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Abstract. In this paper, that was written to graduate and post-graduate 

students of Physics, we study the Quantum Seebeck Effect that we have 

found when electric currents pass by very thin platinum films with 

thickness smaller than 15 nm. 

 

 

I)Introduction. 

 Since this paper is written to graduate and post-graduate students of 

Physics it is important to note that the “thermoelectric effects” were 

analyzed only in earlier textbooks like, for instance, “Physics” of 

F.W.Sears
1
. They are is not studied in modern textbooks like, for instance, 

Halliday and Resnick,
2
 Tipler,

3
 Serway

4
 and Sears & Semansky.

5  
The 

“thermoelectric effect” is a direct conversion of temperature differences to 

electrical voltage and vice-versa.
6   A thermoelectric device creates a 

voltage when there is a different temperature on each side. Conversely, 

when a voltage is applied to it, it creates a temperature difference. At the 

atomic scale, an applied temperature gradient causes charge carriers in the 

material to diffuse from the hot side to the cold side. This effect can be 

used to generate electricity, measure temperature or change the temperature 

of objects. Because the direction of heating and cooling is determined by 

the polarity of the applied voltage, thermoelectric devices are efficient 

temperature controllers. This effect can be used to generate electricity, 

measure temperature or change the temperature of objects. The term 

"thermoelectric effect" encompasses three separately identified effects: the 

Seebeck effect, Peltier effect and Thomson effect. Textbooks may refer to 

it as the Peltier–Seebeck effect.
6
 
 
Studies about thermoelectric effects for 

bulk materials can be found in textbooks, such as, Sears,
1
 Sommerfeld,

7
 or 

J.Osada
8
 and also in our recent didactical paper.

9 

 In Section 1 we make a brief theoretical review of the thermoelectric 

effects for bulk materials, showing in details only the Seebeck Effect. In 

Section (2.a) we analyze the Seebeck effect for thin films and in Section 

(2.b) the Quantum Seebeck Effect that we have found for nanometric very 

thin platinum films with dimensions smaller than 15 nm. 
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(1) Thermoelectric effects for bulk materials. 

 For bulk materials the thermoelectric effect can be understood, from 

the theoretical point of view, using the Boltzmann transport equation.
8,9

  

So, let us indicate by ε the electron energy and f0(ε) the equilibrium Fermi-

Dirac distribution function for the conducting electrons. Submitting the 

conducting system to an electric field E and to a temperature gradient 

∂T(x)/∂x, both along the x-axis, the perturbed electronic distribution 

function f(ε) is written as,  

 

                                    )( p  )(f  )(f x0  , 

 

where px is the electron momentum along the x-axis, the Boltzmann 

equation obtained is: 
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where ℓ = ℓ(ε) is the electron bulk mean free path. 

 Solving Boltzmann equations in first order approximation, we have 
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where μ is the chemical potential of the material. 

 Taking into account that, along the x-axis, the electrical current 

density (J) and the thermal current density (Q) are given by 
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we can show that J is given by: 
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where Dn (n =1,2,…) are given by: 



 

3 
 

 







 0n

3n

f
 )(  d 

)(2 3

m 16
   D 


 

 

where ℓ(ε) = ℓ is the electronic mean free path of the material. 

 Using (1.1) we can calculate all thermoelectric effects: Seebeck effect, 

Peltier effect and Thomson effect. In next Sections only the Seebeck effect 

will be analyzed. 

 

(1.a) Seebeck Effect for Bulk Materials. 
 If there is no electric current in the circuit, that is, when J = 0 and 

when ∂T/∂x ≠ 0 we can estimate what is known as Seebeck effect. So, 

putting J = 0 in (1.1) we get, 
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 Let us consider a system composed by three materials, 1, 2 and Cu 

assuming that the junctions between 1 and 2 are maintained at different 

temperatures T and T´ as is seen in Figure 1. The points P and Q of the Cu 

are maintained at the same temperature To.  

 

Figure 1: Circuit composed by 3 materials, 1, 2 and Cu. The junctions between 1 and 2 

maintained at different temperatures T and T´ and the points P and Q of the Cu are at 

the same temperature To 

 

 In this way, the voltage VPQ between P and Q is given by 

 

VPQ = ∫P
Q
 E dx = ∫To

T´
 ECu dx + ∫T´

T
 E1 dx + ∫T

T´
 E2 dx + ∫T

To
 ECu dx = 

 

       = ∫T´ 
T
 (E1 – E2) dx. 

