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Abstract.  

This is a didactical paper written to graduate and postgraduate 

students of Physics and to researchers interested in electrical conductivity 

of nanometric metallic films.  

 

1) Introduction. 

 In a preceding paper
1
 we have show how to calculate the electrical 

and thermal conductivities of metallic bulks using the Boltzmann transport 

equation. With a similar formalism we will calculate the resistivity of very 

thin (nanometric) metallic films. Following the procedure adopted in our 

didactical articles, only a few references, books and papers, will be cited in 

this article.  

We assume that the films are in a plane (x,y) with lengths Lx and Ly 

along the axes x and y, respectively, and thickness d along the z-axis. The 

thickness d is very small varying in the range 1 nm ≤ d ≤ 20 nm. For these 

nanometric dimensions quantum size effects (QSE) play the main role
2-4

 in 

the electronic conductivity. In this way a quantum mechanical approach is 

necessary to describe the conductivity.
2-4

 The coordinates (x,y,z) origin is 

chosen in the middle point of the film, that is, −Lx /2 ≤ x ≤ Lx /2,  −Ly/2 ≤ y 

≤ Ly/2  and −d /2 ≤ z ≤ d/2. Lx and Ly are very large, that is, Lx >> d and Ly 

>> d. As will be shown in what follows the electric resistivity is due to a 

bulk effect and to the roughness of the film surfaces. The height 

fluctuations of the film surfaces, located at the planes with z = −d/2 and 

d/2, will be indicated by h(ρ) where ρ = x i + y j, where (i,j,k) are the unit 

vectors along the axes (x.y,z), respectively.  

 Taking Lx , Ly → ∞ and supposing that an applied electric field E is 

applied along the x-axis, that is, E =E i  the conducting electrons are 

represented by the wavefunctions  

 

                φ(x) = exp(ikxx)/√Lx    and  φ(y) = exp(ikyy) /√Ly)            (1.1), 

 

respectively. These electrons have kinetic energies p
2
/2m = (px

2
 + py

2
)/2m 

= ћ
2
k

2
/2m, where k

2
 = kx

2
 + ky

2
. Due to the very small film thickness d the 

electronic states are quantized along the z-axis and are given by 

 

                                    φν(z) = (2/d)
1/2

cos(νπz/d)                                (1.2) 
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and their energies Eν are given by  

 

                                    Eν =  (ћ
2
/2m)(νπ/d)

2 
 =  αν

2
                             (1.3), 

 

where ν = 1,2,..,N and α = ћ
2
π

2
/(2md

2
). To obtain (1.1) and (1.2) it was 

assumed that the electrons are confined in a very large potential well Vo in 

the region −d /2 ≤ z ≤ d/2. The maximum energy Eν is EN = (ћ
2
/2m)(Nπ/d)

2 

= εF which is the Fermi energy given by εF = 3
2/3

 π
4/3

 (ћ
2
/2m)(N/V)

2/3 
. 

These quantum states ν are known as Fermi subbands.
2-4 

  

 Thus, in our approach the free electrons in the film that are 

represented by the wavefunction  

                       

      Ψkν(x,y,z)  =  φ(x) φ(y) φν(z) = (1/√Lx Ly) exp(−k∙ρ) φν(z)         (1.4)  

 

have energies Ekν =  ћ
2
k

2
/2m + Eν

 
.Taking into account that  (ћ

2
/2m)(Nπ/d)

2  

= EN = εF  we verify that the maximum ν  value is   

 

                                    νmax = N =  (3n/π)
1/3

 d                                      (1.5).   

