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Abstract.  

Our goal is to write a didactical article to graduate and postgraduate 

students of Physics showing first how to deduce the Boltzmann transport 

equation and second how these equations can be used to predict the thermal 

and electrical conductivities of metallic bulks. This formalism is also 

applied to explain the Thermoelectric Effects known as Seebeck, Thomson 

and Peltier effects. 

 

I) Introduction. 

 To analyze the electrical and thermal conductivities of an aggregate 

we need first to deduce the Boltzmann transport equation (BTE) which is 

the basic tool to study the non-equilibrium phenomena. To obtain this 

equation is necessary first to deduce the Liouville theorem. This is done in 

Section 1. In Section 2 we deduce, using the Liouville theorem, the BTE. In 

Section 3, as an application of the BTE, we calculate the electric and 

thermal conductivities of metallic bulks. In Section 4 we estimate the 

thermo-electric effects named Seebeck, Thomson t and Peltier effects.  

 

1) Liouville Theorem. 

 There are many excellent basic texts where the students can find the 

deduction of the Liouville theorem and of the Boltzmann transport 

equations and the application of these to study the thermoelectric 

conduction. However, with the intention to give only a few number of 

references, articles and books, we will mention here only three classical 

books written by Sommerfeld,
1
 Huang

2
 and Kubo.

3
 However, to pay tribute 

to Prof. Jun´ichi Osada the above mentioned problems will be developed 

following the lectures
4
 on Statistical Physics ministered at 1970 by this 

professor at the Institute of Physics of the USP. 

So, let us consider a system composed by a very large number N of 

“almost free” particles. By “almost free” we mean that: (1) there is an 

external force field that changes very slowly with the time in a such a way 

that the particles orbits do not change abruptly; (2) Besides the external 

field there are some centers of intense forces called “scattering centers”. 

The interaction range with these centers is very short and the centers 

density is so small that between two collisions with these centers the 
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particles can move freely being under the influence only of the external 

forces mentioned above. 

 For equilibrium states, according to the Statistical Mechanics,
1-3  

the 

number dN of free particles with linear momentum between p and p + dp 

and g internal degrees of freedom, in a box with volume V at the 

temperature T is given by 

 

                            dN(p,q) = g (Vdp/2πћ)
3
 fo(p,q)                              (1.1), 

 

where fo(p,q) = fo(p) = fo(ε) = [exp(ε −μ)/kT ± 1]
−1

 is the equilibrium 

distribution function for fermions (+) and bosons (−), ε = p
2
/2m, m the 

particle mass and μ the chemical potential of the system. According to (1.1) 

the number of particles in a small region of space dq is 

 

                                dN(p,q) = g (dqdp/2πћ)
3
 fo(p,q)                          (1.2),  

 

where dqdp/(2πћ)
3
 is the number of cinematic quantum states inside the 

element of volume  dqdp of the phase space
 4
 and fo(p,q) is the average 

number of particles by quantum states. The total number N of particles is, 

using (1.2), given by N = g ∫ ∫ dqdp fo(p,q)/(2πћ)
3
.                         

 When the external field is non-uniform and time dependent the 

distribution function is now written as f(p,q,t) and (1.1) becomes given by 

 

                              dN(p,q,t) = g (dqdp/2πћ)
3
 f(p,q,t)                         (1.3). 

 

 Let us show that the phase space element of volume is time 

independent, that is, (dqdp)t = (dqdp)t+dt. Indeed, putting 

 

(dqdp)t+dt = Π i=x,y,z { (dqidpi)t + (dqi*dpi + dqi dpi*)dt} 

 

             = Π i=x,y,z (dqidpi)t { 1 + (∂qi*/∂qi + ∂pi*/∂pi)t dt }           (1.4), 

 

where q* = dq/dt and p*= dp/dt. Taking into account the Hamilton´s 

equations
4
  pi*= − ∂H/∂qi and qi*= ∂H/∂pi  we  get ∂qi*/∂qi + ∂pi*/∂pi = 0. 