 

That is, 
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where, Λ = 1 + 2µℓ´/ℓ, ℓ(ε) the bulk mean free path and ℓ´(ε) = dℓ(ε)/dε .  

The subscripts 1 and 2 means that the function (Λ/μ) must be calculated for 

the Fermi energies of the materials 1 and 2, respectively. 

 Defining the “Seebeck coefficient” S (or “thermopower” S) by  

S = π
2
k

2
ΛT/(3µe), (1.2) becomes 

 

                                       VPQ =  ∫ T
T´

 dT (S2 – S1)                                  (1.3). 

 

If S is constant for a small temperature difference T – T
´
 = δT, (1.3) can be 

written as 

 

                                             VPQ ≈ (S2 – S1) δT                                     (1.4), 

 

where S1 and S2 are calculated at T = (T+T´)/2. 

 The voltage created by this effect is on the order of several microvolts 

per Kelvin difference. The combination, copper-constantan has a Seebeck 

coefficient of 41 microvolts per Kelvin at room temperature. 

 The Seebeck effect is used in thermocouple to measure temperature 

differences. The absolute temperature may be found by setting one end to a 

known temperature. A metal of unknown composition can be classified by 

its thermoelectric effect if a metallic probe of known composition, kept at a 

constant temperature, is held in contact with it.  

 According to (1.3) the Seebeck Effect depends on the electronic mean 

free paths, that for bulk materials are given by 

 

                       ℓbulk = m vF /(ne
2
ρbulk)                                (1.5), 

 

where m is the effective electron mass, e the electron charge, vF the Fermi 

velocity and ρbulk is the bulk electrical resistivity.  

 As will be seen in Section 2, for conductors with nanometric 

dimensions the total resistivity ρ(t) depends on the film thickness t and is 

given by ρ(t) = ρbulk + ρs(t), where ρs(t) is the resistivity due to the 

scattering of the electrons by the roughness of the conductor surfaces.  In 

this way, electronic mean free path ℓf(t) for the film is given by, 

 

                          ℓf(t) = m vF /(ne
2
ρ(t)) = ℓbulk ρbulk/ρ(t)                    (1.6), 

 

that depends on the conductor dimension t.   

 Since the “thermopower” S = π
2
k

2
ΛT/(3µe) and Λ = 1 + 2µℓ´/ℓ is a 

function of ℓ, that is, Λ = Λ(ℓ) we see that the Seebeck voltage VPQ, given 

by (1.2)-(1.4), will also depend on the mean free path.  
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2) Seebeck effect for thin and very thin films. 

 Thin film thermocouples (TFTC) provide a sensitive way of making 

accurate and fast (down to ~ 1μ s response time) surface temperature 

measurements. They have the advantages of intimate thermal contact with 

the surface, low thermal inertia (mass ~10
−4

 g), high spatial resolution, and 

low cost. Development of TFTCs has been vigorous in recent years,
10

 

prompted in a large part by the need of the microelectronics industry for 

TFTCs with ever-smaller dimensions. However, when the film thickness 

becomes comparable to the mean free path of the charge carriers, all 

transport processes are expected to exhibit size effects.
11-13

 Extensive 

electric and galvanomagnetic studies of thin films of alkali and noble 

metals have established the existence of size effects, important from both 

fundamental and technical points of view. 

 In the Section 1 we have calculated the electrical and thermal 

conductivities of metallic bulks using the Boltzmann transport equation. 

With a similar formalism we can calculate the resistivity of thin nanometric 

metallic films.
9,11-13

  We assume that the films are in a plane (x,y) with 

lengths Lx and Ly along the axes x and y, respectively, and thickness t along 

the z-axis. For nanometric dimensions quantum size effects (QSE) play the 

main role
11

 in the electronic conductivity when t ≤ ℓbulk. In this way a 

quantum mechanical approach is necessary to describe the conductivity. 

