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Abstract 

In many books and papers are found the definitions and applications 

of Radial Distribution Function (RDF) and Structure Factor (SF) to study 

aggregate properties. The RDF and SF functions defined to determine the 

interaction potential between the particles of an aggregate are completely 

different from the respective ones defined to obtain the fractal properties of 

the aggregate. Since these differences are not found clearly displayed in the 

literature they will be pointed out and analyzed in details here. This article 

was written to graduate and postgraduate students of Physics.  
Key words: pair correlation functions; structure factors; fractals.   

 
Resumo 

 Em muitos livros e artigos encontramos as definições e aplicações da 

Função de Distribuição Radial (FDR) e do Fator de Estrutura (FE) para 

estudar as propriedades de agregados. As FDR e FE definidas para 

determinar o potencial de interação entre as partículas de um agregado são 

completamente diferentes das respectivas funções definidas para obter as 

propriedades fractais do agregado. Como essas diferenças não são 

encontradas claramente expostas na literatura elas são mostradas e 

analisadas em detalhes aqui. Esse artigo foi escrito para alunos de 

graduação e pós−graduação de Física. 

 

 

 

 

 

 

(1) Pair Correlation Function.  
To simplify our analysis we will assume that the material is 

composed by N identical nanometric spherical “particles” with radius ro 

that occupy a volume V. These “particles” (“monomers”) can be atoms, 

molecules or also nanometric agglomerates of atoms and molecules. In 

addition, it will be assumed that the particles distribution in the 

agglomerates have a spherical symmetry.  In Statistical Mechanics
1,2,3

 using 

the “two particles correlation function” or simply “pair correlation 
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function” n
(2)

(r) the “Radial Distribution Function” (RDF) g(r) of the 

aggregate is defined by :  

 

                                g(r) = (V/N)
2
 n

(2)
(r)                                  (1.1) 

 

The function g(r), which is normalized to 1 for r → ∞, gives the 

effective distribution of the particles localized at a distance r around a 

given particle placed at the origin. The number of particles dN(r) between  

r and  r+dr is given by dN(r) = 4π (N/V)g(r) r
2
dr. 

 

 

 

 

(2) Determination of the Interaction Potential between Particles. 

 With the intention to determine the interaction potential between the 

particles in a material the function g(r) is sometimes written as
1,2 

 

 

                                g(r) = exp{− φ(r)/kT }                              (2.1), 

 

where k is the Boltzmann constant, T is the absolute temperature of the 

system and φ(r) is the effective energy interaction potential between two 

particles. In Figure 1 is seen a typical g(r) function for a liquid assuming 

that φ(r) is a Lennard−Jones potential.
1,2

  The shape of g(r) that describes
2 

how the particles are concentrated as a function of r can be easily 

understood taking into account that for r → 0 the potential φ(r) → ∞ due to 

a repulsive force (“hard core”), at r = σ ~ 2ro it passes by a negative 

minimum, due to an attractive force between the  particles and for r → ∞   

 
 

 
 

Figure 1. Typical plot of g(r) x r for a liquid.
2
 The maximum of g(r) is 

found at r ~ σ ~ 2ro.  
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it tends to 1 since φ(r) → 0.  In this way, g(r) = 0 for r ≤ 2ro, it passes by a 

maximum value at r ~ σ, in the region of the first neighbors, and for r > σ it 

oscillates representing the effects of the more distant neighbors. The 

amplitudes of the oscillations decrease as r increases and for r → ∞, where 

the particles density (distribution) becomes uniform, g(r) → 1. 

Putting Ф = (N/V), where V is the system volume, the total number 

of particles N(r) which is inside a sphere with radius r, taking a particle at 

the origin  r = 0, is given by 

                                     N(r) = Ф 
r    

0   
g(r) 4π r

2
 dr                                    (2.2). 

 

To determine microscopic properties of a material we can measure, 

for instance, the scattering intensity I(q)
3−5

 of neutrons, electrons, or 

photons (X−rays). It is given by  I(q) = Io(q) S(q) where Io(q) is the 

scattering generated individually by the N mononers and S(q) is the 

“structure factor” (SF) defined
1,2,3−5

  

            S(q) = 1 + 4πФ 


0

[g(r) − 1] r
2
 (sin(qr)/qr) dr }                 (2.3), 

and q is the momentum change of the scattered photon, neutron or electron.  

The SF takes into account the correlated scattering between the monomers.  

