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Abstract. In this paper we briefly show how to calculate the intensity of 
X-rays scattered by bound electrons in atoms. This paper was written to 
graduate and postgraduate students of physics. 
 
Introduction. 

In this article, written to graduate and postgraduate students of 
physics, we shown how to calculate the basic equations proposed to 
describe the X-ray scattered intensities by atoms. In Section I is studied the 
light scattering from free-electrons according to the quantum-relativistic 
Compton model, the classical electromagnetic Thomson formalism and the 
quantum-relativistic Klein-Nishina approach. In Section II we analyze the 
X-ray scattered by one-electron atom and by many-electron atoms.  
 
I)Light Scattering by Free-Electrons. 
1. Compton Scattering. 

According to basic text books,1,2 when a photon with initial 
frequency ω = 2πf, wavelength λ = cf  = 2πc/ω, energy E = ћω and linear 
momentum ħk, where k = 2π /λ, collides with a free-electron at rest with 
mass m due to the relativistic energy and momentum conservations we 
have, respectively, 
  
                  ћω + mc2

= ћω´ + E         and     p = ħk − ħk´=  ħq        (1.1). 
 
This collision process is known simply as “Compton scattering” or 

“free-electron Compton Scattering.” In (1.1) E and p are the electron 
kinetic energy and momentum after the collision and hf´= ћω´ and ħk´ are 
the energy and momentum of the photon after the collision. 

Indicating by θ the angle between k and k´, which is the scattering 
angle of the incident photon, one can show, using (1.1) that 
 
                                      ћω´ = ћω/[1+ γ(1−cosθ)]                            (1.2), 
 
where γ = ћω/mc2. It will be assumed in what follows that the incident 
energy is sufficiently large compared to the energy transfers. In these 
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conditions the momentum transfer ħq for a given scattering angle can be 
taken as independent of the out going energy. So, we can write 
 
                       ħq = 2ħk sin(θ/2)      or     χ = 2k sin(θ/2)                 (1.3). 
 
Being λ the incident wavelength λ = cf = 2πc/ω the scattered one λ´ will be 
given by   
                                   λ´ = λ + λC (1−cosθ)                                       (1.4), 
 
where λC = h/mc = 0.02426 10−8 cm is the Compton wavelength.  
 
2. Thomson Scattering. 

According to the non-relativistic Classical Electrodynamics3 a free- 
electron submitted to an incident electromagnetic wave with frequency ω 
irradiates an average power by unit of solid angle < dP/dΩ > given by  
(A.6) shown in Appendix A,    
 
                           < dP/dΩ > = So re

2 (1+cos2θ)/2                                  (2.1), 
 
where θ is the scattering angle defined by (1.2), So is the incident energy 
flux  So =(c/8π) |Eo|

2 (which is the time-average Poynting vector for a plane 
wave),  re = e2/mc2 and m are the classical radius and the mass of the 
electron, respectively. From (2.1) we obtain the differential scattering cross 
section per unit of solid angle, 
 
                    dσT/dΩ = < dP/dΩ >/ So  = re

2 (1+cos2θ)/2                         (2.2). 
 
This is called Thomson Formula for scattering of radiation by a free 
charge. The total scattering cross section, called the Thomson cross 
section, is   
                                             σT  = (8π/3) re

2                                            (2.3), 
 
where re =2.82 10−13 cm and  σT = 0.665 10−24 cm2. 
 Note that in the Thomson process the frequency of scattered light is 
equal to the frequency ω of the incident light. That is, frequency ω of the 
incident light is not modified by the scattering.  
 Using the Guinier4 notation, the energy Ie = IT scattered by a free 
electron per unit of solid angle per second is given by 
 
                        Ie = IT = So (dσTdΩ) = So re

2 (1+cos2θ)/2                       (2.4). 
Relativistic correction of the Thomson intensity Ie     
 During the scattering process the electron acquires a recoil velocity v   
relatively to the observation point P which is localized in an inertial frame. 
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It can be shown10 that due to relativistic effects instead of (2.4) we have 
now  
                                 I´e 

  =  R So re
2 (1+cos2θ)/2                                    (2.5), 

 
where R = (ω´/ω)3  and ω´ = ω/[1+ γ(1−cosθ)] is given by (1.2). 
 