In this way, from (1.4) we verify that  

 

                                        (dqdp)t = (dqdp)t+dt.                                       (1.5), 

 

which is a result known as “Liouville theorem”(LT): “the phase space 

volume is time invariant” (see also Goldstein
5
). 
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2) Boltzmann Transport Equation.  

 Combining the LT with a plausible fact, the conservation of the 

number of particles of the system, we can write: 

 

         ft  =  ft+dt  = ft + dt {Σ i pi*(∂f/∂pi) + Σ i qi*(∂f/∂qi) + ∂f/∂t }t        

 

from which we obtain  ∂f/∂t due to the temporal variation of the external 

force: 

              (∂f/∂t)external force = − (dp/dt)·gradp f − (dq/dt)·gradq f            (2.1). 

 

Let us assume that besides the external field, there are intense centers 

of force, localized in very small regions of the space. Due to collisions with 

these centers the (p,q) values of the particles in the phase space are 

abruptly changed, that is, (p,q) → (p´,q´) and vice-versa. The distribution 

function modifications ∂f/∂t due to these collisions is expressed in terms of 

the transition probabilities ω(p →p´) per unit of time from the quantum 

state p to the state p´ as follows:  

 

                        (∂f/∂t)collisions = A − B                                           (2.2),     

where 

                               A = Σ p´ ω(p´→p) f(p´) [ 1− γ f(p)]   

and                                                                               

                                B = Σ p´ ω(p→p´) f(p) [ 1− γ f(p´)] , 

 

with γ = 0 for bosons and γ = 1 for fermions. In (2.2) we have written for 

simplicity f(p,q,t) = f(p).  So, the total time variation df/dt due to the 

external force and the scattering centers is given by 

 

                     df/dt = (∂f/∂t)external force + (∂f/∂t)collisions  

 

                              = − (dp/dt)·gradp f −(dq/dt)·gradq f  + A − B           (2.3). 

 

Equation (2.3) is called Boltzmann Transport Equation (BTE). For 

stationary systems, df/dt = 0, we get  

 

                              (dp/dt)·gradp f  +  (dq/dt)·gradq f  =  A − B              (2.4). 

 

Note that (2.4) does not take into account the mutual interactions between 

the N particles. However, this effect can be included, if we want, in the 

ω(p→p´) calculation.   
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3) Electrical and Thermal Conductivities of Metals. 

 Let us calculate the electrical (σ) and thermal (χ) conductivities of 

metal in bulk assuming the simple model: (a) it is composed by a large 

number N of almost-free electrons and by a rigid crystalline array; (b) the 

electrons move independently one of the other and being only under the 

influence of the external field; (c) when they came very close to one point 

of the array (“scattering center”) they are scattered elastically. The N 

electrons are in the conducting band
6
 with energy ε between ε = 0 and ε = 

εF, where εF = 3
2/3

 π
4/3

 (ћ
2
/2m)(N/V)

2/3 
is the Fermi energy of the electrons 

in the volume V. Note that µ = εF and that pF 
2

 = 2mεF. 

 Now, let us assume that the electric field and that the temperature 

gradient is along the x-axis, that is, E = Ei and gradq f  = (∂T/∂x) (∂f/∂T)i 

where i is the unit vector along the x-axis. Assuming also that the system is 

in a stationary state, putting dp/dt = −eEi the first and the second terms of 

(2.4), are given by −eE(∂f/∂px) and (px/m)(∂T/∂x)(∂f/∂T), respectively.  

 To write the right hand side of (2.4) we must take into account the 

electronic scattering produced by the N* fixed points of the crystalline 

array. Assuming that the scattering are elastic the transition probabilities ω 

per unit of time are given by
7
 

 

             ω(p´→p) = ω(p→p´) = (p/m)(N*/V)(dσ/dΩ) dΩ               (3.1), 

 

 |p| = |p´|  and dσ/dΩ = dσ(ε,θ)/dΩ is the elastic electron scattering cross 

section due to collisions with the fixed points of the crystalline array; θ is 

the scattering angle between p and p´ and dΩ = sinθ dθ dφ. Since the 

collision are elastic we have | p − p´| = 2psin(θ/2). The electron diffraction 

described by dσ(ε,θ)/dΩ is due, for instance, to phonons, impurities and 

bulk imperfections.
6  

 
Taking into account (2.4) we see that A− B given by (2.2) for 

fermions, that is, with γ =1, is written as 

 

Σ p´ ω(p´→p) f(p´) [1− f(p)]  − Σ p´ ω(p→p´) f(p) [1− f(p´)]   

 

                     = (p/m)(N*/V) ∫dΩ (dσ/dΩ) [f(p´) − f(p)]                    (3.2). 

