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Abstract. Using a mathematical approach accessible to graduate students 

of physics and engineering, we show how solitons are solutions of 

nonlinear Schrödinger equations. Are also given references about the 

history of solitons in general, their fundamental properties and how they 

have found applications in optics and fiber-optic communications.  

 

 

(1)Introduction. 

 In a first approximation and we can say that a soliton is a solitary 

wave which preserves its shape and velocity when it moves, exactly as a 

particle does. A soliton is a solitary wave, i.e. a localized wave, with 

spectacular stability properties.
1-3

 The first observation of this kind of wave 

was done in 1834 in water channels by the engineer John Scott Russel.
1,3,4

 

Only at 1895 a theory developed by Korteweg and de Vries
1,3,4

 was able to 

explain the fascinating behavior of the hydrodynamic soliton observed by 

Russel. This amazing phenomenon was forgotten until a numerical 

experiment carried in 1953 by Fermi, Pasta and Ulam
3
 using computers that 

appeared to contradict thermodynamics. Only ten years later this effect was 

explained by Zabusky and Kruskal
5
 taking into account solitary waves that 

they named solitons. The study of Zabusky and Kruskal
5
 is a landmark in 

the history of solitons. After this physicists noticed that solitons are 

solutions of nonlinear equations. Before, theoretical approaches were trying 

to avoid nonlinearities or to treat them as perturbations of linear theories.  

 The 19
th

.century and the first half of the 20
th

.century can be viewed
3
 

as the triumph of the linear physics (like Maxwell´s equations and quantum 

mechanics) based on a linear formalism emphasizing a superposition 

principle. This picture was dramatically changed after the discovery of 

solitons from the mathematical and physical points of view. 

 The body of knowledge
1 
that is presently associated with the term 

“soliton” is enormously broad involving several significant fields with no 

previous contact with each other. Today, the scientific community 

gravitating around “soliton equations” (or integrable dynamical systems) 

includes, on the one hand, nonlinear-optics engineers, astrophysicists, 

mailto:mcattani@if.usp.br
mailto:jmfbassalo@gmail.com


 

2 
 

theoretical biologists, oceanographers and, on the other hand, pure and 

applied mathematicians in algebra, geometry and functional analysis.  

According to Degasperis
1 
the formation of the underlying concepts took 

place independently, in physics and in mathematics, and the discovery of 

solitons may be compared to the opening of the “Pandora´s box”. Strictly 

speaking, however, the term “soliton” indicates, in general, a peculiar 

solitary wave whose propagation is modeled by a nonlinear equation and 

whose space profile is such that the nonlinearity and the dispersion or the 

diffraction effects of the medium balance each other. It is a spatially 

localized wave with spectacular stability properties. The name soliton 

sounds like the name of a particle. It is a wave but moves exactly as a 

particle does; it is a solution of a classical field equation which 

simultaneously exhibits wave and quasi-particle properties.
3  

These are 

features that one would expect from quantum systems and not from a 

classical one. The quantum analogue goes so far that soliton tunneling has 

been found.
6 

 There are different kinds of solitons which are solutions of different 

nonlinear equations like,
3
 for instance, of Kortweg-de Vries (KdV) 

equation, sine-Gordon equation and nonlinear Schrödinger (NLS) equation. 

In a recent paper, written to graduate students of physics and engineering, 

we have shown how to obtain the hydrodynamic KDV solitons. In a 

preceding paper
7
 we have studied the existence and stability of Gaussian 

solitons in 1-dim nonlinear Schrödinger equation 

 In Section 1 we obtain solitons that are solutions of the 1-dim 

nonlinear Schrödinger equation (NLS) with no external potential. In 

Section 2 we study the 1-dim motion of a free particle with mass m which 

obeys a NSL equation. In Section 3 are analyzed the optical solitons
2,3,8 

(spatial and temporal solitons) that are predicted by 1 and 2-dim NLS 

equations assuming the Kerr nonlinearity for the optical medium.  

 

1) Solitons of 1-dim NLS equation. 
 Let us consider the 1-dim nonlinear differential equation given by

3
 

 

                               i∂ψ/∂t + P(∂
2
ψ/∂x

2
) + Q |ψ|

2
ψ = 0                          (1.1), 

 

where t is the time, x is the coordinate along the x-axes, P and Q are 

coefficients that depend on the particular problem which is being analyzed. 