In the case of elastic collision q = 2k sin(θ/2) where k =2π/λ is the wave 

vector of the incident particle and θ is the scattering angle. According to the 

quantum position−momentum uncertainty relation ΔpΔr ≥ ћ if in the 

collision there is a momentum change Δp = ћq the region where this effect 

is produced must have a dimension R given by a R ~ 1/q. As, in general, 

φ(r) is different zero
2
 in the interval 0 < r ≤ 10 Å = 1 nm the details of the 

function φ(r) can be obtained only if the scattering are observed when  

 1/q < 10 Å = 1 nm, that is, only when the momentum change q are given 

by q > 1 nm
−1

. If the particle wavelength λ ~ 1 Å we verify that q = (4π/λ) 

sin(θ/2) ~ 4π sin(θ/2). This implies that to have q > 1 nm
−1

 the scattering 

angle θ must be θ > 10º, that is, the effective scattering must occur at “large 

angles”. 

In Figure 2 is seen a typical function S(q) as a function of q for a 

liquid in the case of a “large scattering angle”. The value of S(q) at q = 0 is 

given, as is shown in the Appendix, by S(0) = ФχTkT, where  χT = 

(∂Ф/∂P)V,T/Ф is the isotermic compressibility of the material.
2
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Figure 2. Typical plot
2
 of S(q) x q for a liquid for “large scattering angles”.  

q is usually measured in nm
−1

 or Å
−1

. 

 

 

In Fig.3 we see S(q) as a function of “large scattering angles” θ of  

neutrons
2,6  

by liquid Ar at 84 K.   

 
Figure 3. S(q) x θ measured in degrees, obtained for “large scattering 

angles” θ of neutrons by liquid Ar at 84 K.
6
 

 

From S(q) we determine g(r) using (2.3). In Figure 4 are shown the 

experimental results
2,7

 of S(q) as a function of q to liquid Rb at 40ºC, 

obtained by scattering of neutrons at “large angles” compared with the 

values of S(q) calculated using (2.3) and (2.1) assuming a hard−sphere 

potential φ(r).
1,2,7
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Figura 4. Function S(q) x qσ obtained measuring “large angle” neutron 

scattering
2
 (represented by black dots) to the Rb at 40º C compared with 

calculations (continuous line) performed assuming a hard−sphere 

interaction between the atoms.
1,2.7

 

 

 In Figure 5 is shown g(r) calculated taking into account the 

experimental S(q) values 
2,6

 obtained with “large angle” neutron scattering 

for liquid Ar at 84 K assuming φ(r) as a Lennard−Jones potencial.
1,2,6

 
  

 
 

 

Figure 5. Function g(r) x r obtained from the experimental S(q) values of  

Ar at 84 K
 
measured

6
 with “large angle” neutron diffraction (black dots). 

The function g(r) was calculated (continuous and dashed lines) assuming 

φ(r) as a Lennard−Jones potential.
1,2,6,8

  

 

 



 6 

(3) Determination of Fractal Properties of Aggregates. 

Let us see how to determine the fractal properties of aggregates 

analyzing the scattering of neutrons, electrons or fotons (X−Ray). To do 

this we first show how to calculate the volume and mass fractality of 

systems composed by identical spherical monomers with radius ro. To do a 

more complete and general study about fractality we suggest the lecture, 

for instance, of the books de Mandelbrot 
9
 and Feder.

10  
  

Let us consider a sphere (or circle) filled with identical monomers 

(“small balls”) each one with radius ro. Let us assume that the radius of the 

sphere Rn and the number of monomers Nn contained in the sphere are 

written as  

  

                             Rn = a
n
 ro      e          Nn = b

n
      (n = 1,2,3,..)         (3.1). 

 

Note that in our approach it will be assumed that Rn >> ro, that is, we 

have a very large number Nn of balls inside the sphere with radius Rn. 

 Equation (3.1) can also be written as  

 

                                 Rn/ro = a
n
       and       Nn = b

n
                             (3.2),  

 

from which we get (omitting for simplicity the n index from Rn and Nn)  

 

                                n = ln(R/ro)/ ln(a) = ln(N)/ln(b)                            (3.3), 

that is,  

                                 ln(b)/ln(a) = D = ln(N)/ln(R/ro)                           (3.4). 

 

Equation (3.4) shows that  

 

                               N = (R/ro)
D
, onde D = ln(b)/ln(a)                          (3.5). 

 

The parameter D is defined as “fractal dimension” of the system. The 

system can be linear (1−dim), circular disk (2−dim), sphere (3−dim),… 

A system embedded in an Euclidean space with dimension E is named 

“fractal” when D < E  and “Euclidean” when E = 3. 

