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Abstract. These brief notes about some amazing properties of the helium 

superfluid have been written to graduate and postgraduate students of 

physics. We have estimated some collective energy excitations (linear 

vortices, energy spectrum of the quasiparticles and solitons) and calculated 

the specific heat of the superfluid helium assuming that the transition 

superfluid liquid → liquid is an order-disorder transition. 
 

1) Introduction. 
 Few weeks ago we found an interesting book written by Walecka

1
 

named “Introduction to Modern Physics”. Published at 2008 it is an up to 

date book written to graduate and postgraduate students of physics. It 

analyzes problems like, for instance, quantum electrodynamics, relativistic 

quantum mechanics, quarks, general relativity, cosmology, quantum fluids 

and quantum fields. He analyzes in Chapter 11 the quantum fluids (
4
He 

superfluid and superconducting metals) that are macroscopic many-body 

systems whose behavior reflects the underlying quantum mechanics. 

Reading this Chapter we remembered our studies on hydrodynamics of the 
4
He superfluid at 1974. As a result of these studies we have written a 

textbook on fluid dynamics
2
 and also proposed a naïve phenomenological 

model
3
 to explain the specific heat of the superfluid helium using an order-

disorder transition approach. Now, inspired by Walecka´s book
1
 we 

decided to write this didactical article briefly analyzing some aspects of the 

energy collective excitations like linear vortices, energy spectrum of the 

quasiparticles and solitons. Again is shown our calculations on the specific 

heat of the liquid helium. It will be explained only the basic aspects of 

collective excitations and it will be mentioned only a few references where 

one can find detailed experimental results and theoretical approaches. In 

Section 2 are presented some remarkable properties
4,5 

 of superfluid liquid 

helium. In Section 3, as helium atoms are bosons that interact weakly, we 

explain how to treat statistically the liquid helium as an “degenerate Bose-

Einstein gas”.
4,6  

In Section 4 it will be estimated the energy collective 

excitations of the “Bose condensate” using the Hartree-Fock approach and 

the Gross-Pitaevskii equation. In Section 5 the specific heat of the liquid 

helium is calculated assuming that the transition superfluid liquid → liquid 

is an order-disorder transition. 
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2) Some Remarkable Properties of the Liquid Helium. 
 In London´s book

4
 and in many other papers

5
 one can learn about the 

amazing properties of the liquid helium which show that it is a substance 

entirely different from the normal liquids. Liquid helium is a “superfluid”. 

In Fig. 1 is seen the phase diagram
4
 of helium in the P-T plane. There are 

two kinds of liquids: “helium I” (He I) and “helium II” (He II). These two 

phases are separated by the λ-line that for P→0 has the end point, named 

“λ-point”, at the temperature Tλ = 2.16 K. Note that there is no triple point 

between the solid, liquid and gaseous states. Instead of one there are 

actually two triple points: at the ends of the λ-line which separates the two 

liquid phases, He I and He II.  

 The He II that exists for P < 20 atm and for temperatures T < Tλ has 

“super” properties like “superfluidity”, “linear and ring quantum vortices”, 

“thermal superconductivity”, “fountain effect” and “supersurface film” (see 

references 4 and 5). 

 

 

 
Figure 1.Phase diagram showing the four states of the helium in the P-T plane.

 

 

 

 In Figs.1 and 2 are presented two amazing properties of this 

superfluid. In Fig. 2 is shown the viscosity η of the He II e He I. For T > Tλ 

we see that the He I has a viscosity η > 2 cp, similar to the water viscosity
2
 

η(water) ~ 1 cp. The He II viscosity for T ≤ Tλ the decreases abruptly, 

tending to zero for T → 0 when He II shows the superfluidity behavior. 
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Figure 2.Viscosity η,

4 
measured in micropoise, of the liquid helium as function of T(K). 

 

 

 

 

 Figure 3 gives
4
 the specific heat C(cal/g.K) of the liquid helium 

under its own vapor pressure as a function of the temperature T(K). The 

curve seen in Fig.3 shows a shape of the letter λ. The specific heat shows a 

singularity, named “λ-singularity”
4
 of at the “λ-point” (see Section 5). 

 
 

 

 
Figure 3. Specific heat of the liquid helium under its own vapor pressure.

4
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3) Degenerate Bose-Einstein Gas. 
 According to the Bose-Einstein statistics,

4,6,7 
for a degenerate ideal 

gas with a very large number of particles N the average number ni of 

particles in the energy level ϵi of statistical weight gi is given by : 

 

                                    ni = gi/[exp(ϵi/kBT+α) -1]                          (3.1), 

 

where kB is the Boltzmann constant, α = - μ/kBT and μ is the chemical 

potential that for the Bose-Einstein gas must be always negative or zero.
4,6,7

 

In Fermi statistics μ can be positive or negative. It is important to note that 

the gas occupies a very large volume V and that the interaction potential 

between the particles is negligible. However, there is a non-local quantum 

interaction between the particles expressed by the bosonic quantum state 

symmetry of the system. As will be seen in Section 4 the energy of this 

global interaction is described by the chemical potential
4,6,7

 μ = (∂E/∂N)S,V , 

where E is the total energy and S is the entropy of the gas. In what follows 

it will be assumed the bosons have spin zero (S=0). 