3. Klein-Nishina Scattering. 

Within the quantum mechanical relativistic context the differential 
collision cross section dσKN(θ)/dΩ for the Compton scattering due to a free- 
electron is given by the Klein-Nishina formula

5−9    
 
dσKN(θ)/dΩ = (dσT(θ)/dΩ)    
 

     x [1+ (1− γ cos(θ))]−3{1+ γ2 (1−cosθ)2/[(1+cos2θ)[1+ γ (1−cosθ)]}  (3.1), 
 
where dσT(θ)/dΩ  is the Thomson cross section defined by (2.2) and  
γ = hω/mc2. The Klein-Nishina formula (3.1) was deduced using the 
traditional relativistic quantum mechanical perturbation theory5−8 or the 
Feynman diagrams formalism,9 both up to the second order Born 
approximation. 
 According to (3.1) we verify that in the non relativistic limit, that is, 
when γ → 0 we have dσKN(θ)/dΩ = dσT(θ)/dΩ.  The differential cross 
sections dσT(θ)/dΩ  and dσKN(θ)/dΩ  as a function of θ and γ are shown in 
Fig. 14.13 of the reference 3 or Fig.10 of reference.8 From these figure we 
verify that for γ ≠ 0 dσT(θ)/dΩ  is larger than dσKN(θ)/dΩ for θ > 0 ( for θ = 
0 they are equal). The total cross-section σKN for the Compton scattering is 
given by8 
 
σKN = 2π re

2 { [(1+γ)/γ2] [ 2(1+γ)/(1+2γ) −(1/γ)ln(1+2γ)] +  
 
                            + (1/2γ) ln(1+2γ) − (1+3γ)/(1+2γ)2 }                        (3.2). 
 
From (3.2) we see that the ratio σKN/σT  ≤ 1 for γ ≥ 0.  This is expected since 
part of the incident energy flux is lost due to the inelastic collisions 
between photons and electrons. According to the Thomson formula the 
frequency of the diffracted light is equal to the incident one. No inelastic 
effects are predicted by the Thomson scattering. So, rigorously, according 
to the quantum theory, scattering from a free-electron occurs only through 
the Compton Effect. 
 From (3.1) we get the Klein-Nishina intensity 
 
IKN = Ie [1+ (1− γ cos(θ))]−3{1+ γ2 (1−cosθ)2/[(1+cos2θ)[1+ γ (1−cosθ)]}(3.3) 
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It will be assumed in what follows that in the X-ray diffraction the 
relativistic effects are very small, that is, γ << 1.  Since γ = ћω/mc2 = h/mcλ 
= 0.0243/λ we verify that to have γ = 0.0243/λ << 1 the incident 
wavelengths λ must be λ >> 0.0243 Å. In these conditions the ratio I / Ie 
given by (3.3), in a first order γ approximation, becomes 
 
                                   I / Ie  ≈  [1 + γ (1−cosθ)]−3                                 (3.4). 

 
Since, according to (1.2), ω´/ω = 1+ γ(1−cosθ), we see that (3.4) is 

the same result given by (2.5). 
                                    
II) Scattering from Atoms. 
 It is well known that light wavelengths change1−4 when scattered by 
atoms and molecules. Typical plots of the scattered X-ray intensities I(λ,θ) 
from atoms are shown in all basic text books.1−3  In Figure 1 is shown2 the 
scattered intensities I(λ,θ) as a function of λ and θ = 0°,45°, 90° and 135° 
for carbon atoms for the incident λ = 0.708 10−8 cm. When this wavelength 
change became known, about 1922, it became clear that the classical 
methods of applying classical electrodynamics to the scattering of light by 
bound or free electrons were inadequate.10 In this way, many quantum 
mechanical approaches have been developed to calculate the radiation 
scattering from atoms.10−17  

 
Figure 1. Scattered intensities I(λ,θ) as a function of λ and θ = 0°,45°, 90° 
and 135° for carbon atoms2 for the incident λ = 0.708 10−8 cm. 
 
 From Figure 1 we see that there are, essentially, two peaks: one 
centered around the incident wavelength λ (“Thomson peak”) and another 
centered around the wavelength λ´ = λ + λC (1−cosθ), given by (1.4) 
(“Compton peak”). As will be shown in what follows the Thomson peak is 
due to elastic collisions (coherent collisions) between photons and bound 
electrons and the Compton peak due to inelastic collisions (incoherent 

collisions). Indeed, in inelastic collisions the diffracted photon frequencies 
are given by ω´= ω − (En−Em)/ћ = ω −ωnm where Ej are the stationary 
electronic energies in the atom. When ω >> ωnm, that is, when the electrons 
can be considered as almost free-electrons, since λ´=2π/ω´= 2π/(ω − ωnm) 
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we get λ´ ≈ λ ( 1 + ћωnm/ћω ). Taking into account that in the photon-
electron collision the energy exchange ћωnm = ∆Enm is equal to (ћq)2/2m = 
[2ħk sin(θ/2)]2/2m, according to (1.3), and that k = 2π/λ and ω = 2πc/λ we 
verify that λ´ = λ + λC (1−cosθ), in agreement with (1.4).  
  