 

Comments. 

(A) To deduce Eqs.(3.3)−(3.5) no hypothesis have been done about the 

structure of the material  (it could be crystalline or amorphous) or that the 

volume is partially or “completely” filled with the small balls.  To analyze 

this let us assume that the aggregate which has a volume V is formed by N 

identical particles with radius ro. Putting R = 10
 X 

ro and N = 10
Y
 we verify, 

using (3.4), that D = ln(N)/ln(R/ro) = Y/X. So, for instance, in a 3−dim 

space, depending on X and Y, the system is Euclidean or fractal system if 
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Y/X = 3 or Y/X < 3, respectively.  The fractality will depend on the empty 

spaces among the monomers that occupy the volume V. Thus, if the 

volume occupied by the particles is Vocup = N (4/3)π ro
3 
= 10

Y
(4/3)π ro

3 
and 

putting the available volume Vavail = (4/3)π R
3 
= (4/3)π ro

3
 10

3X
 we see that 

the ratio Vocup/Vdisp = 10
Y−3X

. In this way, we verify that Vocup < Vavail if Y < 

3X which is the fractal condition, that is, non−Euclidean. We have an 

Euclidean case when Vocup = Vdisp , that is, when Y = 3X, or D = Y/X=3. 

(B) Note that the volume V is never “completely” filled with the small 

spherical particles, that is, the condition Vocup = Vdisp is only approximately 

valid; there are always voids among the particles. This kind of problem was 

analyzed mathematically, for instance, by Thomas Harriot
11 

around 1587 

after a question on the better way of piling canon balls on ships posed to 

him by Rayleigh. This problem is known as the “close−packing of 

spheres”. How to dispose the spheres in space in order to achieve this 

highest density or how they can be disposed in order to occupy the 

minimum space. In geometry, “close−packing of spheres” is a dense 

arrangement of equal spheres in an infinite,regular arrangement (or lattice).  

If N is the number of spheres inside a sphere with radius R the density ρ of 

spheres is given by N = ρ(R/ro)
3
. Gauss

12 
proved that the highest average 

density, that is, the greatest fraction of space occupied by spheres that can 

be achieved by a regular arrangement is given by (see also Feder
10

) 

                                        ρ = π/3√2 ≈ 0.74048                                 (3.6).  

According to Kepler (17
th 

−century) this highest density can be achieved by 

any arrangement of spheres, either regular or irregular. This is known as 

“Kepler conjecture”. Recently T.C. Hales
13 

claimed to have proved
14

 this 

conjecture that has evaded certain confirmation for 400 years using 

computational methods. 

In the 2−dim case, for a close−packed collection of N disks with 

radius ro inside a circle with radius R it can be shown that its highest 

density ρ which is defined by   N = ρ(R/ro)
2
 is given

10
 

                                           ρ = π/2√3 ≈ 0.9069                               (3.7). 

 For the 1−dim case (straight line) a close−packed collection of N 

disks that occupy a “volume” L = 2R has its highest density ρ defined by N 

= ρ(R/ro)
1
 given by 

                                                        ρ = 1                                       (3.8). 
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In conclusion, for close−packed systems formed by N identical 

spheres (or disks) with radius ro we have the following equations of N as 

functions of (R/ro), for 1−dim, 2−dim and 3−dim, respectively  

N = (R/ro)
1
,    N = (π/2√3) (R/ro)

2
   and  N = (π/3√2) (R/ro)

3
 , 

showing that close−packed systems are Euclidean, as occurs, for instance 

with many crystal structures. For non−Euclidean aggregates, that is, for 

fractal systems we have
9,10

 

                                           N = ρ(R/ro)
D
                                             (3.9), 

where ρ is a constant and D is not integer.  

(C) For a 3−dim space the volume occupied Vo(n) by n small identical balls 

with radius ro, each one with vo = (4/3) π ro
3
 and the available volume V(n) 

can be written,  respectively, by  

 

                                Vo(n) = Nn vo = b
n
 vo 

 
 

and                                                                                                        (3.10) 

                     V(n) = (4/3) π Rn
3
 =(4/3) π (a

n
 ro)

3 
= a

3n
 vo  

 

 Since, in the general case, V(n) ≥ Vo(n) from (3.10) we obtain a
3n

  ≥ 

b
n 
,
  
that is,  3n ln(a) ≥ n ln(b), which implies, using (3.5) that  

                      

                                                  D ≤ 3                                                  (3.11) 

 

When the occupied volume Vo(n) is equal to the available volume 

V(n), that is, when   

                                 V(n)/Vo(n) = 1 = (b/a
3
)

n
                                  

 

we must have b = a
3 
 giving, using (3.5), D = ln(b)/ln(a) = 3 and, 

consequently, omitting for simplicity the index n, that  N = (R/ro)
3                             

                                  

which is the Euclidean case, D = 3. 