 Using (3.1) the total number of particles would be given by 

 

                                               N = Σi ni                                                (3.2). 

 

 Assuming that the energies of the individual particles in the 

fundamental state is ϵ0 = 0 it can be shown that for T = 0 K the number no 

of bosons with spin zero found in the fundamental state is given by, 

with go = 1, 

                                           no = 1/[exp(α) -1]                                       (3.3). 

 

 Particles with mass m contained in a very large volume V that are 

not in the fundamental state have kinetic energy ϵ = p
2
/2m. For these 

particles the weight g is given by a smooth function 

 

                                    g(ϵ) = (2πV/h
3
)(2m)

3/2
ϵ

1/2
                                   (3.4). 

 

In this way, the number dn(ϵ) of these particles with energy between ϵ and 

ϵ+dϵ is given by 

 

                  dn(ϵ)= (2πV/h
3
)(2m)

3/2 
dϵ √ϵ/[exp(ϵ/kBT + α) -1]                (3.5). 

 

Note that since g(ϵ) = g(ϵ=0) = 0 (3.5) does not describe no given by (3.3). 

That is, (3.5) can used only to estimate the contribution of states with ϵ > 0. 

Consequently, the total number N of bosons is given by,  
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                     N = no + (2πV/h
3
)(2m)

3/2 ∫o
∞
 dϵ√ϵ/[exp(ϵ/kBT + α) -1]             

 

                          = no + V(2πmkBT/h
2
)

3/2
 F3/2(α)                                     (3.6), 

 

where F3/2(α) is the case σ =3/2 of the functions Fσ(α) that are defined by
4
 

 

                            Fσ(α) = [1/Γ(σ)] ∫o
∞
 dy y

σ-1
/[exp(y + α) -1]             

 

Defining a critical temperature Tc by 

 

              Tc = (h
2
/2πmkB)[N/VF3/2(0)]

2/3
 = (h

2
/2πmkB)(N/2.612V)

2/3
      (3.7) 

 

we verify that  

                          N = 1/[exp(α) -1] + N(T/Tc)
3/2

 [F3/2(α)/F3/2(0)]             (3.8). 

 

The α values are obtained solving (3.8).Taking into account that
4
 for α < 1 

F3/2(α) ≈ 2.612 - 2√πα  + …we get from (3.8), for |T-Tc| << TcN
-1/3

 : 

 

                                  α = (1/NC)
2/3

 [ 1 + (T/Tc -1)(N/C
2
)

1/3
]                  (3.9), 

 

where C = 2√π/2.612 = 1.36. From (3.9) we see that, for N →∞ and T < Tc, 

α ≈ N
-2/3

 → 0, that is,  α can put α equal to zero. 

 According to detailed analysis performed by London
4
 it can be 

shown that for N →∞ eq.(3.8) can be written as,  

 

        no = N[1 - (T/Tc)
3/2

] (for T < Tc)    and   no = 0  (for T > Tc)         (3.10)                                                           

 

Eqs. (3.10) show that for low temperatures, that is, T < Tc the bosons will 

tend to condense into the single-particle ground state. At T = 0 K all them 

will be in the fundamental state forming a collective macroscopic quantum 

state named “Bose condensate”. As well known
4,6,7 

 a degenerate gas, 

Fermi-Dirac or Bose-Einstein gas, realizes a characteristic state of order 

when approaching O K temperature. A Fermi-Dirac gas does this by 

settling down in a kind of lattice order in momentum space and a Bose-

Einstein gas by crowding the particles into the state of smallest momentum. 

A figure illustrating the bosonic condensation no = no(T) is seen in ref.4 

(Fig.21,pag.41). Finally, let us calculate the energy U of the bosonic 

system: 

                U = Σi ni ϵi  =  2πV(2m/h
2
)

3/2 
∫o

∞
 dϵ ϵ

3/2
/[exp(ϵ/kBT + α) -1]  

  

                                   = (3/2)VkBT(2πmkBT/h
2
) 

3/2
 F5/2(α)                 (3.11), 

 

remembering that the ground state (ϵo=0) does not contribute to the energy. 
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4) Collective excitations in Superfluid Helium. 
 Let us see how to calculate the collective excitations in the superfluid 

helium using the Hartree-Fock approximation
8
 and the Gross-Pitaevskii 

equation.
9,10  

We obtain only the quantum linear vortices (or simply, linear 

vortices) the quasi-particles spectrum and the solitons. Studies on “ring 

vortices” or “smoke rings” can be seen elsewhere.
5
 It will be assumed that 

the system is not submitted to an external potential. 