4. Scattering from One-Electron Atoms. 
 In a non-relativistic approximation the hamiltonian H for an electron 
of mass m in a field of a vector potential A and of a scalar potential Φ, is 
written as8,17,18  
                                      H = (p−eA)2/2m + eΦ,                                  
 
where p = mv + eA/c. Let us consider an hydrogen-like atom where Φ is 
the Coulomb electron-nucleus interaction potential and A is an applied 
external wave-field that can be treated as a small perturbation w(t) given 
by8,17,18                                
                             w(t) = −(e/mc)A·p + (e2/2mc2)A2                          (4.1). 
 
Supposing that the A perturbation is so small that we can neglect A2 in 
(4.1), that is putting w(t) ≈ −(e/mc)A·p, the wave−equation for this electron 
is written as8,17,18 as 
 
              {−(ћ2/2m) ∆2 + eΦ}u  + (iћe/mc) (A·grad)u = iћ∂u/∂t      (4.2), 
 
where ∆2 is the laplacian and Ha = −(ћ2/2m) ∆2 + eΦ is the hamiltonian of 
the unperturbed atom. The stationary electronic wavefunctions Ψn of Ha , 
that is,  
                                        Ha Ψn = iћ ∂Ψn /∂t = En Ψn   
 
will be indicated by  Ψn(r,t)= ψn(r) exp(−iEnt/ћ). In this way, (4.2) can be 
written as  
                                            (Ha + H´) = iћ∂u/∂t                                  (4.3), 
 
where H´= (iћe/mc) (A·grad) represents the perturbation due the incident 
external field A = (icEo/2ω) {exp(−ik·r +iωt) + complex conjugate}.   
  Using the quantum perturbation theory 8,17,18  up to second order 
approximation in H´, including the lifetimes Γn of the n states,18 it can be 
shown17,18 that the functions u are given by 
 
u = Ψn(r,t) + (eEo/2mω)Σ´k{Cnk(t)/(ωkn+ω + iγkn) + C*nk(t)/(ωkn−ω + iγkn)}  
(4.4), 
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where ωkn = (Ek−En)/ћ, γkn  is the linewidth18 of the line k →n, Cnk(t) are 
functions defined17 by Cnk(t) = Bnk exp[i(ћω−Ent)/h] and Σ´k  is a sum over 
k with  k ≠ n.  Eq.(4.4) shows that when the energy ћω of the incident field 
is much larger than energy differences between the atomic levels En, that is, 
when   ћω >> Ek − En the perturbation on the atomic states can be neglected 
and we can put u ≈ Ψn(r,t).  In these conditions the charge current matrix 
density jnm becomes written as17,18,19 
  
     jnm = (ieћ/2m) [Ψn*grad(Ψm) − Ψm grad Ψn*] − (e2/mc)AΨn*Ψm    (4.5). 
 
The first term of (4.5) does not depend on the time when n = m and when  
n ≠ m it is associated with the spontaneous emission by the atom.17  So,  
to estimate scattered radiation by the atom only the term (e2/mc)AΨn*Ψm 
will be relevant. 
 The scattered field Ea, due to one electron, in the wave zone is given 
by (see Appendix A) 
 
                   Ea = (e/c) n x (n x dv/dt) = (1/c)d[n x (n x j)]/dt            (4.6), 
 
where j is the current density j = ev. Since A = aε exp[i(q·r−ωt)] we have 
in the quantum approach17−20 
 
(Ea)nm = (1/c)d[n x (n x jnm)]/dt =  
 
           = (a/c)d{exp(−iωt)∫ Ψn*Ψm exp(iq·r) d3

r}/dt (n x (n x ε))   (4.7) 
 
            = (−iω´nm a/c) exp(−iω´t) {∫ ψn*ψm exp(iq·r) d3

r}(n x (n x ε)), 
 
where ω´nm = ω − (En−Em)/ћ, remembering that Ψj(r,t) = ψj(r) exp(−iEjt/ћ), 
is the frequency change of the light due to the n → m atomic transition. 
Taking into account that E = −(1/c) ∂A/∂t we get a = icEo/ω. From (4.7), 
following the procedure used in Appendix A we obtain  
 
         <dPnm/dΩ> = (cEo

2/8π)(e2/mc2)2 (ω´nm/ω)2 |fnm|2 sin2Θ               (4.8), 
 
where 
                          fnm = ∫ ψn*(r)ψm(r) exp(iq·r) d

3
r                                (4.9)  

is the electronic form factor. When n ≠ m we have incoherent scattering 
and coherent scattering is when n = m. In the coherent case we have 

                    fnn = ∫ |ψn(r)|2exp(iq·r) d3
r = ∫ ρn(r)exp(iq·r) d3

r  
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where ρn(r) = |ψn(r)|2 is the electronic charge density at the state n in units 
of the electronic charge.  

