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The electronic struture of an atom with Z ≤ Zc = 137 can be described by the Dirac equation
with the Coulomb field of a point charge Ze. It was believed that the Dirac equation with Z > Zc is
inconsistent and physically meaningless because the formula for the lower energy level of the Dirac
Hamiltonian formally gives imaginary eigenvalues. But a strict mathematical consideration shows
that difficulties with the electronic spectrum for Z > Zc do not arise if the Dirac Hamiltonian is
correctly defined as a self-adjoint operator, see [1]. In this article, we briefly summarize the main
physical results of that consideration in a form suitable for physicists with some additional new
details and numerical calculations of the electronic spectra.

I. INTRODUCTION

The question of electronic structure of an atom with
large number Z of the nucleus, especially with Z that is
more than the critical value Zc = α−1 ' 137, 04, where
α is the finite structure constant, is of fundamental im-
portance. The formulation of QED cannot be considered
really completed until an exhaustive answer to this ques-
tion is given. Although nuclei with overcritical charges
can hardly be synthesized (at present, the maximum is
Z = 118), the existing heavy nuclei can imitate the su-
percritical Coulomb fields at collision. Nuclear forces can
hold the colliding nuclei together for 10−19s or more.
This time is enough to effectively reproduce the experi-
mental situation where the electron experiences the su-
percritical Coulomb field [2]. The electronic structure of
an atom with Z ≤ Zc can be described by the Dirac equa-
tion, which gives relativistic electronic spectra in agree-
ment with experiment [3]. For such Z a complete set of
solutions of the Dirac equation exists, and a relativistic
quantum mechanics of an electron in such a Coulomb
field can be constructed. As for the Dirac equation with
the Coulomb field with Z > Zc, it was considered in-
consistent and physically meaningless [4–6]. One of the
standard arguments is that the formula for the lower en-
ergy level,

E = mc2
√

1− (Zα)
2
, (1)

formally gives imaginary result for Z > Zc. This diffi-
culty of the imaginary spectrum was attributed to an in-
admissible singularity of the supercritical Coulomb field
at the origin for a relativistic electron, see [7]. It was be-
lieved that this difficulty can be eliminated if a nucleus
of some finite radius R is considered. It was shown that
with cutting off the Coulomb potential with Z < 173 at
a radius R ∼ 1, 2× 10−12cm, the Dirac Hamiltonian has
physically meaningful spectrum and eigenstates [8, 9].
But even in the presence of the cutoff, another difficulty
arises at Z ∼ 173. Namely, the lower bound state en-
ergy descends to the upper boundary E = −mc2 of the
lower continuum, and it is generally agreed that in such a
situation, the problem can no longer be considered a one-
particle one because of the electron-positron pair produc-

tion, which, in particular, results in a screening of the
Coulomb potential of the nucleus.

Not disputing the fact that taking account of a finite
size of the nucleus corresponds to a more realistic setting
up the problem, we do not agree with the assertion that
the Dirac Hamiltonian with the Coulomb field of overcrit-
ical point-like nucleus charge is inconsistent. The above-
mentioned difficulties with the spectrum for Z > Zc do
not arise if the Dirac Hamiltonian is correctly defined as
a self-adjoint (s.a.) operator. A rigorous mathematical
treatment of all the aspects of this problem including a
spectral analysis of the Hamiltonian based on the the-
ory of s.a. extensions of symmetric operators and the
Krein method of guiding functionals was presented in
[1, 10, 11]. It was demonstrated that from a mathemati-
cal standpoint, a definition of the Dirac Hamiltonian as a
s.a. operator presents no problem for arbitrary Z. A spe-
cific feature of the overcritical charges is a nonuniqueness
of the s.a. Dirac Hamiltonian, but this non uniqueness is
characteristic even for Z > Zs =

(√
3/2
)
α−1 ' 118, 68.