 As is well known
1
 the interaction between the helium atoms in the 

liquid is very weak.
1,4

 Let us indicate by V(x) the interaction potential 

between two atoms and by n(x) the particle density at the point x. Using the 

Hartree approximation,
1,8

 the helium atom at the point x is submitted to a 

potential VH(x) given by  

 

                              VH(x) = ∫ d
3
y V(x-y) n(y)                                  (4.1). 

 

Since the interaction between the atoms is very weak we can assume that 

the He atom does not lose its individuality. So, the liquid is composed by N 

identical spin-zero bosons each one with mass m that in the fundamental 

state has energy Ɛo and is represented by the state function ϕo(x). Thus, 

liquid is represented by the bosonic symmetric state function
1,8 

 

 

                          Φ(x1,x2,…,xN) = ϕo(x1) ϕo(x2)…ϕo(xN)                     (4.2), 

 

where ϕo(x) obeys the stationary Schrödinger´s equation, where Δ = 

laplacian operator, 

 

                              { -(ħ
2
/2m)Δ+ VH(x) } ϕo(x) = Ɛo ϕo(x)                 (4.3). 

 

At the condensate the particle density no(x) is given by no(x) =|ϕo(x)|
2
 and 

the energy Eo of the (fundamental) state is equal to Eo = N Ɛo . 

 It is convenient
1
 to define a new single-particle wave function that 

scales out the factor of N which represents the condensate, 

 

                                             Ψo(x) = √N ϕo(x)                                   (4.4) 

 

Thus, using (4.1), (4.3) and (4.4) we write following Hartree equation for 

the condensate 

 

               { -(ħ
2
/2m) Δ + ∫ d

3
y V(x-y) |Ψo(y)|

2
}Ψo(x) = ƐoΨo(x)        (4.5), 

 

which is a non-linear, integro-differential Schrödinger equation that can be 

solved by iteration in the general case, or analytically in some particular 
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cases. In this way the particle density no(x) and the particle current j(x) of 

the condensate are given, respectively by  

 

                                    no(x) = |Ψo(x)|
2
 

and                                                                                                        (4.6) 

                   j(x) = no(x) v(x) = (ħ/2mi){Ψo
*
grad(Ψo)- grad(Ψo)* Ψo}. 

 

Parameterizing the wave function in terms of the modulus and phase as 

 

                                    Ψo(x) = F(x) exp[iφ(x)]                                     (4.7), 

 

where F(x) and iφ(x) are real functions. We verify using (4.6) and (4.7) that 

the condensate density no(x) and velocity vo(x) are given by  

 

                                            no(x) = |F(x)|
2
 =|Ψo(x)|

2
 

and                                                                                                         (4.8). 

                                            vo(x) = (ħ/m) grad[φ(x)] 

 

The second equation is very interesting. As is known from fluid mechanics
2
 

if the velocity field comes from the gradient of a given function, in our case 

the phase φ(x), the velocity field is irrotational, that is, 

 

                                                rot vo(x) = 0                                          (4.9) 

 

which means that the particles flow is irrotational.  

 

4.a)Quantum Vortex: Quantized Circulation. 

 Putting the liquid He II into rotation it is observed
1,5,11,12 

that linear 

vortices
2
 are created in the bulk fluid. By linear vortex we mean a fluid 

rotation with a hole in the center as occurs in tornados and in flow of water 

in wash basin.
2
  In this case the circulation of the fluid around a circle ○ 

involving the rectilinear vortex
2
 is not null, that is, 

 

                                      ∫○ v∙dℓ  ≠ 0                                           (4.10). 

 

In this way, using (4.8) we get 

 

                          ∫○vo∙dℓ = (ħ/m)∫○ grad[φ(x)]∙dℓ = (ħ/m)∫○dφ 

 

                                          = (ħ/m){φ(2π) – φ(0)} ≠0                           (4.11). 
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Since the bosonic wave function is assumed to be a single-valued function 

throughout the fluid the difference of phase φ(2π) – φ(0) must be an 

integral number of 2π. So, (4.10) can be written as  

 

                     ∫○ v∙dℓ =(ħ/m)(2πn) = (h/m)n,   {n = 0,1,2,…}        (4.12), 

 

showing that the circulation around a vortex must be quantized in units of 

h/m. For 
4
He the unit of circulation has the value 

 

                                           h/mHe = 0.997 10
-3

cm
2
/s                             (4.12). 

 

Its remarkable
1
 that properties of the macroscopic fluid flow of the 

condensed Bose system have been obtained from single-particle wave 

function. 
  

4.b)Gross-Pitaevskii Equation. 