 

 Since the maximum value of the electronic energy is equal to the 

Fermi energy εF = (h
2
/2m)(3n/8π)

2/3
, the energies of the free electrons 

inside the film obey the following condition ћ
2
k

2
/2m + Eν = εF. In this way 

the maximum possible value for ν is given by the relation (ћ
2
/2m)(Nπ/d)

2
= 

ћ
2
N

2
/(2md

2
) ≈ εF  and, consequently, N ≈ d (3n/π)

1/3
. The momentum k is 

sometimes written as kν = [(2m/ћ
2
) (εF  − Eν)]

1/2
. The electronic mean free 

path will be indicated by ℓ. 

At this point it would be interesting to present orders of magnitude of 

some relevant parameters for metallic thin films (Pt, Au, Cu,…): 

 

   1 nm ≤ d ≤ 20 nm,  

                                  ∆ ~ 1 nm, n ~ 3-7 10
28

/cm
3
,  

                                  kF = (3nπ
2
)

1/3
 ~ 10 nm

−1
, 

                                  λF = 2π/kF ~ 0.5 nm   

                                   ℓ ~  20 nm.   

 

 For the Fermi subbands ν = 1,2,..,N  we verify, using (1.5), that for  

n ~ 5 10
28

/cm
3
 and d ~1.5 nm we have 70 ≥ N ≥ 5. 

 Quantum Size Effects” (QSE) become significant for thin metallic 

films conductivity when
2-4

 

                                                       ℓ > d 

                                                  N ≤ 50                                          (1.6). 

λF  ≥ ∆ 
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In the conditions (1.6) are satisfied to calculate the film conductivity it is 

necessary to modify the formalism adopted in Sections 2 and 3 of our 

preceding paper
1
 introducing quantum effects that depend on the small 

thickness d and on the roughness of the film surfaces.  The treatment for 

bulk metals shown in Sections 2 and 3 can be applied only for d > 20 nm.     

 The total resistivity ρ(d) of a very thin film with thickness d is given 

by  

                       ρ(d) = ρS(d) + ρ(∞) = 1/σS(d)  + ρ(∞)                        (1.7), 

 

where ρS(d) and σS(d) are, respectively, the surface resistivity and 

conductivity of the thin film and ρ(∞) the bulk conductor resistivity (or the 

resistivity of the film for d →∞). From the resistivity measurements we can 

determine the surface conductivity using (1.7): 

 

                                      σS(d)  = 1/ [ρ(d) − ρ(∞)]                              (1.8). 

 

2) Quantum Calculation for the Surface Electrical Conductivity.   

 Taking into account the roughness of the film surfaces h(ρ), where ρ 

= x i + y j, the confinement potential of the electrons considered in Section 

1 is now given by V  ≈ Vo + U(ρ), where U(ρ) is a perturbation due to h(ρ). 

It can be estimated
2-4

 using (1.3) taking ν = 1: 

 

       U(ρ) = δE ≈ (∂E/∂d) δd = (∂E/∂d) h(ρ) = − (ћ
2
π

2
/md

3
) h(ρ)         (2.1). 

 

2.a) Surface Conductivity Without the Fermi Subbands. 

 Let us calculate, in a first approximation, the conductivity σ due to 

elastic electronic scattering generated by the surface roughness without 

taking into account the Fermi subbands. So, following the Boltzmann 

formalism developed in Section 2 of ref. 1 and that ω(p´→p) = ω(p→p´) 

we get, 

 

Σ p ω(p´→p) f(p´) [1− f(p)]  − Σ p´ ω(p→p´) f(p) [1− f(p´)]   

 

                                                  = Σ p´ ω(p→p´) [f(p´) − f(p)]               (2.2).    

 

Putting,                    

 

             f(p) = fo(ε) + px χ(ε)   and   f(p´) = fo(ε) + px´χ(ε)                , 

 

we obtain 

                              Σ p´ ω(p→p´) [px − px´] χ(ε)  =  W px χ(ε)                (2.3),                 

 



 4 

where    W = Σp´ ω(p→p´) (1 − cosθ).  So, we have, 

 

       − eE(∂f/∂px) + (px/m)(∂f/∂T)(∂T/∂x) = − W px χ(ε)              (2.4).  