This equation appears very similar to the Schrödinger equation (SE) if we 

write it as  

                                 i∂ψ/∂t = [-P(∂
2
/∂x

2
) - Q |ψ|

2
]ψ = 0                         (1.2), 

 

and is formally analogous to the SE if P > 0. If P < 0 we take the complex 

conjugate of (1.2) obtaining an equation for ψ* in which the coefficient of 
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(∂
2
ψ*/∂x

2
) is positive. So, without any restriction we can assume P > 0 in 

(1.1) or (1.2). Note that the complex conjugate transformation change the 

signs of P and Q, that is, P → -P and Q→ -Q so that it does not affect the 

sign of the product PQ. This invariance, as will be seen, is of fundamental  

importance to determine the nature of the solutions of (1.1). 

 The potential function of the SE is here equal to the nonlinear term 

 -Q|ψ|
2
. As will be shown, when Q > 0 the ψ solution is localized, with a 

bell shape. Thus, the NLS equation is such that ψ generates its own 

potential well which, as will be seen, is a necessary condition for the 

existence of a solution named spatially localized solution. In this case the 

soliton is named bright soliton. This is a “self-trapping” phenomenon 

which is essential for the physics of systems obeying a NLS equation.      

 Let us look for a solution of (1.1) of the form 

 

                                   Ψ(x,t) = ϕ(x,t) exp[iΘ(x,t)]                                (1.3), 

 

where the amplitude ϕ and the phase factor Θ are real functions. If we 

assume that Θ varies between 0 and 2π we can restrict the search of ϕ only 

to positive values. Thus, putting (1.3) in (1.1) we get, separating real and 

imaginary parts 

-ϕΘt + Pϕxx - Pϕ Θx
2
 + Qϕ

3
 = 0                        (1.4) 

 

           ϕt  + PϕΘxx +2PϕxΘx = 0                       (1.5). 

 

Let us look for a particular wave solution of (1.4) and (1.5) such that 

 

                           ϕ(x,t) = ϕ(x-vet)       and         Θ(x,t) = Θ(x-vpt)          (1.6), 

 

where the envelope and the phase propagate, respectively, with velocity ve 

and vp that can assume different values. Thus, from (1.4) and (1.5) we have 

 

                                    vpϕΘx + Pϕxx - Pϕ Θx
2
 + Qϕ

3
 = 0                       (1.7) 

 

       -veϕx  + PϕΘxx +2PϕxΘx = 0                       (1.8). 

 

Multiplying (1.8) by ϕ and integrating we obtain 

 

                                             -veϕ
2
/2 + Pϕ

2
Θx  = C                                  (1.9), 

where C is a constant. 

 In order to obtain spatially localized solutions of the NLS equation it 

is necessary to assume that for |x| → ∞ we have ϕ → 0 and Θ → 0. 

Consequently, from (1.9) with ϕ ≠ 0 we see that C = 0 and 
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                                                    Θx = ve/2P                                         (1.10). 

Integrating (1.10) results 

 

                                       Θ = (ve/2P)(x – vpt) + C´                                (1.11), 

 

where C´ is an integration constant that we impose to be equal to zero by an 

appropriate choice of the time origin. Putting (1.11) into (1.7) we obtain 

 

                               (ve vp/2)ϕ + Pϕx – (ve
2
/4P) ϕ + Q ϕ

3
 = 0                 (1.12), 

 

Multiplying (1.12) by Pϕx we get an expression that can be readily 

integrated resulting   

 

                                         (P
2
/2) ϕx

2
 + Veff(ϕ) = 0                                 (1.13), 

 

where Veff(ϕ) is a “pseudo-potential” defined by  

 

                               Veff(ϕ) = (PQ/4) ϕ
4
 – (ve

2
 - 2vevp) ϕ

2
/8                   (1.14), 

 

where the constant of integration has again taken equal to zero in order to 

have a spatially localized solution. Since ϕ is real ϕx
2
 ≥ 0. In this way from 

(1.13) we verify that the “motion of a particle” must be in a ϕ region where 

Veff(ϕ) ≤ 0. Consequently, after a simple analysis, we see that there are two 

different functions Veff(ϕ) x ϕ that are shown in Fig.1 (a) and (b) as a 

function of PQ: (a) PQ > 0 and (b) PQ < 0.
3 

 

 
Figure 1.Shapes

3
 of Veff(ϕ) x ϕ for (a) PQ > 0 and (b) PQ < 0. The motion of a localized 

soliton evolves between the points 1 and 2. This soliton, when P > 0 and Q > 0 is known 

as bright soliton. 