From (4.9) we get the cross section for the transition n → m, 
 
         dσnm/dΩ = < dPnm/dΩ >/ So  = re

2 (ω´nm/ω)2 |fnm|2 (1+cos2θ)/2    (4.10), 
 
and the intensity Inm =  So dσnm/dΩ   given by 
 
       Inm = So re

2 (ω´nm/ω)2 |fnm|2 (1+cos2θ)/2  = Ie (ω´nm/ω)2 |fnm|2         (4.11), 
 
where Ie = IT = So re

2 (1+cos2θ)/2  is the  scattering intensity due to one free 
electron or Thomson intensity. 

Considering the relativistic effects as very small, according to 
Section 3, putting ω´nm ≈ ω, (4.11) becomes 

 
                                  Inm ≈ Ie  |fnm|2                                             (4.12). 

 

The total scattered intensity Itotal would be given by  
 
                                  Itotal = Ie Σm |fnm|2                                       (4.13). 

 
Since, due to the orthonormal properties of the state functions ψj(r) it can 
be easily shown that Σm |fnm|2 = 1, we verify that the total inelastic scattered 
intensity is given  
                                                  Itotal = Ie                                                (4.14). 
 
The above result is exactly the same derived from the purely classical 
theory of scattering.10,17 According to this theory an atom containing only a 
single loosely bound electron should scatter as a single free-electron. 
 In order to simplify the notation that in the case of many-electron 
atom we consider confuse,10−17 we assume in what follows, as will usually 
be the case, that the initial | n > is the fundamental state and will be 
indicated by | 0 >. In this context for a single electron atom, within the 
limits of frequency imposed, we have therefore the following results for the 
coherent (elastic) and incoherent (inelastic) scatterings: 
 
                                     Icoh = Ie |foo|

2 =  Ie |f1|
2    

 and                                                                                                       (4.15), 
                                Iinc = Ie (1 − |foo|

2 ) = Ie (1 − |f1|
2 )    

 
where the suffix 1 means “electron 1” and f1 is given by  
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                           f1 = foo(1) = ∫ |ψo(r1)|
2 exp[i(q·r1)] d

3
r1                                (4.16), 

 
r1 the coordinate of the (single) electron 1.   
 
Example: Hydrogen Atom. 

 The wavefunction ψo(r) for the fundamental hydrogen state is 
ψo(r) = exp(−r/ao)/(πao

3)1/2, where ao = (ћ2/me2) = 0.53 10−8 cm is the Bohr 
radius. Since the electron density ρ(r) = |ψo(r)|2 = exp(−2r/ao)/(πao

3) we 
verify that the form factor (4.16) becomes  
 
               f1= fH = f(q,H) = ∫ ρ(r) {sin(qr)/qr)} 4πr2dr                        (4.17), 
 
where q = 4π sin(θ/2)/λ. Integrating r from 0 up ∞ we obtain 
 
                           fH  = (1+ q2ao

2/4)−2 = (1+4π2ao
2x2)−2                        (4.18), 

 
where  x = sin(θ/2)/λ . The form factor fH(x) = f(x,Z =1) = f(x,H) can be 
seen plotted as a function of x in Figure 1 of reference 21. According to 
(4.15) the coherent Icoh and the incoherent Iinc(x) intensities are given, 
respectively, by 
  
                                      Icoh(x) = Ie (1+4π2ao

2x2)−4                              (4.19) 
and  
                                   Iinc(x)  = Ie [1−(1+4π2ao

2x2)−4]                          (4.20). 
      
5. Scattering from Many-Electron Atoms. 
 Let us show how the ideas developed in Section 4 may be extended 
to the case of an atom with Z electrons17 that will be indicated by the suffix  
k =1,2,…, Z.  So, instead of (4.1) the appropriate form for the first order 
perturbative term w(t) is given by  

                                      w(t) = −(e/mc)Σk Ak·pk
                                   (5.1), 

 
and instead of (4.2) we have the wave-equation17 
 

   Σk {[−(ћ2/2m) ∆k
2 + eΦ]u  + (iћe/mc) (Ak·gradk)u} = iћ∂u/∂t       (5.2), 

 
where the suffix k refers to the coordinates of the electron k and the 
potential Φ = Φ(r1,r2,…,rZ). The wavefunctions corresponding to the 
stationary states un of the unperturbed atom, where the electrons are 
mutually interacting or not, are now given by 
 