For each Z ≥ Zs, there exist a family of s.a. Dirac Hamil-
tonians parametrized by a finite number of extra param-
eters (and specified by additional boundary conditions at
the origin). The existence of these parameters is a mani-
festation of a nontrivial physics inside the nucleus. A real
spectrum and a complete set of eigenstates can be evalu-
ated for each Hamiltonian, so that a relativistic quantum
mechanics for an electron in such a Coulomb field can be
constructed. In the present article, we briefly summarize
all the previously obtained formal results in a form more
suitable for physicists with some additional details and
numerical calculations of the electronic spectra.

II. DIRAC HAMILTONIAN WITH COULOMB
FIELD

We consider an electron of charge −e < 0 and mass
m moving in the Coulomb field of a charge Ze > 0. We
describe this field by a scalar electromagnetic potential
of the form A0 = Zer−1, we set ~ = c = 1 in what fol-
lows. A behavior of the electron in the Coulomb field
is governed by the Dirac Hamiltonian Ĥ (Z) that is a
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s.a. operator in the Hilbert space of square-integrable
bispinors Ψ (r) . On its domain Ĥ (Z) acts by the differ-
ential operation

Ȟ (Z) = γ0 (γp̌ +m)−qr−1, p̌ = −i∇, r = |r| , q = Zα.

In the problem under consideration there are three com-

muting s.a. operators Ĵ
2
, Ĵz, and K̂, where Ĵ the total

angular momentum, and K̂ a spin operator,

Ĵ = L̂+ Σ/2, L̂ = [r× p̂] , K̂ = γ0
[
1 +

(
ΣL̂

)]
.

All they commute with Ĥ (Z). Any bispinor Ψ (r) can be
represented as Ψ(r) =

∑
j,M,ζ Ψj,M,ζ (r), where Ψj,M,ζ

are bispinors of the form

Ψj,M,ζ (r) =
1

r

(
Ωj,M,ζ(θ, ϕ)f (r)
iΩj,M,−ζ(θ, ϕ)g (r)

)
,

Ωj,M,ζ are spherical spinors, f (r) and g (r) are radial
functions, and j = 1/2, 3/2, ..., M = −j,−j + 1, ..., j,

ζ = ±1. Bispinors Ψj,M,ζ are eigenvectors of Ĵ
2
, Ĵz, and

K̂,

Ĵ
2
Ψ = j(j + 1)Ψ, ĴzΨ = MΨ, K̂Ψ = −ζ(j + 1/2)Ψ .

The stationary Schrödinger equation Ĥ (Z) Ψ (r) =

EΨ (r) is reduced to a radial equation ĥ (Z, j, ζ)F (r) =
EF (r), where F are doublets (with components f (r) and
g (r)) from the Hilbert space L2(R+) = L2(R+)⊕L2(R+)

and ĥ (Z, j, ζ) are some s.a. radial Hamiltonians acting
on the doublets F (r) by radial differential operations

ȟ (Z, j, ζ) = −iσ2dr+ζ(j+1/2)r−1σ1−qr−1+mσ3 . (2)

On basis of the differential operations ȟ (Z, j, ζ) one
can construct all possible corresponding s.a. radial

Hamiltonians ĥ (Z, j, ζ) using von Neumann theory of
s.a. extensions of symmetric operators. All the s.a.

operators ĥ (Z, j, ζ) are defined by their definition do-
mains Dĥ(Z,j,ζ) where they act by the same differen-

tial operations (2). By the way of construction, all

these s.a. operators ĥ (Z, j, ζ) represent s.a. extensions
of the corresponding so-called initial symmetric opera-

tors ĥin (Z, j, ζ) with the definition domains Dĥin(Z,j,ζ) =

D(R+)⊕D(R+), where D(R+) is a space of smooth func-
tions f (r) with a compact support on the interval R+.