 

(3.a) Mass Fractality and Density Fractality. 

 First let us consider the case of particles placed in a 3−dim space.  

If mo is the mass of each monomer, using (3.5) the total mass M(R) of the 

system is given by  

 

                                  M(R) = N mo
 
= mo(R/ro)

D
                                 (3.12) 

 

and its density ρ = M/[(4/3)π R
3
] is written as  
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                        ρ(R) = (3mo/4πro
D
)(R/ro)

D −3 
 ~ (R/ro)

D −3 
 
                         

(3.13). 

 

 Let us consider a particle at r = 0. The number of particles N(r), the  

mass M(r) and the density ρ(r) inside a sphere ( “cluster”) with radius r will 

be given by 

 

 N(r) = (r/ro)
D
,    M(r) = mo(r/ro)

D      
e    ρ(r) = (3mo/4πro

D
)(r/ro)

D −3 
  (3.14). 

 

In this way the density ρ(r) can be written as 

 

                         ρ(r) = (3mo/4πro
D
)(r/ro)

D −3 
 = A (r/ro)

D −3 
                  (3.15), 

 

where the parameter A = (3mo/4πro
D
) depends on the mass, the radius of 

particles and  the fractality of aggregate where the particles are immersed. 

Since for a fractal material D < 3 Eq.(3.15) shows that the density of a 

fractal cluster decreases as its radius r increases. The cluster density is 

constant only when D = 3, that is, when D is equal to the Euclidean 

dimension E of the space where the cluster is placed.   

 In the general case of a cluster immersed in a Euclidean space with 

dimension E the density (3.15) is given by 
9,10

 

 

                                           ρ(r) = C r 
D − E 

                                         (3.16), 

 

where C is a constant showing that the density is constant when D = E in 

agreement with Sections (3.b) and (3.c). 

 Note that N(r), M(r) e ρ(r) displayed above are valid only for r >> ro 

resulting, consequently, that available volume V >> vo. 

 

(3.b) Correlation Function  for a 3−dim Fractal Aggregate.  

  From N(r) given by (2.2) and (3.14) we get, respectively, 

       

      dN(r) = Фg(r)4π r
2
 dr        and        dN(r) = (D/ro

D
) r

D−1
 dr           (3.17). 

 

From (3.16) results               

                                                         

                                      Фg(r) = (D/4πro
D
) r

D−3
                                     (3.18). 

 

Since for fractal systems 
9,10

 D < 3, g(r), according to (3.18), would tend to 

zero when r → ∞. This is a non physical result because for large r values 

the cluster shows an almost uniform density, with negligible fluctuations.
1,2

 

As is known from liquid theory,
1,2 

 g(r) → 1 when r → ∞. To correctly 

describe the behavior of a medium for large r it is introduced
15,16

 a cutoff 

distance  ξ , named “correlation distance” obtaining: 
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                     Ф[g(r) − 1] = (D/4πro
D
) r

D−3
 exp(−r/ξ)                           (3.19). 

 

ξ represents a characteristic distance larger than which the mass 

distribution in a cluster is no more described by a fractal law.
13 

 

 

(3.c) Structure Factor S(q) for a 3−dim Fractal Aggregate. 

Note that the fractal relation (3.19) describes correlations between 

monomers only for r >> ro. On the other side, g(r) = exp{−φ(r)/kT}  

describes correlations between monomers for r values that are only a few 

times larger than the distances between the monomers. 