 First, let us assume that the interaction V(x - y) between two Bose 

particles is given delta function ( g > 0 for repulsive and g < 0 for attractive 

interaction): 

 

                                            V(x - y) = g δ(x-y)                                 (4.13) 

 

and let us generalize the Hartree equation (4.5) substituting the single-

particle energy Ɛo by the chemical potential μ
1,6,7

  

 

                                            μ = (∂E/∂N)S,V = Ɛo                                 (4.14), 

 

which is an experimental observable. The use of the chemical potential 

allow us to take into account the effect of the interactions that at T ≠ 0 

take some particles out of the Bose condensate distributing them over the 

single-particle states with energies higher than Ɛo. The number of particles 

no in the condensate is not a conserved quantity, changing according to 

(3.10). The use of μ allows one to take this into account. Assuming that the 

system is in the condensate state (4.5) we obtain, becomes using (4.13) and 

(4.14), the local non-linear differential equation named Gross-Pitaevskii 

equation.
9,10

 

 

                    { -(ħ
2
/2m)Δ + g |Ψo(x)|

2
} Ψo(x) = μ Ψo(x)                 (4.15), 

 

noting that for the condensate Ψo(x,t) = Ψo(x) exp(-iμt/ћ). 

 Considering that the solution of (4.14) is a linear vortex we look for a 

function Ψo(x) with a cylindrical symmetry (using r instead of ρ to indicate 

the distance of a point from the symmetry axis z)  
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                                   Ψo(r,θ) = √no f(r) exp(iθ)                                   (4.16), 

 

where no is the condensate density and f(r) is real. Thus, from (4.8) and 

(4.16) we obtain the tangential velocity of the fluid around the symmetry 

axis z of the linear vortex (see Figs.11.4 and 11.5 of ref.1) 

 

                                    v(r,θ) = (ħ/m) grad(θ) = (ħ/mr)eθ                                   (4.17), 

 

where eθ is the unit vector tangent to the circular trajectory of radius r. Note 

that the velocity v(r) falls with 1/r.  

 Since for the circle we have dℓ = r dθ eθ the circulation (4.10) about 

the origin is given by  

 

                       ∫○ v∙dℓ = ∫o
2π (ħ/mr)rdθ = 2π ħ/m = h/m               (4.18). 

 

where h/m is taken as one unit of circulation. 

 Taking (4.16) and the laplacian in polar cylindrical coordinates the 

Gross-Pitaevskii equation (4.15) becomes 

 

               (ħ
2
/2m){(1/r)d/dr(rd/dr) -1/r

2
}f (r)+ μf(r) - nogf(r)

3
  = 0        (4.19). 

 

Note that far away from the center of the vortex, that is, for r →∞ we must 

have the boundary condition |Ψo(r,θ)|
2
→ no which implies that 

 

                                             lim r→∞f(r) =1                                           (4.20). 

 

It follows from (4.19) and (4.20) that μ = gno which is the energy required 

to insert a boson into the condensate. Thus, defining ξ = (ħ
2
/2mgno)

1/2 
and 

 ζ = r/ξ the equation (4.19) becomes written as
 

 

                           d
2
f/dζ

2
 + (1/ζ) df/dζ - (1/ζ

2
)f  + f  - f

3
 = 0                   (4.21) 

 

which now obeys the boundary condition lim ζ→∞f(ζ) =1. The solution of 

(4.21) gives the Gross-Pitaevskii vortex which is a non-uniform system. 

  As ζ→∞ a power series solution in 1/ζ
2
 gives  

 

                                           f(ζ) = 1 - 1/2ζ
2
 + …                                  (4.22). 

 

As ζ→0 the third term (the angular momentum barrier) of (4.21) dominates 

and it is easily verified that the solution of (4.21) takes the following form 

 

                                                f(ζ)  = Cζ                                              (4.23), 
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where C is a constant. Note that, according to (4.23), since f(0) = 0, that the 

liquid is excluded from the vortex core, as advertised. The size of the 

vortex can be estimated putting 

                                    

                                             rcore ~ ξ = (ħ
2
/2mgno)

1/2
                          (4.24). 

 

According to Fetter and Walecka
13

 the speed of sound in the weakly 

interacting Bose gas is given by csound = (nog/m)
1/2

. In this way the core 

dimension rcore of the vortex (4.24) can be written by 

 

                                           rcore ~ (ħ/2m)
1/2

 /csound                              (4.25). 

 

Putting m = mHe and assuming that that the ordinary velocity of sound
4
 for 

helium at lowest temperatures is csound ≈ 237m/s we see
 
that the roughly 

estimated value (4.25) is rcore~ 0.5 Ǻ, in fair agreement with experimental 

results rcore ~1 Ǻ.
9,10

 

 Numerical integration of (4.21) can be carried out for all values of ζ 

using the Runge-Kutta algorithm in Mathcad11. The result of the 

calculations are shown in Fig.4.
1
 

 

 
Fig.4. Numerical values of f(ζ) x ζ for a unit vortex circulation. 