 

 We see that the “particle motion” governed by (1.13) must occurs 

only when PQ > 0 and between the points 1 and 2 shown in Fig.1(a). The 
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points 1 and 2 are ϕ1 = 0 and ϕ2 = ϕo = {(ve
2
 - 2vevp) /2PQ}

1/2
, respectively. 

In this case the amplitude ϕo is finite. We also verify that ve
2 
- 2vevp ≥ 0 

which does not impose a sign for ve and vp, but shows that ve = vp is not 

allowed. 

 From (1.13) we get  

 

                            ∂ϕ/∂x  = {-2Veff(ϕ)/P
2
}

1/2
 = (Aϕ

2 
– Bϕ

4
)

1/2
                (1.15), 

 

where A = √2 (2vevp -ve
2
) /(8P) and  B = √2Q/4. Integrating (1.15) 

remembering that ϕ = ϕ(x-vpt) we obtain (see Appendix A): 
3,8,9

 

 

                                 ϕ(x,t) = ϕo sech{(Q/2P)
1/2

 ϕo(x-vet) }                   (1.16), 

 

where      ϕo = {(ve
2
- 2vevp) /(2PQ)}

1/2
,   PQ  > 0 ,    ve

2
- 2vevp  ≥ 0  

 

and assuming that for x = t = 0 the initial amplitude ϕ(0,0) = 0. 

 Finally, using (1.3), (1.11) and (1.6) the bright soliton is represented 

by the function Ψ(x,t) given by (see Appendix A) 

 

           Ψ(x,t) = ϕo sech{(Q/2P)
1/2

 (x-vet) ϕo} exp[i(ve/2P)(x – vpt)]     (1.17). 

 

This function Ψ(x,t) can also be written as, 

 

                              Ψ(x,t) = ϕo sech{(x-vet)/ξe} exp[i(kx - μt)]             (1.18), 

with 

                     ξe = (1/ϕo)(2P/Q)
1/2

 ,   k  = ve/2P  and   μ = vevp/2P 

 

showing that Ψ(x,t) is a wave packet localized in a region with width ξe 

which is inversely proportional to the amplitude ϕo. This localization is an 

effect generated by the nonlinearity of the NLS equation (1.1). In the limit 

of very small amplitudes (linear limit) that is, when ϕo →0 so that ξe → ∞ 

we have plane waves Ψ(x,t) ≈ ϕo exp[i(kx - μt)]. 

 The intensity of a typical bright soliton as a function of u = (x-vet)/ξ 

given by  

                                       |ψ(u)|
2 
= |ϕo|

2
 sech

2
u 

is shown in Fig.2. 
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Figure 2. Bright soliton intensity (power)|ψ(u)|

2
 as function of u in a semiconductor 

waveguide.
8
 

 

1a) Grey and Dark solitons.
2,3,8,9 

 When P > 0 and Q < 0 instead of (1.2) we have 

 

                               i∂ψ/∂t + P(∂
2
ψ /∂x

2
) - Q|ψ|

2
 = 0                            (1.19). 

 

Integrating this equation
8 
assuming the boundary condition ψ → ϕo when  

x →∞ we obtain a “soliton-like” solution ψ(x,t) which is named “grey 

soliton” with an intensity, as a function of a parameter φ, given by 

 

             |ψ(x,t,φ)|
2
 = |ϕo|

2
{1- cos

2
φ sech

2
[ϕo cosφ (x - ϕo sinφ t)]}       (1.20) 

 

Since the energy density of the grey soliton is not localized, strictly 

speaking, it is not a soliton.
3
 The grey soliton is a “dip” in the background 

amplitude |ϕo|
2 
and its relative velocity of propagation ϕo sinφ to the 

background depends on the angle φ. In Fig. 3, for t = 0, is shown
8
 the 

intensity |ψ|
2
 as function of x and of the parameter φ = ϕ. For φ = 0 when 

the dip in the background has its maximum value we have the dark soliton. 

