interaction is dipole-quadrupole, quadrupole-quadrupole, 

and son on. 

In the case of a dilute gas, treating the binary collisions in the impact 

approximation, we have shown that
17−19

 

 

r1(t) = [ 1 – cos(2δt/h) exp(–λt)]/2,                          (2.1) 

 

where λ = (γ/h)
2/(p−1) 

N(kT/m)
(p−3)/(2p−2)

, N the density of perturbing molecules, 

k the Boltzmann constant, T the absolute temperature of the system and m the 

reduced mass of the colliding particles. 

 For a compressed gas or liquid, where collisions are quasi-static, we 

have shown that:
17,19

 

                              r2(t) = [ 1 – cos(2δt/h) exp(–λ*t
3/p

)]/2  ,                   (2.2)  

where   

                                 λ* = (8π/p)N(γ/2h)
3/p

 ∫
∞

0

x
-(p+3)/p

 sin
2
x dx.  

 Taking into account (2.1) and (2.2) we verify that, in gases and liquids, 

when ε = 0, binary random collisions between active and perturbing molecules 

produce the racemization of the sample. Comparing r1(t) and r2(t) we verify 

that r1(t), in dilute gases, decays in time as exp(–λ t) and in dense gases and 

liquids r2(t) more slowly, as exp(–λ* t
3/p

), since p = 4,5,…and so on.  

In order to estimate r1(t) and r2(t) we will assume that there is only  a 

dipole−quadrupole (p=4) interaction between active and perturbing molecules. 

In this case 
20

 since γ = d < L| Q(x) | R > = d θ exp(–µωa
2
/h),   

 λ is given by : 

 

              λ = 13.0 N (kT/m)
1/6

 (θd/h)
2/3

 exp(–2µωa
2
/3h) ,                 (2.3) 

 

where d is the electric dipole of the perturbing molecule and θ quadrupole 

matrix element of the active molecule between left and right configurations. 

Similarly, λ* is written as: 
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                              λ* = 2.86π N(θd/2h)
3/4

 exp(–3µωa
2
/4h).                       (2.4). 

 

 A numerical estimation of r1(t) and r2(t) will be done considering the 

following typical molecular parameters:  a = 10
−8

 cm, µ = 10
−23

g, m = 10
−22

 g , 

d = 10
−18

 e.s.u., θ = 10
−26

 e.s.u., T =300 K and N = 10 
17

/cm
3
 .The frequencies 

ω will written as ω = A 10 
13

 rad/s.  Taking into account these values we 

verify that δ/h , λ and λ*, defined by (A.2), (2.3) and (2.4) are is given by     

δ/h =1.10 10
21

 A
3/2

 exp(– 9.52 A) y
-1

,   λ = 5.03 10 
15 

exp(– 6.35 A) y
 -1

 and  

λ* =2.90 10 
12

 exp(– 7.14 A) y
-1

, respectively, measuring the time t in years. 
 

In Figures 1 and 2 are shown r1(t) and r2(t), respectively, as a function of 

t, measured in years, for A = 4.5. For a dilute gas, according to Figure 2, the 

racemization occurs for t > 1 day. The factor r1(t) slowly oscillates around 0.5, 

assuming rapidly this value. The case of compressed gases or liquids, where 

the collisions are quasi static, is shown in Fig.3.  We see that r2(t) oscillates for 

a long period ( 0 < t < 10
5
 y) around 0.5 assuming asymptotically this value 

only for t > 2 10
5
 y.  These results show that racemization mechanism due to 

binary collisions in dilute gases (impact approximation), is much more 

efficient than that produced by the quasi static interactions in compressed 

gases and liquids.  

In conclusion, when ε = 0 and U(t) is created by binary random 

collisions the optically active system inevitably racemizes, that is, for long 

times r(t) → 0.5 and, consequently, Op(t) = 1 − 2 r(t) → 0.  

 

 
 

Figure 1. r1(t) for dilute gases, defined by (2.1), shown as a function of the 

time t, measured in months. The racemization was calculated taking the 

harmonic oscillation frequency ω = 4.5 10
13

 rad/s. 
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Figure 2. r2(t) for dense gases and liquids, defined by (2.2), shown as a 

function of the time t, measured in years. The racemization was calculated 

taking the harmonic oscillation frequency ω = 4.5 10
13

 rad/s. 