 

 The vortex energy Ev, per unit of length, is given by
13

  

Ev ≈ (Nπħ
2
/m) ln(1.46R/ξ) where R is a cutoff at large distances that may 

be interpreted as the radius of the rotating container. 

 “The Gross-Pitaevskii equation is also applicable to cold, isolated, 

laser-trapped Bose systems, whose experimental study provides one of the 

more fascinating aspects of modern physics.
1,13,14

” 

 Finally, the GP equation is derived with more sophistication in the 

book of Fetter and Walecka.
13 
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4.b)Quasiparticles Excitations. 

 Besides the vortices there are another collective excitations in He II 

that have a dispersion relation that will be indicated by εk(k). These are 

experimentally accessible through specific heat measurements,
1,4

 or more 

directly, through neutron scattering.
1,4,15

  The quanta of these excitations, 

with momentum k= 2π/λ, were called “quasiparticles” by Landau.
6
 In Fig.5 

is shown the measured low-temperature (T =1.12 K) quasiparticle spectrum 

in He II obtained by neutron scattering.
15

 At long wavelengths (k < 1), 

dashed linear region, we have phonons that are the quanta of the sound 

waves in the fluid with εk = ħkcsound  At higher k (k ≥1Ǻ
-1

) we have 

“rotons”
6
 which are excitations described by the dispersion relation 

 

                                       εk = Δ + ħ
2
(k – ko)

2
/2mr                                            (4.26), 

 

where Δ = 8.6 kB, ko = 1.91Ǻ
-1

 and mr = “roton mass” = 0.16 mHe.
 

 

 
Fig.5. Experimental low-temperature quasiparticle spectrum εk(k)/kB = ΔE(K) measured 

in K degrees by Henshaw and Woods
15

 as function of k(Ǻ
-1

) = Q(Ǻ
-1

). 

 

 Taking into account the roton spectrum Landau
6
 gave a simple 

argument based on conservation of energy and momentum to understand 

the superfluidity. He assumed that an object with a large mass M is moving 

with velocity v through the He II and that due to a collision process it 

creates an excitation
1
 in the condensate as shown in Fig.6. 
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Fig.6. Creation of an excitation

1   
with momentum ħk and energy εk in the Bose 

condensate by a heavy object with mass M moving through it. 

 

 

 Due to energy and momentum conservation in the collision we have 

 

                               (1/2)Mv
2
 = (1/2)Mv´

2
 + εk 

                                                                                                       (4.27). 

                                        Mv = Mv´ + ħk 

 

Substituting the second equation in first gives, neglecting the term ħ
2
k

2
/M

2
, 

 

                        (1/2)Mv
2
 ≈ (1/2)M{v

2
 - 2ħk∙v/M} + εk                             (4.28). 

 

From (4.28) we get  

                                                  εk  = ħk∙v                                        (4.29). 

 

This implies that if εk  > ħkv  eq.(4.29) cannot be satisfied. This leads to a 

critical velocity  

                                             vcritical = (εk/ħk)min                                 (4.30), 

 

which is known as Landau´s criterion of superfluidity. That is, if an object 

is moved in the condensate at a velocity inferior to vcrit it will not be 

energetically favorable to produce excitations and it will move without 

dissipation, which is a characteristic of a superfluid. That is, if the velocity 

of M is less than vcritical it cannot create excitations in the fluid and hence 

there will be no viscosity effect on the moving object. From (4.17) and 

(4.30) is clear that
13

 the minimum value for the vcritical is at the minimum of 

the roton curve 

                                      vcritical = (Δ/ħko) ≈ 60 m/s                      (4.31). 

 

Such roton-limited critical velocities have been observed with ions in He II 

under pressure.
13

 Similarly, the absence of viscosity for He II moving in 

tubes and channels can also be explained for flows with velocity smaller 

than a critical velocity. However, the estimated roton-limited critical 
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velocity (4.31) is too large to explain the observed breakdown of superfluid 

flows in these conditions.
13

 

 It is important to note that the time independent Eq.(4.15) has a 

homogeneous  solution Ψo(x) =√no , where no if μ =gno.  Let us consider the 

case where atoms are trapped in a cubic box with a very large size L 

assuming periodic boundary conditions. So, let us try to explain the 

quasiparticle spectrum εk(k) in the condensate using the Bogoliubov-de 

Gennes approximation.
16 

To do this we first write, instead of (4.15), a time 

dependent equation  

 

                    { -(ħ
2
/2m)Δ + g |φ(x,t)|

2
}φ(x,t) = ih∂φ(x,t)/∂t                 (4.32), 

 

where φ(x,t) = φo(x,t) + δφ(x,t) where φo(x,t) = √no exp(-iμt/ћ) and δφ(x,t) 

is a small perturbation. Inserting this φ(x,t) and its complex conjugate 

φ*(x,t) in (4.32) we have, in a first order approximation: 

 