At the same time, all these s.a. operators ĥ (Z, j, ζ)

represent s.a. restrictions of the operators ĥ+
in (Z, j, ζ)

that act on the so-called natural domains D∗
ȟ(Z,j,ζ)

(R+)

of doublets F ∈ L2(R+) that are absolutely continuos
in R+ and, in addition, ȟ (Z, j, ζ)F ∈ L2(R+). Thus,
Dĥ+

in(Z,j,ζ) = D∗
ȟ(Z,j,ζ)

(R+). The above mentioned re-

strictions are given by some s.a. boundary conditions
such that Dĥ(Z,j,ζ) ⊆ D∗

ȟ(Z,j,ζ)
(R+). Just after all

ĥ (Z, j, ζ) are defined as s.a. operators a correspond-
ing s.a. Dirac Hamiltonian can be restored in a unique

way. A result of constructing s.a. radial Hamiltonians

ĥ (Z, j, ζ) essentially depends on the values of the pa-
rameters Z and j. There are two regions of these pa-
rameters in the semiplane j, Z, we call them nonsingular
and singular ones, where the problem of s.a. extensions
has principally different solutions. These regions are sep-
arated by the singular curve Z = Zs (j), where

Zs (j) =
√
j (j + 1)α−1

such that the nonsingular and singular regions are defined
by the respective inequalities Z ≤ Zs (j) and Z > Zs (j).
The values Zs (j) = 118, 68; 265, 37; ... , can be called
the singular Z-value for a given j. Below, we consider

s.a. radial Hamiltonians ĥ (Z, j, ζ) and their spectra in
the nonsingular and singular regions separately. Here we
list common for both regions properties of these Hamilto-
nians. It turns out that the spectrum of each s.a. Hamil-

tonian ĥ (Z, j, ζ) is simple (nondegenerate) and contains
a continuous part occupying the two semiaxis E ≤ −m
and E ≥ m and a discrete part {Enζ

(Z, j, ζ)} located
in the interval |E| ≤ m. The quantum numbers nζ take
the values: n1 = 1, 2, ...; n−1 = 0, 1, 2, .... The discrete
spectrum is always accumulated at the point E = m,
and asymptotic form of the difference Enζ

(Z, j, ζ)−m as
nζ = n → ∞ is given by the well-known non-relativistic

formula Enonrel
n = −mq2

(
2n2
)−1

. Eigenfunctions of the
discrete spectrum and generalized eigenfunctions of the
continuous spectrum form a complete orthonormalized
system in L2(R+).

III. NONSINGULAR REGION

In the nonsingular region, Z ≤ Zs (j), deficiency in-

dices of each operator ĥin (Z, j, ζ) are zero and the op-

erator ĥ (Z, j, ζ) = ĥ+
in (Z, j, ζ) is a unique s.a. exten-

sion of ĥin (Z, j, ζ) with the definition domain Dĥ(Z,j,ζ) =

D∗
ȟ(Z,j,ζ)

(R+). The functions belonging to D∗
ȟ(Z,j,ζ)

(R+)

have the following asymptotic behavior

F (r) = O(r1/2), r → 0; F (r)→ 0, r →∞.

A discrete spectrum {Enζ
(Z, j, ζ)} of each Hamiltonian

ĥ (Z, j, ζ) has the form

Enζ
(Z, j, ζ) =

m (nζ + γ)√
q2 + (nζ + γ)2

, γ =

√
(j + 1/2)

2 − q2,

(3)
which is the well-known Sommerfeld spectrum of the
Dirac electron in the Coulomb field with Z in the non-
singular region. This result justifies the standard formal
treatment of the Dirac Hamiltonian with Z in the non-
singular region in the physical literature where the Dirac
Hamiltonian is identified with the differential operation
ȞD (Z) and the natural domain is implicitly assumed.
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IV. SINGULAR REGION

In the singular regions, Z > Zs (j), the deficiency in-

dices of the operator ĥin (Z, j, ζ) are (1, 1), and there-

fore, there exists a family {ĥν (Z, j, ζ)} of s.a. exten-

sions of ĥin (Z, j, ζ) parametrized by a parameter ν ∈
[ − π/2, π/2], −π/2 ∼ π/2. At the same time, each

ĥν (Z, j, ζ) is a nontrivial restriction of ĥ+
in (Z, j, ζ), such

that Dĥν(Z,j,ζ) ⊂ D∗
ȟ(q,κ)

(R+). The position of the dis-

crete energy levels E
(ν)
nζ (Z, j, ζ) essentially depends on ν,

in particular, there exists a value ν = ν−m, for which the
lower energy level coincides with the boundary E = −m
of the lower continuous spectrum.