 

As the external field E = Ei and temperature gradient grad T = (∂T/∂x)i are 

along the x-axis we put 

 

                 f(p) = fo(ε) + px χ(ε)   and   f(p´) = fo(ε) + px´χ(ε)               (3.3), 

  

where p´= px and px´ = p´cosθ = px cosθ. In this way, substituting (3.3) at 

(3.2) the right member of (3.2) is written as  
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                                       −(ppx/mℓ(ε)) χ(ε)                                           (3.4), 

where  

                     ℓ(ε)
−1 

=  (2πN*/V) ∫d(cosθ) (1−cosθ) [dσ(ε,θ)/dΩ].  

 

The parameter ℓ(ε)
 
which has length dimension is named “mean free path”. 

Finally, taking into account the above results the BTE (2.4) becomes  

 

          −eE(∂f/∂px) + (px/m)(∂f/∂T)(∂T/∂x) = −(ppx/mℓ(ε)) χ(ε)           (3.5). 

 

 When E and ∂f/∂T are small perturbations we can solve (3.5) in a 

first order approximation putting f = fo at the left side of the (3.5) obtaining 

 

             χ(ε) =(ℓ/p){eE + [ε/T − (µ/T − ∂µ/∂T)] (∂T/∂x)}(∂fo/∂ε)       (3.6). 

 

Since for electrons g =2 the electric flux Jx (charge/m
2
 s) and the thermal  

flux Qx (kinetic energy/m
2
 s) along the x-axis are given, respectively, by 

 

                       Jx = −2e ∫ dp/(2πћ)
3 
(px/m) f(p,q)                                   (3.7) 

and                            

                       Qx = 2 ∫ dp/(2πћ)
3 
 ε (px/m) f(p,q)                                   (3.8). 

 

 Substituting (3.3) and (3.6) into (3.7) and (3.8) we obtain, 

respectively, 

 

       Jx = e [eE − (µ/T − ∂µ/∂T)(∂T/∂x)] D
(1)

 + (e/T)(∂T/∂x)D
(2)

           (3.9), 

 

      Qx = − [eE − (µ/T − ∂µ/∂T)(∂T/∂x)] D
(2)

 − (1/T)(∂T/∂x)D
(3)

          (3.10), 

 

where  

                               D
(s)

 = − C ∫o
∞ 

dε ε
s
 ℓ(ε)

 
(∂fo/∂ε)                               (3.11), 

 

C = [16πm/3(2πћ)
3
] and s = 1,2 and 3. The functions D(s) are given by (see 

Appendix of ref.4) 

 

                    D
(1)

 = C [µℓ + (π
2
/6)(kT)

2
 (2ℓ´ + µℓ´´)] ε =εF 

 

                    D
(2)

 = C [µ
2
ℓ + (π

2
/6)(kT)

2
 (2ℓ + 4µℓ´ + µ

2
ℓ´´)] ε =εF 

 

                     D
(3)

 = C [µ
3
ℓ + (π

2
/6)(kT)

2
 (6µℓ + 6µ

2
ℓ´ + µ

3
ℓ´´)] ε =εF, 

 

where ℓ, ℓ´= dℓ/dε and ℓ´´= d
2
ℓ/dε

2
, seen above, are calculated at ε =µ = εF. 
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In many cases
1-4

 we can put, in a good approximation, D
(1) 

≈ Cµℓ(εF),  

D
(2)

 ≈ Cµ
2
ℓ(εF) and D

(3)
 ≈ C µ

3
 ℓ(εF). In these conditions putting ∂T/∂x  = 0 

in (3.9) the electrical conductivity σ, defined by Jx= σE, is given by  

 