The coordinates (x,y,z) origin is chosen in the middle point of the film, that 

is, −Lx /2 ≤ x ≤ Lx /2,  −Ly/2 ≤ y ≤ Ly/2  and −d /2 ≤ z ≤ d/2. Lx and Ly are 

very large, that is, Lx >> d and Ly >> d. Due to the very small film 

thickness t the electronic states are quantized along the z-axis. These 

quantum states are known as Fermi subbands.
11,13

 In these conditions the 

electric resistivity is due to a bulk effect and to the roughness of the film 

surfaces. The height fluctuations of the film surfaces are located at the 

planes with z = −t/2 and t/2. The total resistivity ρF(d) of a thin film with 

thickness d is given by  

 

                         ρf(t) = ρS(t) + ρ(∞) = 1/σS(t) + ρbulk                           (2.1), 

 

where ρS(t) and σS(t) are, respectively, the surface resistivity and 

conductivity of the thin film and ρ(∞) = ρbulk is the bulk conductor 

resistivity (or the resistivity of the film when t →∞). From the ρf(t) 

resistivity measurements
10,11

 of we can determine the surface conductivity 

using (2.1): σS(t) = 1/ [ρf(t) – ρbulk]. 

 The quantum size effects are small
11-13

 when t >> ℓ; they become 

significant only for t ≤ ℓ. 
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(2.a) The Seebeck effect for thin metallic films. 

  We say that a film is thin when t >> ℓ. The bulk limit is obtained 

making t→∞. A large number of experimental works
14-17

 on the electrical 

conductivity of thin films, that is, when t >> ℓ, has shown that the ratio 

σf/σbulk is well described by σf/σbulk = 1 – c/t, where σbulk is the bulk 

conductivity and c is a constant. With the same precision the resistivity 

ratio ρf/ρbulk is given by ρf/ρbulk = 1 + c/t. The 1/t variation is in good 

agreement with the semiclassical predictions of Fuchs
18

 (see Appendix): 

 

                                 σf/σbulk  ≈ 1 – (3/8)(1 – p)ℓ/t ,                                (2.2), 

 

where p is the fraction of energy lost by the charge carriers when reflected 

by the film surface. Since ρ = 1/σ, Eq. (2.2) can be written in terms of the 

resistivity ratio,                                     

                                     ρf/ρbulk  ≈ 1 + (3/8)(1 – p)ℓ/t                               (2.3). 

 

As shown in Appendix the semiclassical theory predicts that the resistivity 

would obey a law  

          ρf/ρbulk = 1 + Σn an(ℓ/t)
n
                                      (2.4). 

where n=1,2,… 

  According to Justi et al.
19

 and Mayer,
20 

when Eq. (2.2) is obeyed the 

thermoelectric power SF of pure metal thin films with thickness t >> ℓ is 

given by 

 

                   Sf = Sbulk[(1 – (3/8)ℓ/t)(1 – p)U/(1 + U)] ,      (t >> ℓ)        (2.5), 

 

where U = (∂ lnℓ(ε)/∂ lnε)ε= ξ, ε is the electron energy, ξ = εF is the Fermi 

energy and the bulk thermoelectric power Sbulk is given by  

 

                                    Sbulk  =  –(π
2
/3e)(k

2
T/ξ)(U + 1),                         (2.6), 

 

From (2.5) and (2.6) we obtain 

 

ΔS  =  Sbulk – Sf  =  Sbulk(3/8)[(ℓ/t)(1 – p)U/(1 + U)]          (t >> ℓ) 

 

                           =  – (π
2
/8e)(k

2
T/ξ) [ℓU(1 – p)/t] 

 

                           = – 9.2 x 10
-3

(T/ξ) [ℓU(1 – p)/t]   (μV/deg)                (2.7).  

 

Thus, for thin films (t >> ℓ), according (2.7), the Seebeck factor ΔS obey a 

1/t law. This is seen in Figure 2 that will be analyzed in next Section. 
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(2.b) The Seebeck effect for very thin metallic films. 

 Many experimental work
11

shown that for very thin films that is, when 

t ≤ ℓ the resistivity ratios (ρf/ρbulk)Pt obey a law completely different from 

(2.3) predicted by the semiclassical approach. For instance, in a previous 

work
21-24

 we have shown that the ratio ρf/ρbulk for Pt films with thickness in 

the range 1.31 ≤ t ≤ 11.66 nm is given by 

 

                                  (ρf/ρbulk)Pt = 1 + 6.5/t + 140/t
9
                              (2.8). 

 

For these films quantum size effects become relevant because t ≤ ℓ, noting 

that for Pt we have ℓbulk ≈10.0 nm. 

 To verify the deviation of the ΔS factor from the 1/t law our Seebeck 

device
12 

(see Fig.2) was composed by very thin films of Pt (film 1) and a 

thick film of Au (film 2). The Pt films had thickness in the range 1.31≤ t ≤ 

11.66 nm and the gold film had a constant thickness equal to tAu = 141 nm. 