 
Figure 3.Normalized intensity |ψ|

2
 of the grey soliton as a function of x for several

8
 

values of the internal phase φ = ϕ; |ψ|
2
 drops to zero at the center for the dark soliton.  
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Putting φ = 0 in (1.20) the grey soliton intensity becomes  

 

                 |ψ(x,φ = 0)|
2
 = |ϕo|

2
{1- sech

2
(ϕox) } = |ϕo|

2
tanh

2
(ϕox)           (1.21), 

 

which is equal to zero at x = 0, as seen in Fig.3. 

 

2) 1-dim motion of a particle obeying a NLS equation.  
 Let us assume that a particle with mass m obeys a NLS equation with 

g > 0 given by 

                            iћ(∂ψ/∂t) + (ћ
2
/2m)(∂

2
ψ/∂x

2
) + g|ψ|

2
ψ = 0                (2.1). 

 

 Comparing (1.1) and (2.1) we see that P = ћ/2m and Q = g/ћ. So, 

According to Section 1 a localized soliton solution of (2.1) is described by, 

taking into account (1.18): 

 

                        Ψ(x,t) = ϕo sech{(x-vet)/ξe} exp[i(kx - μt)]                   (2.2), 

where  

                       ϕo = {(ve
2
- 2vevp) /(2PQ)}

1/2
= {ћ(ve

2
- 2vevp)/m}

1/2
 

 

                         ξe = (1/ϕo)(2P/Q)
1/2

 = (1/ϕo)(ћ
2
/2m)

1/2
,    

 

                         k = ve/2P = mve/ћ    

and  

                         μ = vevp/2P = mvevp/ћ = kvp 

 

 Assuming that the particle has a momentum p = ћk we see that 

envelop velocity ve obtained in (2.2) is the propagation velocity of the 

“pilot wave” according to the de Broglie hypothesis, that is, ve = ћk/m. 

Assuming also that total energy of the soliton is E, taking μ = E/ћ we get, 

using (2.2), E/ћ = μ = kvp which would give  

 

                                            vp = E/ћk = E/mve                                  (2.3). 

 

3) Optical Solitons. 
 According to Thierry and Peyrard,

3 
 the optical soliton is one of the 

main application of solitons and an example where the idea of a 

theoretician of nonlinear science opened a multi-million-euro market.  

 We will show that the main equation governing the evolution of 

optical fields (electromagnetic fields) in a nonlinear medium is a NLS 

equation. This can be done taking into account, for instance, the Maxwell 

wave equation for the electric field E(r,t) associated with the wave 

propagating in a nonlinear optical medium with Kerr (or cubic) 
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nonlinearity.
10 

In this paper we will consider only the Kerr nonlinearity and, 

consequently, only Kerr solitons.  

 In order to obtain the structure of the wave in the fibre of a 

nonconducting (j = 0) and nonmagnetic (B = μo H) material, let us first 

consider the two Maxwell equations
11

  

 

            rot E(r,t) = - ∂B(r,t)/∂t     and     rot H(r,t)) = - ∂D(r,t)/∂t        (3.1), 

 

where                         D = εoE + P = εoE + εoχ(ω)E                               (3.2), 

 

which includes only the linear part of the polarization. From (3.1) we get 

 

                              ∆E - grad(divE) - (1/εoc
2
) ∂

2
D/∂t

2
  =  0                    (3.3), 

 

where ∆ = laplacian operator. Now, taking into account the nonlinear 

polarization effect of the fibre it is convenient to write (3.2), separating the 

linear and nonlinear parts, as 

 

           D = εoE + P = εoE + εoχ
(1)

E + εoχ
(3)

|E|
2
E = Dℓ + εoχ

(3)
|E|

2
E       (3.4), 

 

where Dℓ = εoE + εoχ
(1)

E. Note
3 
that as a change in the sign of E must 

reverse the polarization, the tensor χ
(2)

 must vanish, so the first nonlinear 

term of (3.2)-(3.4) is the third order term χ
(3)

 which is of order ε
2
. 

 In what follows it will be assumed to simplify the calculations that 

the electric field E is linearly polarized. It is also important to remark that 

we are not taking into account the decrease of the soliton intensity along 

the optical fibre.
3,8

                                                                                                                             

 

3.1) Spatial solitons. 