                        σ = Jx/E = e
2
 D

(1)
 ≈ e

2 
Cµℓ(εF) = e

2 
n ℓ(εF)/pF

 
             (3.12), 

 

taking into account that pF
2
 = 2mεF,  εF = 3

2/3
 π

4/3
 (ћ

2
/2m)(N/V)

2/3
 and that n 

is the density of free electrons n = N/V = 2 pF
3
/(3π

2
ћ

3
).  Similarly, the 

thermal conductivity κ defined by Qx = − κ (∂T/∂x ) is obtained first 

extracting E from (3.9) putting Jx = 0 and substituting it in (3.10). In this 

way we get 

 

   κ = − Qx /(∂T/∂x ) = [ D
(3)

D
(1)

−D
(2) 2

]/D
(1)

T ≈ (π
2
/3)k

2
Tnℓ(εF)/pF

 
   (3.13).  

 

From (3.12) and (3.13) we get the Wiedman-Franz law
8
     

 

                                     κ/σ = (π
2
/3)(k/e)

2
T                                           (3.14), 

 

which gives a good agreement with the experimental results.
8
       

 

 

4) Thermoelectric Metallic Bulk Effects.  
The thermoelectric effect is the direct conversion of temperature 

differences to electric voltage and vice-versa 
9
. A thermoelectric device 

creates a voltage when there is a different temperature on each side. 

Conversely, when a voltage is applied to it, it creates a temperature 

difference. At the atomic scale, an applied temperature gradient or an 

applied voltage cause charged carriers to diffuse in the material. These 

effects can be used to generate electricity, measure temperature or change 

the temperature of objects. Because the direction of heating and cooling is 

determined by the polarity of the applied voltage, thermoelectric devices 

are efficient temperature controllers. The term "thermoelectric effect" 

encompasses three separately identified effects: the Seebeck effect, Peltier 

effect and Thomson effect.   

These effects will be studied taking into account (3.9) and (3.10) that 

will be written as 

 

        J =  e
2
ED

(1)
 − e[(µ/T − ∂µ/∂T)D

(1)
 + D

(2)
/T](∂T/∂x)                       (4.1) 

and   

        Q = −eED
(2)

 − [(µ/T − ∂µ/∂T)D
(2)

 + D
(3)

/T](∂T/∂x)                       (4.2). 
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4.1) Seebeck Effect. 

The Seebeck effect is the conversion of temperature differences 

directly into electricity and is named for discovered in 1821 by the German 

physicist Thomas Johann Seebeck in 1821. It will be described using the 

Figure 1where is shown an electric circuit known as a thermo-electric pair, 

formed by two different metals, A and B, where there is no current, that is, 

J = 0 and where the junctions b and c are maintained at different 

temperatures Tb and Tc, respectively. A voltmeter is placed between the 

points a and d that are maintained at the same temperature To. 

  
Figure 1.  Diagram of the circuit with two different metals A and B with 

voltmeter between a and b of the metal B.
9
  The junctions b and c are 

maintained at the temperatures Tb and Tc, respectively. 

 

 So, putting J = 0 in (4.1) we obtain the electric field E created by the 

temperature gradient dT/dx between the junctions c and d : 

 

                E = (1/e)[µ/T − ∂µ/∂T  − (1/T)(D
(2)

/D
(1)

)](dT/dx)               (4.3). 

 

In this way, putting G = µ/T − ∂µ/∂T − (1/T)(D
(2)

/D
(1)

), the voltage 

measured by the voltmeter between a and d must be given by  

V = Vad = ∫ a
d
 E dx , that is, 

 

             ∫ a
d
 G (dT/dx) dx = ∫ a

b
 GA dT  + ∫ b

c
 GB dT + ∫ c

d
 GA dT           (4.4), 

 

where GA and GB are the G values  for the metals A and B, respectively. 

Since the temperatures at the junctions a and d is To, at b is Tb and at c is Tc 

we see that (3.4) is written as 
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                        ∫ a
d
 G (dT/dx) dx = ∫ Tb

Tc
 (GB − GA) dT                          (4.5).  