                               un = Ψn(r1,r2,…,rZ) exp(−iEnt/ћ)                         (5.3), 
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where En is the energy of the state n. The quantity |u|2 dv, where dv = 
dv1dv2…dvZ, gives the probability that the electron k lies within the 
element of volume dvk, at the distance rk and so on, with k =1,2,…,Z. The 
charge-density ρk = ρ(rk) associated with the electron k is written as ρk = e 
∫|u|2 dv´k where dv´k denotes that the integration is over all electrons 
coordinates except of k. The charge density ρk integrated over k coordinate, 
is, as should be, equal to the electronic charge, since ∫|u|2 dv = 1, the 
function u as normalized to unit. The current-density of charge jk = e vk 

obeys the equation div jk + ∂ρk/∂t = 0. The electronic charge density ρk of 
the electron k in the fundamental state uo(r1,r2,…,rZ) is given by   
  
                                 ρk = ρ(rk) =∫ |uo|

2 dv´k =∫ |Ψo|
2 dv´k 

 
Coherent Scattering. 

Thus, in analogy with Section 4, the new form factor Foo due to a 
coherent scattering from the atom in the fundamental state, is given by    
  

       Foo = Σk ∫ ρ(rk)exp[i(q·rk)] dvk  =  ∫ | Ψo |
2 Σk exp[i(q·rk)]dv     (5.4), 

 
where the resultant radiated electric field Ea at the observation point P is 
given by coherent sum Ea = Σk(Ea)k of the emitted electric fields (that have 
the same frequency ω) due to the k electrons. Thus, the coherent radiated 
intensity Icoh = Ie |Foo|

2 is  
 

                          Icoh =  Ie  |∫ | Ψo |
2 Σk exp[i(q·rk)]dv |2                        (5.5).  

 
Note that (5.5) gives the scattered intensity of the “Thomson peak” 
centered around the frequency λ.  
 If instead of the individual electronic densities ρk = ρ(rk) we have an 
average electronic density ρ(r) (see Thomas-Fermi model, Section 6) with 
spherical symmetry, that is, ρ(r) = ρ(r), (5.4) becomes  
    
                   Icoh(λ,θ)

 = Ie |∫ ρ(r){sin(qr)/qr} 4πr2dr |2                        (5.6), 
 
where q = (4πa/λ) sin(θ/2) and  ρ(r) is the charge density of the atom in 
units of the electronic charge.  
 
Limiting cases: ka << 1 and ka >>1.  

(a) ka << 1. In this case (very large incident wavelengths λ) we have for all 
angles qa << 1. In this case, putting sin(qr)/qr ~1, we get from (5.6) 
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                   Icoh(λ,θ) ≈ Ie |∫ ρ(r) 4πr2dr |2 = Z2 Ie                          (5.7), 
   
where the factor Z2 shows a collective  effect of the Z electrons of the atom. 
(b) ka >> 1. To study this case it is more convenient to write Foo (5.4) 
taking into account the electrons individually: 
 

                                     | Foo |
2 =  < | Σk exp[i(q·rk)]| 2 >                                (5.8), 

  
where the brackets <…> means an average over the electrons coordinates. 
In this limit (very small incident wavelengths λ) the arguments of the 
exponents are large and widely different in values. Consequently, the cross 
terms in the square of the sum will average to zero. Only the absolute 
square terms will survive. Then | Foo |

2 = Z and the Icoh will be given by 
 
                                    Icoh(λ,θ) ≈ Ie | Foo |

2  = Z Ie                                   (5.9), 
 
where there are no collective effect between the electrons: the result 
corresponds to a simple superposition of scattering from individual 
electrons. 
 
Incoherent Scattering.       

For the incoherent scattering the form factor Fom, with o ≠ m, is 
given by 

                         Fom =  ∫ Ψ*m Ψo 
 Σk exp[i(q·rk)]dv                             (5.6), 

 
where the contributions of each intensity (Ea)k are added incoherently at the 
observation point P since they have different frequencies ω´= ω − ωom due 
to inelastic transitions o→ m. It is assumed that ω >> ωom. The term m = o 
excluded from (5.6) gives, of course, the coherent scattering. So, the total 

incoherent scattered intensity is given by 
 
                                         Iinc =  Ie{Σm ≠ o

 |Fom|2}                                    (5.7). 
 
Note that (5.7) gives the scattered intensity of the “Compton peak” 
centered around the frequency λ´.  
 
Total Scattering Intensity.                          