              -(ħ
2
/2m)Δ δφ  + g(2no |φo|

2
 δφ + φ

2
 δφ*) = ih∂(δφ)/∂t 

                                                                                                           (4.33) 

              -(ħ
2
/2m)Δ δφ* + g(2 no|φo|

2
 δφ* + φ

2
 δφ) = ih∂(δφ*)/∂t 

 

Putting δφ = exp(-iμt/ћ){u(x) exp(iωt) – v*(x) exp(iωt)} into (4.23) results 

 

                     {-(ħ
2
/2m) + 2no g - μ - ħω)} u - gno v = 0 

                                                                                                           (4.34) 

                     {-(ħ
2
/2m) + 2nog - μ + ħω)} v - gnou = 0 

 

Considering in addition that u = A exp(ik•r) and v = B exp(ik•r) are plane 

waves with momentum k one can see that the solution of the homogeneous 

system (4.34) leads to the energy spectrum  

 

                    εk = ħω = { (ħ
2
k

2
/2m){ ħ

2
k

2
/2m ± 2|g|no]}

1/2
                    (4.35), 

 

where the signal + is for repulsive interaction (g > 0) and the signal – for 

attractive interaction (g > 0).  

 The dispersion relation (4.35), for small k predicts the phonon, 

 

                                                  εk = cħk, 

 

where c = √no|g|/m is the speed of sound in the condensate and for large k it 

gives the energy of free particles  

 

                                                  εk = ħ
2
k

2
/2m. 
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 One can easily verify that (4.35) does not predict the rotons for 

intermediate values of k. However, we see that for g > 0 the minimum 

value of εk/ħk obeys the condition (εk/ħk)min> c showing, according to 

Landau´s criterion, that condensate is a superfluid. Note that for g < 0 

we verify that there appear inconsistencies in the predicted energy 

spectrum εk(k) given by (4.35) for very small k values.  

 

 

4.c)Solitons. 

 In a recent paper
17

 we have shown how to obtain solitons for general 

non-linear quantum mechanical equations similar to the Gross-Pitaevskii 

equation. To describe the solitons in the BE condensate it necessary to 

adopt another approach that can be seen, for instance, in reference 16.We 

will show here only a simple description of the BE condensate solitons.
1 

So, according to (4.15) for the condensate state in a stationary state we 

have : 

                    {(ħ
2
/2m)Δ + μ}Ψo(x) - g |Ψo(x)|

2
 Ψo(x) = 0             (4.36). 

 

 Putting Ψo(x) = F(x) exp[iφ(x)] in (4.36), the real and imaginary 

parts can be written as 

 

                       div{F
2
 (ħ/m)grad(φ)} = div(jo(x)) = 0 

                                                                                                        (4.37) 

                      μ/m = F
2
g/m -(ħ

2
/2m

2
F) ΔF + (ħgrad(φ )/m√2)

2
  

 

                              = F
2
g/m - (ħ

2
/2m

2
F) ΔF + vo

2
/2 

 

where vo(x)=(ħ/m) grad[φ(x)] is the condensate velocity. The first equation 

of (4.37) is recognized as the continuity equation for the condensate and the 

second one as a quantum analog of Bernouilli´s equation for steady flow.
2
 

 Let us consider a condensate confined to a semi-infinite domain 

(x > 0) and that φ(x) = constant = 0 (“static approximation”). In one-

dimensional geometry Ψo(x) will be written as 

 

                                       Ψo(x) =√no F(x)                                         (4.38). 

                                   

In this way the last equation of (4.37) becomes  

 

                               ξ
 2
(d

2
F/dx

2
) ± (μ/|g|no)F - F

3
 = 0                        (4.39), 

 

where the characteristic length ξ = (ħ
2
/2mnog)

1/2 
 and the signal + is for 

repulsive interaction (g > 0) and – when the interaction is attractive (g < 0). 
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A) Repulsive interaction (g>0). Dark Soliton. 

 Taking the boundary conditions of (4.39) as Ψo(x) = F(x) = 0 at x = 0 

and F → 1 as x → ∞. The last condition implies that μ = |g|no. 

Consequently, (4.39) becomes 

 

                                ξ
 2
(d

2
Fd/dx

2
) + Fd -Fb

3
 = 0                                   (4.40). 

 

We verify that a first integral of (4.40) is given by
1
 

 

                                  ξ
 2
(dFd/dx)

2
 = (1-Fd

2
)

2
/2                                     (4.41),] 

 

that is easily integrated to yield
1
, putting k =1/(ξ√2): 

 

                                      Fd(x) = tanh(kx)                                             (4.42) 

 

Consequently, for dark solitons we obtain 

 

                                 Ψo
(d)

(x) =√no tanh(kx)                                       (4.43). 