 

When there is no temperature gradient, that is, when (∂T/∂x) = 0 (2.4) can 

be easily solved giving  

                                            χ(ε) = (eE/mW)(∂fo/∂ε)                               (2.5).  

 

Using (2.5) and taking into account that χ(ε) = eE(ℓ/p)(∂fo/∂ε ) we get 

 

                                              W = p/mℓ = v/ℓ                                       (2.6). 

 

As (∂T/∂x) = 0 we get (see ref.1), 

 

                                                 Jx = e
2
E D

(1)
                                          (2.7). 

 

Since Jx = σx E,  n = 2pF
3
/(3π

2
ħ

3
) and putting (see ref.1) 

D
(1)

 ≈ [16πm/3(2πħ)
3
] (µℓ) ε =εF , μo = εF, from (2.7) we obtain 

 

                               σx = (e
2
n/m)(ℓ/v) ε =εF  =   (e

2
n/m)τ                           (2.8), 

 

where τ = (ℓ/v) ε =εF  is the mean free time between collisions. As, according 

to (2.6), (v/ℓ) ε =εF = W(εF )  we verify that the surface conductivity σS = σx , 

given by (2.8), can be written as 

 

                                            σS = (e
2
n/m)W(εF )

−1
                                   (2.9).     

        

 For very thin films it can be shown 
4,5

 that the electrical resistivity is 

created essentially to the surface roughness of the films. So, assuming that 

the bulk resistivity is negligible, the elastic electronic scattering k → k´ due 

the surface roughness is described by
6 

 

                  ω(k´→ k) = ω(k→ k´) =(2π/ħ) | < k |U(ρ)| k´>|
2
 ρ(k)        (2.10), 

 

where the surface roughness potential U(ρ) is defined by (2.1), k for the 

2-dim scattering is given by
6  

k = kx i + ky j , kx = (2πnx/Lx),  ky = (2πny/Ly), 

ρ(k)dEk = (L/2π)
2
 dkx dky  and Ek = (ħ

2
k

2
/2m), taking Lx= Ly = L. 

  In these conditions ρ(k) becomes  

  

                                      ρ(k) = (L/2π)
2
 (m/ħ

2
) dθ                                  (2.11). 

 

 Taking into account that U(ρ) = A h(ρ), where A = − (ћ
2
π

2
/md

3
) we 

get  
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                       | < k |U(ρ)| k´>|
2
 = A

2
 | < k |h(ρ)|k´> |

2
 = A

2
|hkk´|

2 
 

where  

                          |hkk´|
2
 = (1/L)

2
| ∫d

2
ρ h(ρ) exp(iq ρ) |

2
                           (2.12), 

 

with q = k – k´ and q = | k − k´| = 2 k sin(θ/2), taking into account that the 

resistivity effects are due essentially by elastic collisions, that is, k ´≈ k. So, 

from (2.3),(2.10)-(2.12) we obtain 

 

                                             W(ε) = (π
3
ħ/2md

6
) Φ(q)                           (2.13), 

where Φ(q) is defined by 

                                                      Φ(q) = ∫o
2π 

|hkk´|
2
(1−cosθ) dθ                   (2.14). 

 

Assuming that the energy ε of conducting electron is the Fermi 

energy, that is, ε = εF  and q = qF the surface conductivity σS = σx= σE 

(along the E field), given by (2.9) becomes given by  

 

                       σS = (e
2
n/m)W(εF )

−1
 = (2ne

2
d

6
/π

3
 ħ) Φ(qF)

−1
                 (2.15). 