Technically, it is convenient to divide the singular re-
gion into three subregions, we call them subcritical, crit-
ical, and overcritical regions. The subregions are dis-
tinguished by a character of asymptotic boundary condi-
tions at the origin specifying the domainsDĥν(Z,j,ζ) of the

operators ĥν (Z, j, ζ) and providing their self-adjointness.
The boundary conditions are similar in each subregion,
which provides similar solutions of the corresponding
spectral problems. In what follows, we describe these
subregions, the domains Dĥν(Z,j,ζ) in these subregions,

and some details of discrete spectra.

A. Subcritical regions

The subcritical region is defined by the inequality
Zs (j) < Z ≤ Zc (j) , where

Zc (j) = (j + 1/2)α−1 = 137, 04; 274, 08; ... . (4)

In the subcritical region, the s.a. radial Hamiltonians

ĥν (Z, j, ζ) are specified by s.a. boundary conditions,

F (r) = c[(mr)γd+ cos ν+(mr)−γd− sin ν]+O(r1/2), r → 0,

where 0 < γ =

√
(j + 1/2)

2 − q2 < 1/2, c is an arbitrary

complex number, and d± some constant doublets. The

discrete spectrum consists of the points {E(ν)
nζ (Z, j, ζ)}

that obey the equation

ω(E) cos ν + Γ(1− 2γ) sin ν

ω(E) sin ν − Γ(1− 2γ) cos ν
= 0, ω (E)

=
Γ(1 + 2γ)Γ(−γ − qEτ−1)[q(m− E)− (κ + γ)τ ]

Γ(γ − qE/τ)[q(m− E)− (κ − γ)τ ](2τ/m)2γ
,

where κ = ζ(j+1/2), and τ =
√
m2 − E2. The spectrum

can be evaluated explicitly for the cases of ν = ±π/2 and
ν = 0. For ν = ±π/2, we have

E(±π/2)
nζ

(Z, j, ζ) =
(nζ − γ)m√
q2 + (nζ − γ)2

.

For ν = 0, the spectrum E
(0)
nζ (Z, j, ζ) is given by eq.

(3), of course, with new values of γ. Thus, the known
textbook results (in particular the Sommerfeld spectrum)
correspond to ν = 0.

FIG. 1. ν-dependence of energy levels E
(ν)
nζ (121, 1/2, ζ = ±1)

and Z-dependence of ν−m, j = 1/2.

B. Critical region

The critical region is the critical curve Z = Zc (j). For
integer Z, this region does not exist if the finite structure
constant α is an irrational number, see (4). In particular,
this region certainly is absent for j = 1/2. In the critical

region, the s.a. radial Hamiltonian ĥν (Z, j, ζ) is specified
by s.a. boundary conditions at the origin of the form

F (r) = c [d0(r) cos ν + d+ sin ν] +O(r1/2 ln r), r → 0,

where d0(r) are some doublet with the asymptotic be-
havior d0(r) = O (lnmr) as r → 0. Here the discrete

spectrum {E(ν)
nζ (Z, j, ζ)} is determined by the equation

f(E) cos ν − sin ν

f(E) sin ν + cos ν
= 0, f(E) = ln(2τ/m)

+ ψ(− (j + 1/2)E/τ) +
ζ − (τ + ζm) /E

2 (j + 1/2)
− 2ψ(1),

where ψ(x) = Γ′(x)Γ−1(x). The spectrum can be explic-
itly evaluated in the case of ν = ±π/2, where we have

E(±π/2)
nζ

(Z, j, ζ) =
mnζ√

(j + 1/2)
2

+ n2
ζ

, (5)

which is eq. (3) with γ = 0.