So, from (5.7) we see that the total scattered intensity Itotal is given by  
 
                                          Itotal =  Ie{Σm

 |Fom|2 }                                     (5.8). 
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Using the orthonormality properties of the functions Ψn it can be shown 
that17 (5.6) can be written as 
 

                              |Fom|2 =  ∫ |Ψo|
2 |Σk exp[i(q·rk)]|2 dv                         (5.9). 

 
Consequently, using (5.8) the total Itotal   scattered intensity given by (5.8) 
becomes written as   

                                Itotal = Ie  ∫ |Ψo|
2 |Σk exp[i(q·rk)]|2 dv                     (5.10). 

 
6. Approximate Forms for the Many−Electron Atom. 
 Since the exact solution of the wave equation for an atom containing 
many electrons is in general impossible we must look for approximate 
solutions.17,18,20  
 
Non−Interacting Electrons and Neglecting Pauli´s Exclusion Principle. 

In a first approximation, neglecting the interaction between the 
electrons and Pauli´s exclusion principle we can write17,18,20 
 

Ψn(r1, r2,…, rZ) = ψ1(r1) ψ2(r2).. ψk(rk)...ψZ(rZ)               (6.1), 
 
where ψk(rk) is the state function of the electron k and rk its coordinate. 
With this approximation Foo defined by (5.4) becomes, taking into account 
that the electrons k are in the fundamental states ψo(rk)  : 
 

Foo =  ∫ | Ψo |
2 (Σk exp[i(q·rk)]) dv1dv2…dvZ  =  

 

      = ∫(Πk=1,…,z
 ψo

*(rk))(Πk=1,…,z
 ψo(rk))( Σk exp[i(q·rk)]) dv1dv2…dvZ  

 

        =  Σk-=1,2,…,Z ∫ |ψo(rk)|
2 exp[i(q·rk)]dvk  ,                     that is, 

 

                                               Foo  = Σk fk                                             (6.2), 
 
where fk is the form factor for the electron k  
                           fk = foo(k) =  ∫ |ψo(rk)|

2 exp[i(q·rk)]dvk , 
 
similar to the form factor f1 (4.13) obtained for one−electron atom.  
 So, the total coherent intensity Icoh for the non-interacting electrons is 
given by  

                                       Icoh =   Ie | Σk fk |2                                            (6.3). 
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 As, according to (4.12), the incoherent intensity due to each electron 
would be Ie (1 − |fk|

2 ), the total incoherent intensity Iinc due to the Z 
electrons is  

                                         Iinc = Ie Σk (1 − |fk|
2)                                      (6.4). 

 
Consequently, the total intensity radiate Itotal = Icoh +  Iinc is given by 
 

                            Itotal = Ie {Z + |Σk fk |2 − Σk |fk|
2}                     (6.5). 

 
Inclusion of Pauli´s Exclusion Principle and Relativistic Effects. 

Taking into account the Pauli´s exclusion principle and relativistic 
effects it can be shown15,16  that instead of (6.5) we have 

 

                   Itotal = Ie R{Z − Σk |fk|
2 − Σ´k,j |fkj |2 + Z Im}              (6.6), 

 

where the double sum Σ´k,j |fkj |2 over k and j means that k ≠ j and   
 
                            fkj =  ∫ ψo

(k)
(r)* ψo

(j)(r) exp[i(q·r)]d3
r ,                        

 
where r = rk or r = rj. The function R according to (2.5) is   
 
                             R = (ω´/ω)3 ≈ [1 + γ (1−cosθ)]−3  
 
and Im is the second term of Klein−Nishina formula (3.3) given by            
 
                     Im = 4 γ2 sin2(θ/2)/[(1+cos2θ) (1 + 2γ sin2(θ/2)], 
 
which is negligible for ordinary X−ray wavelengths. Note that Ie R is the 
first order γ term of the Klein−Nishina formula (3.1). However, taking into 
account the approximations used to calculate the forma factors (see Section 
4) it can be verified that Itotal (6.6) can be written as  
 

                   Itotal = IKN{Z − Σk |fk|
2 − Σ´k,j |fkj |2 + Z Im}              (6.7), 

 
where IKN is given, in the general case, by (3.3). 
  
Numerical Methods. 