 

 For the particular case of the Gaussian model (see Appendix A) 

when the function G(ρ) is given by G(ρ/ξ) = ∆
2
 exp(−ρ/ξ

2
), where ξ is the 

“surface correlation distance” and ∆ is the “average surface roughness”, 

the function Φ(qF) defined by (5.14) becomes (see Appendix A) 

 

        Φ(qF, ξ) = ∫ d
2
ρ exp(iq∙ρ) G(ρ/ξ) =  ∆

2
 ∫ d

2
ρ exp(iq∙ρ) exp(−ρ/ξ

2
) = 

 

                       =  (ξ∆)
2
 π exp( −q

2
ξ

2
/4)                                                  (2.16). 

 

Consequently, W(εF) defined by (2.13) is written as 

 

                             W(εF,ξ) = (π
4
ħ/2md

6
) (ξ∆)

2
 FG(kFξ)                         (2.17), 

where  

                     FG(kFξ) = ∫ o
2π 

exp[−kF
2
ξ

2
 sin2(θ/2)] (1−cosθ) dθ  

 

                                  = 2 exp(−kF
2
ξ

2
/2) [Io(kF

2
ξ

2
/2) – I1(kF

2
ξ

2
/2)], 

 

 Io(z) and I1(z)] are the modified Bessel functions of order 0 and 1.
7
 

 Thus, the surface conductivity σS = σx= σE, (2.9) becomes                            

 

                                σS(d) = (2ne
2
d

6
/π

4
 ħ ξ

2
∆

2
) FG(kFξ)

−1
                     (2.20). 

 

For kFξ << 1, as FG(kFξ) ≈ 2π, (2.20) is given, simply, by
5
 

 

                                            σS(d)≈ (ne
2
d

6
/π

5
 ħ ξ

2
∆

2
)                            (2.21). 
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2.b) Surface Conductivity Considering  the Fermi Subbands. 

 Now the calculation of the conductivity σx is improved taking into 

account the Fermi subbands ν. So, due to the surface roughness U(ρ) the 

electronic transitions are between the subbands | kν > → | k´μ >.  Since the 

main contributions to the resistivity are due the elastic collisions it will 

assumed that Ekν = Ek´μ, where Ekν = ħk
2
/2m + Eν. The momentum kν is 

defined by kν
2
 = (2m/ħ

2
)(εF − Eν). Rigorously, the momentum of the 

electron in the subband ν ought to be indicated by kν, but, sometimes, to 

simplify the notation it will be indicated simply by k. 

 The electric current density JE along E due to the ν subbands 

contributions is given by
2
 

 

                 JE = −2e Σν ∫ d
2
k (L/2πħ)

2
 (E∙k) fν(k) (1/L

2
d)                  (2.22), 

 

where fν(k) is the Fermi distribution for the subband ν and remembering 

that the film volume is L
2
d. It can be shown

2
 that for elastic collisions 

between the subbands we have: 

 

−(eħ/m) k∙E (∂fν/∂ε) = (2π/ħ) Σμk´ | <kν | U(ρ)| k´μ >|
2
 δ(Ekν− Ek´μ) 

 

                                       x [fν(kν) − fμ(kμ´)]                                           (2.23). 

 

where kμν = | kμ− kν| = (kμ
2 
+ kν

2 
− 2 kμ kν cosθ)

1/2
 . 

 

Due to the coupling between the functions fν(k) in the system of 

differential equations (2.23) the exact determination of these functions is 

very complicated, long and tedious.
8,9

  An approximate and simple way to 

solve (2.23) decoupling these equations is assuming that fμ(k´) ≈ fν(k´). In 

this way, we can write, similarly to in ref.1,  

 

                     fν(kν) − fμ(kμ´) ≈ fν(kν) − fν(kν´) ≈ χν(ε) [kνx − k´νx]        (2.24). 

 

Since k´νx
 
≈ kνx cosθ (2.24) becomes 

 

                                 fν(kν) − fμ(kμ´) ≈ χν(ε) kνx (1−cosθ)                      (2.25). 