 

 A rough description of a freely propagating dark soliton along the x-

axes is given by the wave function:
16

 

 

                  Ψo
(d)

(x,t) = A√no tanh[k(x-xo-vt)] exp[iγ(x,t)]                   (4.44), 

  

where A is the amplitude and v is the velocity of propagation of the soliton. 

 

B) Attractive interaction (g < 0). Bright Soliton. 

 Similarly, the wavefunction
18 

of a freely propagating bright soliton 

along the x-axes (that resembles a classical particle) can be written as 

 

             Ψo
(b)

(x,t) = A√no(β/2)
1/2

sech[β(x-xo-vt)] exp[iθ(x,t)/ћ]           (4.45),       

 

where β = √(2m|μ|/ћ
2
), θ(x,t) = mνx – Et and E = mν

2
/2 + μ. 

 

 As pointed out by U.Al Khawaja et al.
19 

properties of dark solitons 

have been extensively studied theoretically. They have also been created 

experimentally in elongated Bose-condensates. Much less is known about 

bright solitons, which have only recently been created in with Bose-

condensates of 
7
Li atoms. 
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5) Specific Heat at the λ-Point.  

 Many years ago, between 1940 and 1955 various attempts have been 

made
4
 to modify the energy spectrum of the ideal Bose-Einstein gas to fit, 

for instance, the experimental data of the specific heat of the liquid helium. 

The conclusion drawn from these attempts is that something drastic as an 

energy gap is required.
4
   Note that this gap is not necessarily the (4.16) 

roton gap. In a precedent paper
3
 we have calculate the specific heat of the 

liquid helium taking into account also an energy gap (that will be later 

interpreted) and assuming, in addition, that the energy spectrum depends on 

the temperature of system and that the superfluid liquid → liquid phase 

transition is an order-disorder transition. Let us reproduce here, slightly 

modified, our earlier calculations.
3
  

 For low temperatures (T < 0.6 K) all thermal energy is associated 

with longitudinal phonons excitations. In these conditions the de Broglie 

wavelength ℓ of the excitations is bigger than the mean intermolecular 

separation a. As the temperatures rises, local atomic motions become 

relatively more significant than the collective excitations so that ℓ ≤ a. In 

this way, we assumed that these new energy levels En (n = 0,1,2,…) of the 

atoms are Eo = 0 and En = Δ + εn for n =1,2,…with ε1 = 0. In our approach 

the energy gap Δ, which is a constant adjustable parameter, is the minimum 

energy that a particle can assume in local motions (for these energy values 

ℓ ≤ a ). As will be seen in what follows we have found Δ/kBTλ = 2.6, where 

Tλ = 2.19 K is the λ-point temperature.  

 Due to the weak interactions between the helium atoms we must 

expect that the energy spectrum εn is quite similar to the free particle 

spectrum. Without trying to incorporate into a consistent scheme both 

phonon and the individual excitations that are practically individual atomic 

motion, we take an additive superposition of these two contributions. The 

phonon energy contribution can be seen, for instance, in London´s book.
4
 

 Let us calculate the contribution of the “local” atomic motions. If N 

is total the number of helium atoms we have , using the Bose-Einstein 

statistics and assuming that the energy εn spectrum is quasi-continuum, that 

is, εn+1 - εn << kBT we have, according to Section 3: 

 

N = no + Nexc = no + kBT ∫o
∞ 

ρ(ε,T) d(ε/kBT)/[exp(ϵ/kBT + α´) -1]       (5.1), 

 

where no =1/[exp(α) -1] is the number of excitations in ground state, ρ(ε,T) 

is the density of states in the energy interval dε and α´ = α + Δ/kBT. In our 

preceding paper
3
 we put ρ(ε,T) = 1/ψ(ε,T).  

 As the temperature increases the energy spectrum tends to the 

spectrum of free particles so that ρ(ε,T) →g(ϵ) = (2πV/h
3
)(2m)

3/2
ϵ

1/2
 , 

according to (3.4). On the other side, if the particles, instead of free, were 

vibrating harmonically with a fundamental frequency ν, with energy εn = 
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(n+1/2)hν around an equilibrium center we would have
8
 ρ(ε,T) → (hν)

-1
, 

that is, ρ = 1/ψ would be independent of ε. So, it seems reasonable to 

expect that ρ = 1/ψ ~ ε
δ
 where δ is closer to ½ than to 0. As will be seen in 

what follows, our predictions for T < Tλ are practically independent of the δ 

value that are in the interval 0 ≤ δ ≤ ½. It is significant only for T ≥ Tλ. So, 

for T < Tλ , to simplify the calculations we put δ = ½ writing ρ(ε,T) as 

 

                                    ρ(ε,T) = 2g(ε)/ψ(T)√π                                      (5.2). 

  

 In these conditions the number of excited particles Nexc, using (5.1) 

and (5.2), is given by
4
 

 

                     Nexc= (2/√π) [(kBT)
3/2

/ψ(T) ] ∫o
∞
 dx x

1/2
/[exp(α´+ x) -1]        

 

                            = [(kBT)
3/2

/ψ(T)] F3/2(α + Δ/kBT)                               (5.3), 

 

noting that for T ≥ Tλ the condition Nexc = N must be satisfied. 