 

 

 

(3)Chiral Molecule Submitted to a Collective Interaction when ε ≠ 0.  
Let us consider now the case when ε ≠ 0 and the active molecule is 

embedded in a dense gas, liquid or solid, where multiple interactions dominate 

over binary interactions and that there is a cooperative effect between the 

interacting molecules. Due to this collective behavior we will assume that 

each molecule is subjected to a mean field resulting from these combined 

interactions of all other molecules in the system. This mean field is understood 

as a self−consistent Hartree field.  

The cooperative interaction potential, that will be indicated by U(x), 

will be considered in the framework of Schrödinger`s equation simultaneously 

with the weak interaction. Consequently, taking into account that U(x) is static 

(B.3) can be exactly solved. In this way, if at t = 0 the active molecule is 

prepared so that | Ψ(0) > = | L >, we get 
20

   

 

                      r(t) =|< R | Ψ(t) >|
2
 =  Θ sin

2
{[ε2 

+ (δ 
+ φ)

2
]

1/2
t/h}             (3.1), 
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where Θ is the “r(t) amplitude” given by Θ =(δ + φ)
2
/[ ε2 

+ (δ 
+ φ)

2
 ]. So, when 

U is static, according to (3.1) there is no racemization and the optical activity 

Op(t) oscillates with a period T = 2πh/[ ε2 
+ (δ 

+ φ)
2
]

1/2 
 around the average 

value  < Op > = 1 − Θ/2. 

 In this way, that to get chiral stability, that is < Op > = 1, it is necessary 

that Θ << 1. Thus, when there is a cooperative interaction U(x) between the 

molecules of the sample, optical stability occurs only when ε >> (φ + δ). 
Let us consider the particular case of dense gases and liquids composed 

by dipolar molecules. This is a special case because a cooperative interaction 

mechanism appears between the molecules of the sample and U(x) can be 

easily calculated.
22

  In the dielectric medium
22−24

 appears a reaction field Er 

given by Er = 2(є − 1)d/(2є + 1)R
3
, where є is the dielectric constant of the 

medium, d the average dipole moment of the active molecule and R the radius 

of the cavity where d is embedded. In this way, the interaction potential 

between Er and the active molecule is given by U(x) = − d·Er  Since the dipole 

matrix element of the active molecule between | L > and | R > is zero, the 

heterochiral interaction < L |U(x)| R> = φ of this molecule with Er will 

calculated taking into account the quadrupole moment Q(x) of the active 

molecule. So, φ will be given by φ ≈ d <L|Q(x)|R>/R
4 
. As shown elsewhere,

20
 

< L|Q(x)|R> = θ exp(−µωa
2
/h), where θ is the quadrupole matrix element of 

the active molecule between L and R configurations. In this way, φ is given by 

 

                                      φ  ≈ (θd/R
4
) exp(−µωa

2
/h)                                     (3.2). 

 

Now, let us estimate the amplitude Θ = (δ + φ)
2
/[ ε2 

+ (δ 
+ φ)

2
 ], defined 

by (3.1), taking into account that δ/h and φ/h are given, respectively, by  

 δ/h = (2ω/π3/2
) (µωa

2
/h)

1/2
 exp(−ωa

2
/h) and φ/h = (θd/hR

4
) exp(−µωa

2
/h), 

according to (A.2) and (3.2). These two factors, using the molecular 

parameters defined in Section 2, taking R ≈ 3 10
−8

 cm and putting ω = A 10
13

 

rad/s, become  δ/h = 5.54 10
12

 A
3/2

 exp(−9.52 A) Hz and  φ/h  = 1.51 10
12 

exp(−9.52 A) Hz.  In Fig (3) the amplitudes Θ(A), for ε/h = 10
−3 

Hz and ε/h = 

10
−6

 Hz, are plotted as a function of the parameter A. 
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Figure 3. The amplitude Θ(A), defined by (3.1), plotted as a function of the 

parameter A, defined by the equation ω = A 10
13 

rad/s. Two limiting cases 

have been considered: ε/h = 10
−3

 Hz (vibrational and rotational transitions) 

and ε/h = 10
−6

 Hz (nuclear magnetic transitions). 