 

Consequently, the Boltzmann equations without coupling between 

the subbands become given by,( putting to simplify the notation, kν = k)  

 

           −e ħ E (∂fν(k)/∂kx) ≈ Σμk´ ω(kν → k´μ) [fν(k) − fν(k´)] = 

                                            

                                          = Σμk´ ω(kν → k´μ) χν(ε) kνx (1−cosθ)       (2.26), 
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where          

 

                    ω(kν → k´μ) = (2π/ħ) | < kν |U(ρ)| k´μ>|
2
 Ω(Ek´μ), 

 

where Ω(Ek´μ) is the density of final states |k´μ > given by (see (2.11)) 

Ω(Ek´μ) = (L/2π) (m/ħ
2
) dθ,  kx = k´ and k´x = k´cosθ  = kx cosθ.  It is 

important to note that in (2.26) the reference x-axis (“internal reference 

system” used to calculate the matrix element) is taken along the incident 

momentum k. So, the scattering angle θ is the angle between k and k´. It 

has nothing to do with the angle between k and E, that will be defined by α 

given by E∙k = E k cos α. In this case the E direction will be taken as 

reference direction to calculate the integral (2.22) ∫ d
2
k (E∙k)… 

From (5.26), following the same procedure adopted to get (2.3) we 

obtain 

                                          χν(ε) = (eE/mWν) (∂foν/∂ε)                          (2.27), 

where Wν is given by 

 

                  Wν = (2π/ħ) Σμk´ | <kν | U(ρ)| k´μ >|
2
 Ω(kμν) (1−cosθ)  

 

                        = Σμk´ ω(kν → k´μ) (1−cosθ)                                       (2.28),  

 

where  kμν = qμν = | kμ− kν| = (kμ
2 
+ kν

2 
− 2 kμ kν cosθ)

1/2
 .  

 

Following a similar procedure used in Section (2.a) we can show that 

 

Σk´ω(kν → k´μ) (1−cosθ) = (π
3
ħ/2md

6
) μ

2
ν

2
 ∫o

2π  
|hkk´|

2 
 (1−cosθ) dθ   (2.29), 

 

where 
 
|hkk´|

2 
 = ∫ d

2
ρ exp(iqμν∙ρ) h(ρ) . Defining Φ(qμν) by 

 

                               Φ(qμν) = ∫ o
2π  

|hkk´|
2 
 (1−cosθ) dθ                           (2.30) 

 

we see that Wν given by (2.28) is written as 

 

                     Wν = 1/τx = (π
3
ħ/2md

6
) ν

2
 Σμ μ

2 
Φ(qμν)                          (2.31). 

 

 Taking into account (2.27)-(2.30) the conductivity JE along the E 

field, defined by (2.22) becomes written as: 

 

           JE  ≈  − (2e
2
/m

2
(2πħ)

2
d) Σν ∫ d

2
p (E∙pν)

2
/Wν) (∂foν/∂ε)       

 

                 =   − (e
2
ħ

2
/2m

2
π

2
d) Σν ∫ d

2
k (E∙kν)

2
/Wν) (∂foν/∂ε)                (2.32). 
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Substituting (2.31) in (2.32) and remembering that σS = σE = JE/E we obtain 

the general expression for the surface conductivity σS: 

  

       σS(d)= (e
2
ħd

5
/mπ

5
) Σν {∫ d

2
k kνx

2
 (∂foν/∂ε)/[ν

2Σμ μ
2 
Φ(qμν)] }     (2.33), 

 

taking E as a reference direction, the x-axis, for instance, we have E∙kν= 

Ekνx= Ekν cosα and d
2
k = k dk dα.  

 

3) Limiting Cases of Physical Interest. 

 The calculation of the surface conductivity (2.33) can be simplified 

in special cases of physical interest for metals like, for instance, Pt, Au, Al 

and Cu. Since for these metals the main scattering contributions are due to 

electrons with k ≈ k´≈ kF we can put (see (2.28)) 

 

                          kμν = qμν = | kμ− kν| = qF ≈ 2kF sin(θ/2)                    (3.1). 