 An electron in an atom is acted on by a central field due to the 
nucleus, together with the field due to all other electrons. So, to determine 
the wavefunction Ψn(r1, r2,…, rZ) is a “many body problem”. There are 
many approximate methods to solve this problem like, for instance,18,20−22 
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“Thomas-Fermi Statistical Model”, “Hartree and Hartree−Fock Self-
Consistent Fields”, Pauli and Sherman Method, Bethe-Levinger Method,… 
where relativistic and spin effects are also taken into account. We will 
analyze only the simplest methods of Thomas-Fermi and Hartree. 
 According to the Thomas-Fermi method 20−22 the Z electrons of an 
atom are considered as constituting a gas which is kept in equilibrium 
around the nucleus as a result, simultaneously, of the attraction between the 
nucleus and electrons, the repulsion among electrons and the kinetic energy 
of the electrons. The result of the calculations is a spherically symmetrical 
electronic cloud with the electrical density ρ(x) given by 
 
                                  ρ(x) = (Z/4πa3) [Φ(x)/x]3/2                                 (6.8), 
 
where x = r/a, a is the characteristic radius of the atom of atomic charge Z, 
 
a = (1/Z)1/3(3/32π2)2/3 (ћ2/me2) = 0.47 Z−1/3 x 10−8 cm and r the distance to 
the atom centre; Φ(x)/x is the electrical potential in the system , measured 
in Ze/a units, calculated numerically. 
 The Thomas-Fermi approach does not reproduce exactly the details 
of the electron distribution in atoms since no account is taken of the 
different K,L,M,…, electron shells. However, it gives a good description 
for heavy atoms in which the individual peculiarities of the shells are to 
some extent averaged out in the dense electronic cloud. 
 Taking into account (6.8) the atomic coherent diffracted intensity Icoh 
is given by, 
               Icoh(λ,θ) = IKN |Foo|

2 = IKN|∫ ρ(r){sin(qr)/qr} 4πr2dr |2         (6.9), 
 
where q = (4πa/λ) sin(θ/2) and  ρ(r) is the charge density of the atom in 
units of the electronic charge. The incoherent intensity Iinc(λ,θ) is given by 
 
                                     Iinc(λ,θ) = IKN ( 1 − |Foo|

2 )                                 (6.10), 
 
where  |Foo|

2 is shown in (6.9). 
 Hartree´s method20−22 assumes that each electron moves in a central 
field that can be calculated from the nuclear potential and the 
wavefunctions of all other electrons, by assuming that the charge density 
associated with an electron is e times its position probability density. The  
Schrödinger equation is solved for each electron in its own central field, 
and the resulting wave functions made consistent with the fields from 
which they are calculated. Thus the kth electron is described by a 
normalized wave function uk(rk) that is solution of a set of Z integro-
differential equations for the functions uk(rk) [see Schiff, 20  Eq.(38.6)]. By 
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a method of successive approximations are calculated the wavefunctions 
uk(rk) and its energy eigenvalues εk given by 
 
                                      Hk uk(rk) = εk uk(rk)                                  (6.11). 
 

Hartree´s approach neglects correlations between the positions of the 
electron, since the entire wave function for all the electrons is assumed to 
be a simple product of one-eletron functions 
  
                       Ψ(r1, r2,…, rZ) = u1(r1) u2(r2).. uk(rk)...uZ(rZ)            (6.12). 
 
Consequently, antisymmetrized wave functions are not employed.  The 
antisymmetry is considered only in so far as the quantum numbers of the 
one-eletron states uk are chosen in agreement with the exclusion principle.       
 Using the Hartree´s one-electron functions uk(rk) the form factor fk 
(6.2) is now given by  
                                fk =  ∫ |uo(rk)|

2 exp[i(q·rk)]dvk , 
 
and, consequently, the Icoh and Inc are similar to (6.3) and (6.4): 
 

                                            Icoh =   IKN | Σk fk |2                                  (6.13), 
and 

                                            Iinc = IKN Σk (1 − |fk|
2)                                (6.14). 

 
7. Calculation of Icoh and Iinc Using Numerical Tables. 

To calculate numerically the scattered intensities we will follow the 
paper of Hubbell et al.21 where is defined the scattering function Fm(q,Z)  
as  

 

    Fm(q,Z)  = Fmo(q,Z) =  < Ψm | Σk exp(iq·rk) | Ψo >                  (7.1). 
 

In this way the coherent scattering function Fo defined by (5.4) is now 
written as 

                       Fo(q,Z) = Foo =  < Ψo | Σk exp(iq·rk)| Ψo >                  (7.2),                                                      
 
and the incoherent scattering function Fom is now written as  
 

                          S(q,Z) = Fom = Σm>o  |Fm(q,Z)|2                                 (7.3). 
 

Using the closure property18 Σm | m >< m | = 1 , (6.17) becomes  
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S(q,Z) = Σm < Ψo | Σk exp(iq·rk)| Ψm > < Ψm | Σj exp(iq·rj)| Ψo > 
     

               − | < Ψo | Σj exp(iq·rj)| Ψo > |2      , 
 
that is, 

            S(q,Z) = Σk  Σj < Ψo | exp[iq·(rk−rj)]| Ψo > − | Fo(q,Z) |2         (7.4). 
 