 

From Figure 3 we see that the amplitude Θ decreases very rapidly for 

frequencies ω > 4 10
13 

rad/s.  When ε/h = 10
−3 

Hz (rotational and vibrational 

transitions) Θ is in the interval 1.82 10
−8

 ≤ Θ ≤ 1.67 10
−13

, for frequencies ω in 

the range 5 10
13 ≤ ω ≤ 6 10

13 
rad/s.  These results show that it is possible to get 

optical stabilization for frequencies ω > 5 10
13

 rad/s. When ε/h = 10
−6 

Hz 

(nuclear magnetic transitions) stability conditions are found for ω > 5 ~ 5.5 

10
13

 rad/s. These results show that for frequencies ω > 5.5 10
13

 rad/s the weak 

force energy ε produces a chiral stability because, for these frequencies, ε 
becomes much larger than δ and φ. In these conditions the optical activity 

becomes equal to one.  

 

(4) Isolated Molecule when ε ≠ 0 and ε = 0. 
To analyze the case of an isolated chiral molecule we put φ = 0 in (3.1). 

Consequently, the amplitude Θ is given by Θ = δ2
/( ε2

 + δ2
), showing that 

chiral stability is obtained when ε >> δ . According to Fig.3 this occurs for  

ω > 5~5.5 10
13

 rad/s. If ε = 0, r(t) is given by r(t) = sin
2
(2δt/h), showing that it 

would have a L−R oscillation with a period T = πh/δ.  As δ/h = 5.54 10
12

 A
3/2

 

exp(−9.52 A) Hz, according to Section 3. Taking, for instance, A = 5 we 

obtain T ≈ 43 days.  On the other hand, if ε/h = 10
−3 

Hz it would have chiral 

stability since the parameter Θ is given by Θ = 1.6 10
−12

. 
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 In the case of an isolated active molecule, the blocking effect of the 

weak interactions in the L−R oscillations, which occurs when ε >> δ, can be 

explained using the energy uncertainty relation ∆E ∆t ~ h. Indeed, since the 

spontaneous oscillation time between the L and R configurations is ∆t = T = 

πh/δ the energy uncertainty is given by ∆E ~ δ. In this way, if there is a 

difference of energy ε between L and R, the natural L−R transitions are 

allowed only when ∆E ~ δ ≥ ε. On the other side, the transitions will be 

prohibited when ε >> δ. In the presence of the potential interaction energy φ, 

using the same reasoning, the L−R transitions are blocked when the condition  

ε >> δ + φ is obeyed. 

 

(5) Active Molecule Submitted to Binary Random Collisions when ε ≠ 0. 

 In Section 2 we have calculated r(t) for an active molecule assuming 

that ε = 0 and that it is submitted to a time dependent potential U(t) due to 

random binary collisions. In Section 3, we have determined r(t) assuming that 

ε ≠ 0 and that U(x) is a static interaction potential due to a cooperative effect 

between the interacting molecules. 

In these two cases (B.3) could be exactly solved. In the first case 

(Section 3) we have ε = 0 and U(t) depending on the time. In the second case 

(Section 4), ε ≠ 0 and U independent of the time. On the other side, when ε ≠ 0 

and U = U(t) the (B.3) cannot be exactly solved. In these conditions, we verify 

that r(t), in the case of binary random collisions, is given by  

 

              r(t) ≈ (δ/∆o)
2
 [ 1 – cos(2∆ot/h) exp(−f(t))]/2,       (5.1) 

 

where ∆o=(ε2
 + δ2

)
½
 , f(t) = λt, for dilute gases in the impact approximation, 

and f(t) = λ*t
3/p

 for compressed gases and liquids, in a quasi−static 

approximation, according to Section 2. 

 Let us consider three particular cases of (5.1). When ε = 0 we obtain 

r1(t) and r2(t) given by (2.1) and (2.2), respectively, that describe the 

racemization of the sample. When ε >> δ we see that r(t) = 0, which is the 

condition for chiral stability. Finally, when U = 0, r(t) = (δ/∆o)
2
 sin

2
(∆ot/h) 

which is the case of an isolated molecule analyzed in Section 4. 