 

 Since µA(T) = µB(T) at the metal junction due to the equilibrium 

condition for the electron gases we see that only the term (1/T)(D
(2)

/D
(1)

) 

will give a non-null contribution to (4.5). This term can be put in a first 

approximation using (3.11), 

  

   (1/T)(D
(2)

/D
(1)

) ≈ (1/T) {[µ
2
ℓ + (π

2
/6)(kT)

2
 (2ℓ + 4µℓ´)] /(µℓ) } 

 

                            = µ/T + (π
2
k

2
T/3µ)(1+ 2ℓ´/ℓ)                                   (4.6). 

 

Defining Λ = 1 + 2µℓ´/ℓ we verify that Vad between the junctions a and d is 

given by  

                  Vad  = V =  (π
2
k

2
/3e) ∫ Tb

Tc
  dT T [(Λ/µ)B− (Λ/µ)A)              (4.7). 

 

Defining the Thomson coefficient τ = π
2
k

2
ΛT/(3µe), (4.7) becomes 

 

                                    V =  ∫ Tb
Tc

  dT (τB − τA)                                        (4.8). 

 

For a small temperature difference Tc − Tb = δT, (4.8) can be written as 

 

                                                δT ≈ V/(τB − τA )                                   

The voltage created by this effect is on the order of several microvolts per 

Kelvin difference. One such combination, copper-constantan has a Seebeck 

coefficient of 41 microvolts per Kelvin at room temperature.
 
The Seebeck 

effect is used in the thermocouple to measure a temperature difference; 

absolute temperature may be found by setting one end to a known 

temperature. A metal of unknown composition can be classified by its 

thermoelectric effect if a metallic probe of known composition, kept at a 

constant temperature, is held in contact with it. 
 
In a recent paper 

10
 we have 

shown that for very thin metallic films, with thickness d ≤ 20 nm, due to 

quantum size effects there appears a “Quantum Seebeck Effect”. 

4.2) Peltier Effect. 

The Peltier effect is the presence of heat at an electrified junction of 

two different metals A and B. It was discovered in 1834 by the French 

physicist Jean-Charles Peltier. Let us assume now that, in Figure 1, instead 

of a voltmeter there is a battery with voltage V. In these conditions an 

electrionic current flows through the circuit in the counter clockwise sense. 

Let us also assume that the junctions b and c are maintained almost at the 

same temperature in such a way that dT/dx = 0 in the circuit. In this case, 

as dT/dx = 0 we get from (4.1) and (4.2): J = e
2
ED

(1)
 and Q = eED

(2)
, that 
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is,  Q = (D
(2)

/eD
(1)

) J.  Since (D
(2)

/eD
(1)

) ≈ µ/e + τT, where τ = π
2
k

2
ΛT/(3µe) 

is the Thomson coefficient defined by (4.8), the heat flux is written as Q = 

П J, where П = µ/e + τ T  is named Peltier coefficient. So, the heat flux in 

the counter clockwise sense along the branch A and B are given, 

respectively, by QA = ПA J and QB = ПB J, respectively. In this way, at the 

junction b there is a heat production Qb = (ПA− ПB) J and at the junction c a 

heat absorption Qc = (ПB − ПA) J = − Qb. 

 

4.3) Thomson Effect. 

The Thomson effect describes the heating or cooling of a current-

carrying conductor with a temperature gradient. Let us assume that along a 

conductor (non superconductor) submitted to a temperature gradient dT/dx 

passes a current density J.  It can be shown that heat production q per unit 

of volume in the circuit is given by
9
 

 

                              q = ρJ
2 
− τ J (dT/dx)                                   (4.9), 

 

where ρ is the resistivity of the material and τ is the Thomson coefficient. 

The first term is the Joule heating which does not change in sign; the 

second term is the Thomson heating, which follows J changing sign.  

In metals such as zinc and copper, whose temperature is directly 

proportional to their potential, when current moves from the hotter end to 

the colder end, there is a generation of heat and the positive Thomson 

effect occurs. Conversely, in metals such as cobalt, nickel, and iron, whose 

temperature is inversely proportional to their potential, when current moves 

from the hotter end to the colder end, there is a heat absorption and the 

negative Thomson effect occurs.    
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