 With these functions Icoh and Iinc are now written, respectively, as   
                                          

                  Icoh =    IKN |Fo(q,Z)|2  =  | < Ψo |Σk exp(iq·rk)| Ψo >|2          (7.5) 
 
and                                                                                                    
                                              Iinc = IKN  S(q,Z)                                       (7.6).                              
 
Hydrogen Atom. 

 Using the Hubbell et al.22 notation we the wavefunction Ψo(r)  is 
Ψo(r) = exp(−r/ao)/(πao

3)1/2, where ao = (ћ2/me2) = 0.53 10−8 cm is the Bohr 
radius. Since the electron density ρ(r) = |Ψo(r)|2 = exp(−2r/ao)/(πao

3) we 
verify that the form factor (4.16) becomes  
 
                      F(q,H) = ∫ ρ(r) {sin(qr)/qr)} 4πr2dr                          (7.7), 
 
where H = Z = 1, q = 4π sin(θ/2)/λ. Integrating r from 0 up ∞ we obtain 
 
                     F(x,H)  = (1+ q2ao

2/4)−2 = (1+4π2ao
2x2)−2                  (7.8), 

 
where  x = sin(θ/2)/λ . The form factor F(x,H)  can be seen plotted  in 
Figure 1.22 Using (7.4) and (7.6) the incoherent function S(x,H) is written 
as  S(x,H) = 1 − [F(x,H)]2.      
 
              
Acknowledgements.  The author thanks Dr. S. L. Morelhão that asked me 
to write a didactical paper for his students about X-ray scattering by atoms. 
 
 
 
APPENDIX A. Thomson Scattering. 
 Accelerated charges emit electromagnetic radiation.1−3 Let us assume 
that a monochromatic electromagnetic plane wave with electric field E(r,t) 
= ε Eo exp(ik·r−ωt), ε the polarization vector, is incident on a free electron 
of charge e and mass m; r(t) is the electron coordinate  in a given inertial 
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frame.  Due to this field the electron will be accelerated and will emit 
radiation. The electric field Ea of the emitted radiation at a point P with 
coordinate R in the “wave zone” is given by3  
 
      Ea = (Eoe

2/mc2) n x (n x ε) exp[ik·r− iω(t −R/c + r·n/c)]/ R           (A.1), 
 
where n(t) = R(t)/R. Note that the amplitude and the phase of the emitted 
field are modified but not the frequency. Since the observation point P is 
assumed to be far away from the region of the space where the charge 
acceleration occurs, that is, R >> r´, the unit vector n is sensibly constant in 
time. In these condition (A.1) becomes, omitting the constant phase 
exp(iωR/c), 
                     Ea = (Eoe

2/mc2) n x (n x ε) exp[i(q·r−ωt)]/R                   (A.2), 
 
where q = k − (ω/c) n is the vectorial change in wave number in the 
scattering.  Since Ba = n x Ea the instantaneous energy flux is given by the 
Poynting vector Sa defined by  
 
                           Sa = (c/4π) (Ea x Ba)= (c/4π)[Re(Ea)]

2 n                   (A.3), 
 
where Re(Ea) means the real part of Ea. In this way, the average energy 
flux of radiated power at the point P that cross the area dA = R2 dΩ  is 
given by  dP = < Sa > dA, where the brackets < Sa > indicates a time 
average of S. Consequently the average power radiated per unit of solid 
angle <dP/dΩ > is written as 
 
                    <dP/dΩ> = (cEo

2/8π)(e2/mc2)2 [n x (n x ε)]2                      (A.4). 
 
Defining by Θ the angle between n and ε we have  
 
                          <dP/dΩ> = (cEo

2/8π)(e2/mc2)2 sin2Θ                       (A.5). 
 
Defining a coordinate system (see Fig. 14.13 of reference 3) where k is 
along the z−axis the polarization vector ε would be in the (x,y), plane 
orthogonal to k, forming an angle ψ with the x−axis. The angle between n 
and k is θ and φ the angle of its projection on (x,y) plane with the x−axis. 
With this geometric construction we verify, using the addition theorem of 
spherical harmonics,3 that sin2Θ = 1− sin2θ cos2(φ−ψ). 
 For unpolarized incident radiation <dP/dΩ> defined by (A.5) gives, 
averaging over the angle ψ : 
 
                    <dP/dΩ> = (cEo

2/8π)(e2/mc2)2 (1+cos2θ)/2                      (A.6). 
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