 Let us consider the case of a monochromatic electric field linearly 

polarized propagating in an infinite fibre with a diameter much larger than 

the wavelength of the light. So, we only have to consider one component of 

the electric field
3
 

 

                        E(x,y,z) = ϕ(x,y,z) exp[i(koz - ωot)] + c.c.                (3.5), 

 

where ϕ(x,y,z) describes the structure of the field that propagates along the 

z-axis. In this way, with div(E) = 0, from (3.3)-(3.5) results 

 

                         ∆E - (1/εoc
2
) ∂

2
Dℓ/∂t

2
 = (χ

(3)
/c

2
) ∂

2
(|E|

2
E)/∂t

2
          (3.6), 

 

where for a monochromatic wave Dℓ = ε(ωo)E. Taking into account that 
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      ∆E = (∆ϕ) exp[i(koz - ωot)] + (2iko∂ϕ/∂z – ko
2
ϕ) exp[i(koz - ωot)] 

  

and using the dispersion relation ko
2
 = ωo

2
ε(ωo)/εoc

2
 the eq.(3.6) becomes 

 

                       2iko(∂ϕ/∂z) + (∆ϕ) + (ωo
2
χ

(3)
/c

2
) |ϕ|

2
ϕ  =   0               (3.7), 

 

showing that (3.7) belongs to the family of NLS equations of the form 

 

                                 i(∂ϕ/∂z) + P(∆ϕ) + Q |ϕ|
2
ϕ  =   0                       (3.8), 

 

where P = (1/2ko) , Q = (ωo
2
χ

(3)
/2koc

2
) and the laplacian operator ∆ acts in a 

D dimension space.
3
 For a light beam in a nonlinear medium the variation 

of ϕ with space in transverse direction (x,y) is much slower than the space 

variation of the exponential factor of (3.5).
3 
While the exponential factor 

varies over a length of a micron or below (which is order of the light 

wavelength) the variation of ϕ occurs over a length of the order of the 

diameter of the beam, such as millimeters (usual transverse dimensions of 

optical fibres). In other words, the envelope ϕ changes slowly while 

propagating, i.e. |∂
2
ϕ/∂z

2
| << |ko∂ϕ/∂z|. In these conditions, in (3.8) the term 

∂
2
ϕ/∂z

2 
will be neglected. In this way (3.8) becomes, putting ∆ = (∂

2
/∂x

2
) + 

(∂
2
/∂y

2
), since P > 0 and that Q can be positive or negative, because χ

(3)
 can 

be positive or negative,   

                               

                         i(∂ϕ/∂z) + P(∂
2
/∂x

2
 + ∂

2
/∂y

2
)ϕ ± |Q| |ϕ|

2
ϕ =  0           (3.9), 

 

where the signs  ± correspond to bright and grey solitons, respectively. 

Since P > 0 and we have bright solitons only when PQ > 0, that is, when 

Q = (ωo
2
χ

(3)
/2koc

2
) > 0. This condition is satisfied for χ

(3)
 > 0, as occurs with 

dielectric materials. 

 The standard NLS equation has the time variable t in place of z. Of 

course one can use z = ct/no, where no = n(ωo) is the refraction index of the 

fibre and write (3.9) in terms of t. However, in optics it is common to use z 

as the propagation variable.
8 

 It is important to remark that the soliton solutions of (3.9) are named  

spatial solitons: they are generated while propagating in the medium when 

nonlinear effect balance the diffraction.
2,3,8 

 

1-dim planar waveguide 

 The 1-dim motion occurs when the nonlinear medium has a form of a 

planar waveguide. So, the optical field is confined in one of the transverse 

direction, say the y axis. In this case the beam will spread only along the x 

direction. In these conditions (3.9) becomes written as
8
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                           i(∂ϕ/∂z) + P(∂
2
ϕ/∂x

2
) ± |Q| |ϕ|

2
ϕ  =   0                       (3.10) 

 

which is the 1-dim NLS equation analyzed in Section 1. The solitons of 

(3.10), or mono-dimensional solitons, are stable and often referred as 

(1+1)D solitons, meaning that they are limited in one dimension (x or t) 

and propagate along one (z).  

 

2-dim waveguide 

 In this case according to (3.9) we have 

  

                   i(∂ϕ/∂z) + P(∂
2
/∂x

2
 + ∂

2
/∂x

2
)ϕ ± |Q| |ϕ|

2
ϕ  =   0                 (3.11). 