 In this way, (3.19) would be able to give precise information only for  

 r >> ro. As analyzed in Section (2), according to the quantum position − 

momentum uncertainty relation ΔpΔr ≥ ћ if the momentum change of the 

scattered particle is a Δp = ћq the dimension R of the region where this 

effect is produced would be given by a R ~ 1/q. Consequently, in order to 

investigate fractal properties the condition R > ro  , must be obeyed, that is, 

1/q > ro . Taking into account that q = (4π/λ) sin(θ/2) we verify that we 

must have (4πro/λ) sin(θ/2) < α where α ~1. If the incident particle (photon, 

neutron or electron) has a wavelength λ ~ 1.5 Å = 0,1 nm and  ro ~ 1.5 nm  

the scattering angles obey the condition 40π sin(θ/2) < α  which implies 

that they must be very small at maximum equal to 3 ~ 4º. This means that 

the diffraction must be performed at “small angles” like in SANS (“Small 

Angle Neutron Scattering”) ou SAXS (“Small Angle X−ray Scattering”).
4,5

 

 Substituting (3.18) in (2.3) we can show that 
17,18

 

S(q) = 1 + (D/ro
D
) 



0

r 
D−1

 exp(−r/ξ) [sin(qr)/qr] dr  

        = 1+ (1/qro)
D
{D Γ(D−1)/[1+1/(qξ)

2
] 

(D−1)/2
} sin[(D−1)tan

−1
(qξ)]  (3.19)  

 

 The function S(q) is obtained integrating r from r = 0 because the radius 

and the volume of the monomer are taken as negligible compared with the  

dimensions of the aggregate. According to the SAXS theory
17−19

 (or SANS) 

the fractal dimension D is determined analyzing S(q) in the interval 

 1/ξ << q << 1/ro where S(q) ~ q
−D

. For very small q values such as qξ << 1 

(consequently,qro << 1) we have S(q) ≈ Г(D+1)(ξ/ro)
D
{1− [D(D+1)/6]q

2
ξ

2
} 

with which is determined the “giration radius”Rg(D,ξ) = [D(D+1)/2]
1/2

 ξ. 

For large q values such as qro >> 1 the function S(q) → 1. In these 

conditions
18,19

 the scattered intensity I(q) is described essentially by Io(q) 

due to the individual monomers, I(q) ~ Io(q) ~ q
(Ds − 6)

, where Ds is the 

fractal dimension of the monomers surfaces. For smooth particles Ds=2 

giving I(q) ~ Io(q) ~ q
− 4

, which is the Porod law. 

As an example we calculate S(q) using (3.19) for a PMMA−Au 

analised
19

 with SAXS where we have found
 
D = 1.70, ro = 1.64 nm e ξ 
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=13.08 nm. Considering these values and using (3.19) we have calculated  

S(q) as a function of X = qro, shown in Figure 6. As pointed out above, this  

function S(q) is completely different from the S(q) seen in Figures 2−4.  

 
Figura 6.  S(q) defined by (3.19) as a function of  X = q ro for a fractal a 

PMMA−Au film analyzed 
19

 with SAXS for which was obtained  D = 1.70, 

ro = 1.64 nm and ξ =13.08 nm. 

 

 As a final remark, let us analyze S(q) given by (3.19) in the  

Euclidean case (D = 3) as occurs in a closed−packed system, like a perfect 

crystal. So, due to a long range order in the aggregate we have ξ → ∞ and, 

consequently, qξ → ∞ resulting sin[2tan
−1

(qξ)] = 0. This implies that  

S(q) → 1, that is, the scattering intensity I(q) becomes I(q) = Io(q) S(q) → 

Io(q)  where Io(q)  is due only to the individual monomers.
4,5,17−19 

 

   

4) Conclusions.   

 According to Sections 1−3 if the intention is to determine the 

effective interaction potential between the particles of an aggregate  using, 

for instance, neutron or X−ray difraction we must use the large angle 

scattering. If the intention is to determine fractal properties of the material 

we must use small angle scattering (SANS and SAXS). The structure 

functions S(q) for large and small angles scattering from which we obtain 

the necessary information, are completely different.  
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Appendix.  

 Putting q = 0 in (2.3) we get  

  S(0) = 1 + 4πФ 


0

[g(r) − 1] r
2
 dr = 1 + 4π (N/V) 



0

[g(r) − 1] r
2
 dr = 

          = 1 + (N/V){ − 4π ro
3
/3 + 



0

[g(r) − 1] r
2
 dr }  

 

          = 1 − Vo/V + v/V = (V−Vo)/V + v/V                             

 

where v = N ∫ro
∞
 [g(r)−1] r

2
 dr and Vo= 4πNro

3
/3 = volume occupied by the 

small balls.  The difference V−Vo is effectively the empty volume that 

would exist in the aggregate if all balls were compacted. The volume v is 

the “probable” empty volume in the system created by the statistical 

fluctuations of the particles density Ф. It can be shown that
2
 S(0)=ФχTkT,                              

where χT  = (∂Ф/∂P)V,T/Ф is the isothermal compressibility.  
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