C. Overcritical region

The overcritical region is defined by the inequality
Z > Zc (j). In this region, the s.a. radial Hamiltoni-

ans ĥν (Z, j, ζ) are specified by s.a. boundary conditions
at the origin of the form

F (r) = c
[
eiν(mr)iσρ+ + e−iν(mr)−iσρ−

]
+O(r1/2), r → 0,
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FIG. 2. ν-dependence of energy levels E
(ν)
nζ (138, 1/2, ζ = ±1)

and Z-dependence of ν−m, j = 1/2.

where σ =

√
q2 − (j + 1/2)

2
> 0, c is an arbitrary com-

plex number, and ρ± some constant doublets. Its discrete

spectrum {E(ν)
nζ (Z, j, ζ)}is determined by the equation

cos

[
1

2i

3∑
a=1

[ln (Ba)− ln (B∗a)] + σ ln
2τ

m
− ν

]
= 0,

where B1 = −2iσ, B2 (E) = iσ − Eqτ−1, and B3 (E) =
τ(j + 1/2− iζσ)− ζq(m− E).

V. CONCLUDING REMARKS

The total s.a. Dirac Hamiltonian Ĥ (Z) with Z ≤
118 is defined uniquely.For Z ≥ 119, there is a family
{Ĥν1,...,ν∆

(Z)} of possible total s.a. Dirac Hamiltonians.

FIG. 3. ν-dependence of energy levels E
(ν)
nζ (180, 1/2, ζ = ±1).

The family is parametrized by the parameters νi ∈
[ − π/2, π/2], −π/2 ∼ π/2, i = 1, ...,∆. The number
∆ of the parameters is given by ∆ = 2k(Z), where the
integer k(Z) = (1/4 +Z2α2)1/2− δ, 0 < δ ≤ 1. Any spe-

cific s.a. Dirac Hamiltonian Ĥν1,...,ν∆
(Z) corresponds to

a certain prescription for a behavior of an electron at the
origin. The general theory thus describes all the possibil-
ities that can be offered to a physicist for his choice. This
choice is a completely physical problem. We believe that
each s.a. Dirac Hamiltonian with superstrong Coulomb
field can be understood through an appropriate regular-
ization of the potential and a subsequent limit process
of removing the regularization. We recall that a physical
interest in the electronic structure of superheavy atoms
was mainly motivated by a possible pair creation in the
superstrong Coulomb field. Consideration of this effect in
the framework of the most simplest model of a point-like
nucleus was accepted to be impossible due to the conclu-
sion (which is wrong as it is clear now) that this model
is mathematically inconsistent [7]. We believe that the
described rehabilitation of the model allows returning to
a consideration of the particle creation in this model that
provide great scope for analytical studies.
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namics (Interscience Publishers, New York 1965)

[7] Ya. B. Zel’dovich and V.S. Popov, Soviet. Physics Us-
pekhi, 14 (1972) 673

[8] I. Pomeranchuk, Ya. Smorodinsky, Journal of Physics
(USSR) 9 (1945) 97; S.S. Gershtein, Ya.B. Zel’dovich,
Soviet Phys.-JETP 30 (1970) 358

[9] V.S. Popov, Soviet Nucl. Phys. 12 (1970) 429; 14 (1071)
458; Soviet Phys.-JETP 60 (1971) 1228

[10] B.L. Voronov, D.M. Gitman, I.V.Tyutin, Russian
Physics Journal, 50/1 (2007) 1; 50/9 (2007) 853; 51/2
(2008) 115

[11] D.M. Gitman, I.V.Tyutin, B.L. Voronov, Self-adjoint Ex-
tensions in Quantum Mechanics. General theory and ap-
plications to Schrödinger and Dirac equations with sin-
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