 In our experiment ΔS = (Sbulk)Au – (Sfilm(t))Pt represented in Fig.2 by 

ΔS = SB – SF, where SB = (Sbulk)Au and SF = (Sfilm(t))Pt. 

 In Figure 2 is shown details of our thermocouples that have been 

used
12

 to measure the Seebeck effect. In Figure 3 are shown the measured 

ΔS values as a function of 1/t where t are the thickness of the Pt films.  

 

 
Figure 2. Our thermocouples12 were formed of and Pt and Au strips, 6 mm wide, on glass 

microscope slides. The thermoelectric voltage V is measured as indicated. 
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Figure 3. The measured

12
 Seebeck power ΔS =SB – SF, where SB = (Sbulk)Au and SF = 

(Sfilm(t))Pt ,as a function of 1/t where t are the thickeness of the Pt films. 

 

In Figure 3 the experimental results
12

 are represented by solid circles, 

and the continuous line is a best-fit to the experimental results, given by the 

function  

        ΔSF = 0.194 + 26.7(1/t) – 93.6(1/t)
2
 + 112.0(1/t)

3
.         (2.9). 

 

The straight dashed line shows the linear behavior of ΔS as a 

function of 1/t as expected for films thick compared to about 20 nm,  when  

t >> ℓ. This figure clearly shows that the thermopower ΔSF varies linearly 

with 1/t only for Pt films with thickness less than about 20 nm. This 

behavior is in accord with the theoretical predictions described above: a 

linear relationship is expected for t >> ℓ. On the other hand, for very thin 

films, that is, with t < ℓ the factor ΔSF obeys a clearly non-linear law given 

by (2.9). This behavior is due to quantum size effects that become relevant 

when ℓ ≥ t. Note that Eqs. (2.2)-(2.7) were derived using a semiclassical 

approach
18-20

 that is applicable only when quantum size effects are 

negligible, i.e., when t >> ℓ, resulting in ΔS varying linearly with 1/t. To 

explain theoretically (2.9), that is, the quantum Seebeck effect, it would be 

necessary perform a quantum mechanical calculation of the thermoelectric 

power of very thin films. This calculation is still lacking. 
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Appendix. Semiclassical approach for thin films. 

 As can be seen, for instance, in the paper of Justi et al.,
19 

the 

thermoelectric power SF of a film with thickness t is calculated using the 

Boltzmann transport equation. It is assumed that the charge carriers are free 

electrons obeying the Fermi-Dirac statistics and that the relaxation time τ is 

given by τ = ℓ/vF, where vF is the Fermi velocity. According to their 

approach S is given by 

 

                             SF = – (π
2
k

2
T/3e)[dlnσ(E)/dE]E= ξ  .                         (A.1) 

 

 Defining ψ(E) = σ(E)/σbulk they have shown that SF is written as 

 

               SF = – (π
2
k

2
T/3e){1 + U [1 + χ(d lnψ(χ)/dχ)]}                       (A.2) 

 

where χ = t/ℓ and U  = (∂ lnℓ(E)/∂ lnE)E=ξ . 

 According to Fuchs,
18

  taking into account semiclassical size effects, 

ψ(χ) = σ(χ)/σbulk is given by  

 

        σ(χ)/σbulk =1 – [3(1 – p)/8χ](1– e
-χ
) + [3(1–p)

2
/4χ]F(χ,p),             (A.3) 

 

where p (scattering coefficient) is the fraction of the energy lost by 

electrons when reflected by the film surfaces, 

 

F(χ,p) = ∑ν=1
∞
 p

ν-1
{B(y)( y

2
 – y

4
/12) + e

-y
(1/2–5y/6 – y

2
/12+y

3
/12), 

 

y = ν χ and B(y) = – Ei(– y).                 

 When χ = t/ℓ >> 1, since ψ(χ) = σ(χ)/σbulk ≈ 1 – [3(1 – p)/8χ] , one can 

verify, taking into account Eq.(A.2), that 

 

                    SF= – (π
2
k

2
T /3e) [1 + U(1–3(1–p)ℓ/8t)].      ( t >>ℓ)…..(A.4) 

 

 In the limit χ → ∞ we obtain from Eq.(A.4) the bulk thermopower  

SB = Sbulk: 

                              SB = Sbulk = lim χ → ∞ S = – (π
2
k

2
T/3e) (U + 1) , 

 

according to (2.6). 
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