 

As ε = ħ
2
k

2
/2m, kx

2
 = k

2
 cos

2
α and taking into account that at ε = εF  we 

have (∂foν/∂ε)εF = −δ[ε − (εF − Eν)] the current Jx defined by (2.32) becomes 
 

       JE = (e
2
Eħ

2
/2m

2
π

2
d) (Σν ∫ k

3
 dk ∫o

2π
 dα cos

2
α )/Wν)δ[ε − (εF − Eν)], 

 

 that is,  

                                  JE = (e
2
E/2πmd) Σν (kν

2
/Wν)                              (3.2), 

 

where kν
2
 = (2m/ħ)(εF − Eν) and Wν is defined by (2.28).Taking into 

account that the function Wν is given by (see Appendix B)  

 

                                Wν(qF)= (π
3
ħν

2
/2d

6
) Φ(qF) (    

 )                             (3.3), 

where  

                                  Φ(qF) =     
  

 
(1− cosθ) |hkk´|

2  
                        

and  

                                   hkk´=  (1/L) ∫ d
2
ρ h(ρ) exp(iqF ρ), 

 

where h(ρ) = h(x,y) are the height fluctuations of the film surfaces at the 

points (x,y), according to Section 1. 

 Taking into account that      
  = N(N+1)(2N+1)/6 and that σ = J/E 

the electric conductivity σS due to surface effects, using (3.2), is given by  

 

          σS(d) = (e
2
/ħ)[d

5
/π

4
 Φ(qF)] [6/ N(N+1)(2N+1)] Σν=1

N
 (kν

2
/ν

2
)       (3.4), 
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which is a result similar to that found by Fishman and Calecki
9
  

            Eq.(3.4) was used to analyze the surface resistivity of very thin 

films measured
10

 at the Laboratory of Thin Films (LFF) of the Department 

of Applied Physics (FAP) of the Institute of Physics (IFUSP) of the 

University of São Paulo.  

 The function Φ(qF) depends on the model assumed to explain the 

surface roughness as is seen in our preceding papers.
10

 In Appendix A it is 

shown how this function can be calculated taking into account the 

“roughness correlation function”. Assuming the “Gaussian model” to 

calculate Φ(qF) we get (see 2.16 and 2.17) Φ(qF,ξ). = (ξ∆)
2
 FG(kFξ) where 

 FG(kFξ)= 2 exp(−kF
2
ξ

2
/2) [Io(kF

2
ξ

2
/2) – I1(kF

2
ξ

2
/2)]. For kFξ << 1 we verify 

that Φ(qF,ξ). = (ξ∆)
2
π.  In these conditions we verify that our prediction 

(3.4) for σS(d) is exactly the same one obtained by Fishman and Calecki.
9
 

   

                     

Appendix A. Roughness Autocorrelation Function. 

 Let us calculate the function Φ(q) defined by (2.14) using the 

“surface correlation function” method: 

 

                                 Φ(q) = ∫o
2π 

|hkk´|
2
(1−cosθ) dθ                          (A.1),

 
 

where  

                                |hkk´|
2
 = (1/L)

2
 | ∫d

2
ρ h(ρ) exp(iq ρ) |

2
,             (A.2), 

and q = k – k´. 

In order to be didactical let us first calculate | <k |h(ρ)| k´>|
2
 for the 

1-dim case   

                        | <k |h(x)| k´>|
2
  = (1/L

2
) ( ∫ dx exp(−ikx)h(x) exp(ik´x)) 

 

                                                        x ( ∫ dy exp(−iky)h(y) exp(ik´y)). 