 Defining rmax = (δ/∆o)
2
/2 we verify from (5.1) that  the optical activity   

Op  varies in the range 1−2 rmax  ≤ Op  ≤ 1. We see that for very long times, that 

is, for f(t) >> 1, r(t) → rmax. So, only when δ >> ε occurs racemization, that is, 

rmax  → ½  and Op → 0. On the other hand, when ε >> δ there is chiral stability, 

that is, rmax  → 0 and Op → 1. When, for instance, ε/h = 10
−3

 Hz we verify that 

this last condition is satisfied only for ω > 5.2 10
13 

rad/s considering that δ/h = 
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5.54 10
12

 A
3/2

 exp(−9.52 A) Hz and remembering that ω = A 10
13 

rad/s. For 

frequencies in the interval 4 10
13 

< ω < 5.2 10
13 

rad/s r(t) oscillates and 

decreases as the time increases tending asymptotically to rmax which is in the 

range 0 < rmax < ½. 

 In Figure 4, r4(t), defined by (5.1), is shown as a function of t for dilute 

gases for ε = 10
−3

 and A = 4.5, that is, ω = 4.5 10
13 

rad/s.   According to this 

figure r(t) oscillates between 0 and 0.21 and stabilizes with rmax ≈ 0.11 for  

t > 10 months, giving an asymptotic optical activity Op → 0.78. 

 

 
Figure 4.  r4(t) given by (5.1) as function of the time t measured in years, for 

ε/h = 10
−3

 and A = 4.5, that is, ω = 4.5 10
13 

rad/s.    

 

 

(6)Conclusions and Discussions. 
  Taking into account the analysis performed above in the framework of 

our double bottomed harmonic model we can conclude that: 

(1)When ε = 0 it is impossible, in all cases, to have optical stability. The 

system always racemizes, that is, r(t) → ½ and <Op > → 1 

(2)When chiral molecules are free or perturbed by binary, additive, 

independent and random collisions to get chiral stability it is necessary and 

sufficient to have ε >> δ.  The chiral stability can be total <Op > → 1 or 

partial, that is, smaller than 1. 

(3)In a dense medium when U = U(x) is due to a cooperative effect between 

the interacting molecules of medium there is chiral stability <Op > → 1 only 

when ε >> δ + φ, where φ is the heterochiral interaction φ = < L |U(x)| R>. 
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That is, when the difference of energy ε is sufficiently large to block the L−R 

transitions induced simultaneously by the natural tunneling and by the 

cooperative potential. 

 Taking into account that ε/h = 10
−3 

Hz and the molecular parameters 

values adopted in Section 2−5 we verify that the condition ε >> δ + φ is 

satisfied for ω > 4.2 10
13

 rad/s. These frequencies are found, for instance, in 

harmonic vibrations in the infrared region. 

In a recent approach
25

 proposed to study the chiral stability, the self-

consistent field has two components: Uhom and Uhet emanating from the 

homochiral and heterochiral interactions, respectively. These components 

have been introduced in a nonlinear Schrödinger equation in order to give the 

time evolution of the active system. They have shown that when Uhom 

interactions are energetically favorable to Uhet interactions, spontaneous left-

right symmetry breaking may amplify the optical activity of a nearly racemic 

mixture. 

Nonlinear quantum mechanics have been used 
25,26

 to explain the chiral 

stability. This seems to be a plausible attempt because the stationary states of a 

nonlinear Schrödinger`s equation
26,27

 need not to be eigenstates of the 

operators that correspond to the symmetry group of the potential. So, the 

nonlinear term introduces a spontaneous symmetry breaking 
27,28

hich favors 

the localization in one of the wells. However, realistic nonlinear Schrödinger`s 

equations must be deduced taking into account cooperative effects in the 

many-body interactions in the sample.
28−31

 This algorithm would permit us to 

obtain a faithful nonlinear equation to study the optical stability. The nonlinear 

equations adopted by Vardi
25

 and Koschany et al.
26 

have not been obtained in 

this way. They have proposed, somewhat arbitrarily, equations following 

generic nonlinear models adopted in the literature.
31

 In addition, we know that 

nonlinear equations exhibit a large number of rich and complex solutions 

depending on the magnitude of the nonlinear parameters. So, from the analysis 

of Vardi
25

 and Koschany et al.,
26

 it is difficult to conclude that the nonlinear 

effects are, or are not, effective mechanisms responsible for the chiral 

stability. 

 Finally, it is important to remark that our conclusions regarding 

the stabilization of enantiomers are limited to those molecules that principally 

racemizes through simple inversion alone. As is well known, there are many 

other different racemization mechanisms.
32

 In our works these processes have 

not been considered. 
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