 

 Solving (3.11) one verify that the 2-dim beam propagation is more 

dramatic than in 1-dim case since there appear many unstable solutions.
3
 

The (2+1)D spatial solitons are unstable, so any small perturbation (due to 

noise, for instance) can cause the soliton to diffract as a field in a linear 

medium or to collapse, thus damaging the material.
2,3

 This can be seen, for 

instance, solving this equation taking into account the cylindrical symmetry 

of the beam.
3 
In this case the 2-dim NLS equation (3.11) can be written as         

 

                    i(∂ϕ/∂z) + (P/r){∂/∂r[r (∂ϕ /∂r)]} ± |Q| |ϕ|
2
ϕ  =   0           (3.12). 

 

 In order to investigate the origin of these instabilities and to obtain 

stable (2+1)D spatial solitons more general forms of NLS equations were 

proposed like, for instance,
3
     

 

                                 i(∂ϕ/∂z) + P(∆ϕ) + Q |ϕ|
2σ

ϕ  =   0                        (3.13), 

 

where the nonlinearity is controlled by a parameter σ. 

 In Appendix B is shown the equation (3.11) written in a compact 

form as is usually done in optics. 

 Many detailed descriptions of experiments about generation, stability 

and properties of optical solitons can be found, for instance, in the books 

“Physics of Solitons”
3
 and “Optical Solitons.”

8
 and also in reference 2.

 

 The first experiment
2
 on spatial solitons was reported in 1974 by 

Ashkin and Bjorkholm in a cell with sodium vapor. About 1985 this field 

was revisited in experiments at the Limoges University in carbon 

disulphide. After these experiments spatial solitons have been demonstrated 

in glass, semiconductors and polymers. During the last ten years several 

experiments have been reported on solitons in nematic liquid crystals. 
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3.2) Temporal solitons: propagation of a pulse of light in optical fibres.  

 Now let us consider the propagation of an electric field in a 

dispersive nonlinear optical fibre. In these conditions solitons are created 

when the linear dispersion effect and the nonlinear Kerr effect balance each 

other.
2,3,8

  These solitons are called temporal solitons.  

 As is shown, for instance, by Thierry and Peyard
3 
the amplitude of an 

electric field E(r,ω) with a given frequency ω propagates in a nonlinear 

fibre with constant amplitude. So it cannot be used to transfer information 

along a fibre. It is only possible through wave packets which combine 

several modes with frequencies ω = ω(k) centered around a reference 

frequency ωo = ω(ko). As we know, a wave packet which propagates along 

a z direction is represented by
11 

 

 

                               E(z,t) = ψ(z,t) exp[i(koz - ωot)]                           (3.13), 

 

where ψ(z,t) is the shape of the envelop of the wave packet centered at the 

point z = vgt. The propagation velocity of the envelope is vg, called group 

velocity. It is given by vg = [dω(k)/dk]k=ko , where ω(k) = ck/n(k) is the 

dispersion relation and n(k) the refraction index of the material expressed 

as a function of k. 

 Our goal now is to determine how the wave packet evolves along the 

z axis of the optical fibre. To do this we must solve (3.6) assuming that
3 

                                                 

                                    E(z,t) ~ ϕ(z,t) exp[i(koz - ωot)]                         (3.14). 

noting that 

                                    k
2
 = ω

2
/c

2
medium = ω

2
ε(ω)/εoc

2
 , 

 

                               ∂k/∂ω = ωε(ω)/εokc
2
 + (ω

2
/2kεoc

2
)[

 
∂ε(ω)/∂ω]       (3.15). 

and that 

                                              vg = 1/(∂k/∂ω)ωo 

 

Performing the calculation assuming that ω ≈ ωo, up to a second order 

approximation, we have
3 
 

 

                                   i(∂ϕ/∂ξ) - P(∂
2
ϕ/∂τ

2
) + Q|ϕ|

2
ϕ  = 0                     (3.16), 

 

where the amplitude ϕ = ϕ(ξ,τ) , ξ = z , τ = t – z/vg ,  

 

                       P = (1/2)(∂
2
k/∂ω

2
)ωo      and        Q = ωo

2
χ

(3)
/2koc

2
. 