 The total energy U, using (3.11), is now given by 

 

               U = [2 /ψ(T)√π] ∫o
∞
 dε (ε+Δ)ε

1/2
/[exp(α´+ Δ/kBT) -1]   

 

                   = Nexc {(3kBT/2) F5/2(α + Δ/kBT)/F3/2(α + Δ/kBT) + Δ }     (5.4). 

 

 Now our problem is to determine the function ψ(T). At low 

temperatures Keesom and Taconis
20

 making an x-ray analysis of liquid 

helium deduced that the helium atoms seems to form, during short time 

intervals, locally ordered structures. Note that the diffuseness of the x-ray 

pattern excludes a crystal structure which is not expected to exist in a fluid 

anyhow.
4
  As the temperature increases the existence of these locally 

ordered structures tend to disappear. Inspired by Fröhlich
21

 we will assume 

that λ-point shape of the specific heat curve is due an order-disorder 

transition superfluid liquid → liquid. According to the order-disorder phase 

transition formalism
22 

the order parameter X obeys the equation X = 

tanh[(Tc/T)X], where Tc = Tλ is the critical temperature. It may seem 

unrealistic to treat a liquid using a lattice model. This objection is quite 

valid in general but many properties of liquids are calculated approximately 

using the lattice model.
23

  We expect that the energy spectrum εn is the free 

particle spectrum when the system is completely disordered, that is, when 

X = 0 at the temperature T = Tλ. So, according to (5.2), ψ(T) must decrease 

when X decreases, that is, when X → 0. In this way, let us assume that  

 

                                           ψ(T) = η (1 + ξX
θ
)                                    (5.5), 
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where η is determined using the condition Nexc(Tλ) = N in (5.3) and θ and ξ 

are adjustable parameters. 

 

5.a) Specific Heat Cv 
(‒) 

for T < Tλ. 

 Taking into account that for these temperatures, according to (3.9),  

α = 0 and that the experimental Cv values will require that Δ/kBT ~ 3 the 

functions Fσ(α + Δ/kBT) can be written as
4
 Fσ(α + Δ/kBT) = Fσ(Δ/kBTλ) ≈ 

exp(-Δ/kBT). With these approximations, using (5.3)-(5.5), we calculate the 

specific heat per unit of mass Cv 
(‒) 

= (∂U/∂T):  

 

Cv
(‒) 

= (kB/m) (T/Tλ)
3/2

(1 + ξX
θ
)

-1 
[15/4+3χ(Tλ/T)+(χTλ/T)

2
] exp[χ(1-Tλ/T)] 

 

         + (kB/m) (T/Tλ)
3/2 

θξX
θ 
(1 + ξX

θ
)

-2 
[3/2+χ(Tλ/T)] exp[χ(1-Tλ/T)] 

 

          /[cosh
2
(XTλ/T) - Tλ/T]                                                               (5.1), 

 

where χ = (Δ/kBTλ). 

 

5.b) Specific Heat Cv 
(+) 

for T > Tλ. 

 For T > Tλ the specific heat per unit of mass Cv 
(+)

 is given by  

 

                                          Cv 
(+)

 = (3/2)kB/m                                     (5.2), 

 

which is the specific heat of an ideal gas. 

 
Figure 7. Experimental results for Cv 

(‒) 
 and Cv 

(+)
 of Keesom and Clusius

24
 and Keesom 

and Keesom
25 

compared with our theoretical predictions obtained using (5.1) and (5.2). 

 

 

 In Fig.7 are shown the experimental results for Cv 
(‒) 

 and Cv 
(+)

 of 

Keesom and Clusius
24

 and Keesom and Keesom
25 

 (see Fig.3) compared 

with our theoretical predictions obtained using (5.1) and (5.2). We have 
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also taken into account the phonons contributions to the specific heat using 

Eqs.(5) seen in pag.94 of ref.4 which are negligible compared with those 

given by (5.1). The best agreement with the experimental results was found 

putting θ = 0.22, χ = Δ/kBTλ = 2.60 and ξ = 8.00. At the λ-point our 

predictions for Cv 
(‒) 

diverges as (Tλ – T)
-0.89

 and experimentally it diverges 

as log(Tλ – T).  

 Taking into account that the adjusted parameter χ = Δ/kBTλ = 2.60 is 

a reasonable value compared with “roton” value Δ/kBTλ = 8.6/Tλ ~ 4 and 

that there is a good agreement between theory and experiment for T≤ Tλ we 

see that our order-disorder model is able to give a fair description of the 

transition superfluid liquid → liquid.  Thus, according to the Italian poet: 

 

                          “Se non è vero, è bene trovato”. 
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