Putting y = x + λ we get 

 

| <k |h(x)| k´>|
2
 = (1/L)

2 
∫ dx ∫ dλ exp(−ikλ) h(x)h(h+λ) exp(ik´λ) 

 

                           = (1
2
/L) { ∫ dλ < h(x) h(x+λ) > exp[i(k´−k)λ] }, 

where  

                           < h(x) h(x+λ) > ≡ (1/L) ∫ dx h(x) h(x+λ)   

 

is called “height correlation function”.
4 

Similarly, for the 2-dim case, taking ρ = x i + y j , 

 

                     hkk´= < k´|h(ρ)| k > = (1/L) ∫ d
2
ρ h(ρ) exp(iq ρ), 

we have 

             
 
|hkk´|

2
 = (1/L)

2
∫ d

2
X exp(−iq X) h(X) ∫ d

2
Y exp(iq Y) h(Y).   (A.3). 
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Putting Y = X + ρ we get          

 

              |hkk´|
2 
= (1/L)

2 
∫d

2
ρ ∫d

2
X exp(iq ρ) h(X) h(X+ρ) = 

 

                        = ∫d
2
ρ exp(iq ρ) < h(X) h(X+ρ) >                                 (A.4), 

 

where  < h(X) h(X+ρ) > defined by 

 

               G(ρ) = < h(X) h(X+ρ) >  =  (1/L)
2
∫d

2
X h(X) h(X+ρ)             (A.5), 

 

is the “height autocorrelation function”.
4
 

 In this context |hkk´|
2 
given by (A.4) becomes written as  

 

|hkk´|
2 
= (1/L)

2 
∫d

2
ρ ∫d

2
X exp(iq ρ) h(X) h(X+ρ) = ∫d

2
ρ exp(iq ρ) G(ρ)  (A.6) 

 

Several models have been proposed
4
 to estimate G(ρ). We can 

mention, for instance, two models, Gaussian and Exponential: 

 

(1) Gaussian            →        G(ρ/ξ) = ∆
2
 exp(−ρ/ξ

2
)                              (A.6) 

(2) Exponential       →        G(ρ/ξ) = ∆
2
 exp(−ρ/ξ)                                (A.7), 

 

where ξ is the “surface correlation distance” and ∆ is the “average surface 

roughness”.  

 

Appendix B.  Calculation of the Function Wν. 

 Let us calculate the function Wν defined by (2.28): 

 

                              Wν = Σμk´ω(kν → k´μ) (1−cosθ),                            (B.1), 

where  

                   ω(kν → k´μ) =(2π/ħ) Σμk´| < kν |U(ρ)| k´μ >|
2
 Ω(kμν), 

  

kν and k´μ are written simply as k and k´, respectively, 

                    U(ρ) = − (ћ
2
π

2
/md

3
) s

2
h(ρ) = − As

2
h(ρ),  ( s = μ or ν), 

 

and               |k > = (1/L)exp(ik ρ),  kx = k´, k´x = k´cosθ = kx cosθ. 

 

To calculate ω(kν → k´μ) let us take the x-axis along the k direction 

of the incident electron as a reference direction. So, i∙k = kx = k cos θ and 

d
2
k =k dk dθ. So, the density of final states Ω(Ek´μ) is given by (see (2.11)), 

 

                                    Ω(Ek´μ) = (L/2π) (m/ħ
2
) dθ   

and 
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                         kμν = qμν = | kμ− kν| = (kμ
2 
+ kν

2 
− 2 kμ kν cosθ)

1/2
 . 

 

 Assuming that, according to section 3, that k ≈ k´≈ kF we can put 

 

                                kμν = qμν = | kμ− kν| = q ≈ 2kF sin(θ/2).  

 

In this way (B.1) becomes  

 

                                     Wν = (π
3
ħν

2
/2d

6
) Φ(q) (    

 )                             (B.2), 

where 

                                         Φ(q) = ∫o
2π 

|hkk´|
2
(1−cosθ) dθ, 

 

                        hkk´ = (1/L)∫ d
2
ρ exp(iq ρ) h(ρ)        and       q = k’− k. 
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