 

Showing that (3.16) is a 1-dim NLS equation as a function of the variables  
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ξ = z and τ = t – z/vg, in which the role of the time and space have been 

switched with respect with the usual 1-dim NLS equation. According to 

Section 1 this equation has the following soliton solution  

 

                          ϕ(ξ,τ) = ϕo sech{(Q/2P)
1/2

ϕoξ } exp(iQϕo
2
τ/2)          (3.17). 

 

 The envelope would keep a permanent profile and move at the group 

velocity vg, in agreement with its definition. Observing the envelope 

passing through any section of the fibre we would always observe the same 

function, but shifted by the amount z/vg depending on the point of 

observation. As said above, such pulses are called temporal solitons. The 

pulse does not change while propagating due to two contrary effects that 

balance each other: the linear dispersion and the nonlinear Kerr effect.
2,3,8

 Note that since for dielectric material Q = ωo
2
χ

(3)
/2koc

2
 > 0, since χ

(3)
 

is positive, the product P(ω)Q > 0 only when P(ω) > 0. This occurs only in 

a frequency region of anomalous dispersion, that is, when ∂(1/vg)/∂ω < 0. 

Only for this region we have bright solitons. For a region of normal 

dispersion we have grey solitons. 

 The NLS equation for an optical fibre was proposed in 1973 by two 

theoreticians, A. Hasegawa and F.Tappert.
2,3,8

 Also in 1973 R. Boullogh 

made the first mathematical report of the existence of temporal solitons. 

However, the first experimental checks were only made in 1980 by L. 

Mollenauer suggesting that solitons could exist in optical fibres.
2
  In1987, 

P. Emplit et al. made the first experimental observation of the propagation 

of a dark soliton in an optical fibre. In 1988, L. Mollenauer et al. 

transmitted solitons pulses over 4000 km. In 1991, a Bell Labs research 

team transmitted solitons over more than 14000 km.
2
 Since then, the fiber 

solitons have been studied extensively and have even found applications in 

the field of fiber-optic communications.
8
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Appendix A. Jacobi elliptic functions. 

 Let us consider the nonlinear differential equation for V(x)  

 

                                    d
2
V/dx

2
 = 2V(K-V

2
)                                  (A.1), 

 

where K is a constant. This equation can be solved by multiplying it by 

2(dV/dx) and integrating over x obtaining 

 

                                     (dV/dx)
2
 = 2KV

2
-V

4
 + C                          (A.2), 
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where C is a constant of integration. Using the boundary conditions  

V(x) →0 and  dV(x)/dx →0 when |x|→∞,  C is found to be 0. Assuming 

also that V(0) = a and (dV/dx)x=0 = 0 we get, using (A.2), that K = a
2
/2. In 

this way (A.2) becomes  

                                          dx = dV/(a
2
V

2
-V

4
)

1/2
                             (A.3). 

 

Integrating (A.2) taking into account the Jacobi elliptic functions
12

 we get 

 

                                               V(x) = a sech(ax)                              (A.4). 

 

Appendix B. Compact NLS equation for optical spatial solitons.  

 Usually in optics
2,8

 the NLS equations are written in a compact form 

as will be seen in what follows. According to (3.3) and (3.4) the nonlinear 

polarization PNL(r,t) to a Kerr medium is given by 

 

                     PNL(r,t) ≈ εoεNLE(r,t) = εoχ
(3)

|E|
2
E = (εoχ

(3)
I)E              (B.1), 

 

where εNL = χ
(3)

I and I is the field intensity I = |E|
2
. The Fourier transform 

of the dielectric constant ε*(ω) is written as 

                      

                        ε*(ω) = 1 + χ
(1)

(ω) + εNL = 1 + χ
(1)

(ω) + χ
(3)

I                (B.2). 

 

The dielectric constant can be used to define
11 

the refractive index n*(ω) 

and the absorption coefficient α*(ω). Due to the nonlinear effect both n*(ω) 

and α*(ω) become intensity dependent because of εNL. It is customary to 

introduce 
8
 

 

           n*(ω) = n(ω) + n2(ω)I          and         α*(ω) = α(ω) + α2(ω)I      (B.3), 

 

where n(ω) and α(ω) are related to the real and imaginary parts of the linear 

parameter χ
(1)

(ω), respectively. Analogously, n2(ω) and α2(ω) are related to 

the real and imaginary parts of χ
(3)

(ω), respectively.
8
 

 At this point we believe that is important to remember
11

 that the 

wavenumber that is defined as k(ω) = ω/v = (ω/c)√ε(ω)μ(ω) can be written 

as k = β + iα/2.Thus, assuming that an electric field propagates in the Kerr 

medium with frequency ωo we define no = n(ωo), εo = ε(ωo), λo =2πc/ωo, ko 

= 2π/λo and βo = 2πno/λo = kono.  

 Let us analyze two different ways to write the NLS equations in 

compact forms. 
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(B.1) Let us assume that propagating field along the z-axis is given by the 

E(r,t) =A(r)exp(i βoz). Using the same approach adopted in Section (3.1) 

we get the following equation for the amplitude A(x,y,z):
8
 

 

                 2i βo(∂A/∂z) +(∂
2
/∂x

2
 +∂

2
/∂y

2
)A +2 βo kon2(I)A = 0           (B.4), 

 

where n2(I) = n2(ωo)I. In the absence of the nonlinear effects (B.4) reduces 

to the well-known paraxial equation used extensively in the context of 

scalar diffraction theory. 

 Assuming that the widths of the optical fibre along the x and y axes 

are equal to wo it is useful to introduce the scaled dimensionless variables 

 

    x = x/wo  ,  y = y/wo ,  z = z/Ld,  Ld = βowo
2
   and  u = A(kon2Ld)

1/2
  (B.5), 

 

where Ld is the diffraction length (or Rayleigh range). In terms of these 

dimensionless variables Eq.(B.4) takes the form of a standard (2+1)-

dimensional NLS equation:
8
 

 

                         i(∂u/∂z) +(∂
2
/∂x

2
 +∂

2
/∂y

2
)u ± |u|

2
u = 0                       (B.6), 

 

where the choice of the sign depends on the sign of the nonlinear parameter 

n2= n2(ωo). 

 

(B.2) Let us study only the simplest 1-dim case and write
2
  

 

                          E(x,z,t) = Am a(x,z)exp[i (βoz - ωo)t],                       (B.7) 

 

where Am is the maximum amplitude of the field and a(x,z) is a 

dimensionless normalized function (so that is maximum value is 1) that 

represent the shape of the field among the x-axis and that propagates along 

the z-axis.  Now for this field we have to solve the Helmholtz equation: 

 

                                      ∆E + kon2(I) E = 0                                           (B.8). 

 

Considering that |∂
2
a/∂z

2
| << |ko ∂a/∂z| we verify that (B.8) becomes: 

 

                      ∂
2
a/∂x

2
 + 2ikono(∂a/∂z) + ko

2
[n

2
(I) - no

2
]a = 0                      (B.9) 

 

Taking into account that the nonlinear effects are always much smaller than 

the linear one: [n
2
(I) - no

2
] = [n(I) - no][n(I) + no] = n2I (2no + n2I) ≈ 2non2I. 

With this approximation (B.9) becomes 

 

                (1/2kono) (∂
2
a/∂x

2
) +i(∂a/∂z) + (konon2|Am|

2
/2) |a|

2
a = 0       (B.10). 
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Let us define the dimensionless variables ξ = x/wo, where wo is the width of 

fibre along the x-axis and ζ = z/Ld where Ld = konowo
2
 = βowo

2
 is the 

diffraction length or Rayleigh length. In addition, putting N = Ld/Lnl where 

Lnl = (konon2|Am|
2
/2) is the self-focusing length the Eq.(B.10) becomes,  

 

                          (1/2) (∂
2
a/∂ξ

 2
) +i(∂a/∂ζ) ± N

2
|a|

2
a = 0                        (B.11), 

 

where the choice  ± depends on the sign of the parameter n2= n2(ωo). 

a) N >> 1 → nonlinear effects (self-focusing effects) are much larger than 

the linear effects (diffraction effects).The field will tend to focus.  

b) N << 1 → linear effects are much larger than nonlinear effects. The field 

will diffract. 

c) N ≈ 1   → the linear and nonlinear effects balance each other and we 

have to solve (B.11). 

 For N = 1 and signs ± we verify
2,8 

that the solutions of (B.11) are the 

bright soliton and dark soliton, respectively, 

 

          ab(ξ, ζ) = sech(ξ) exp(iζ/2)    and    ad(ξ, ζ) = tanh(ξ) exp(-iζ)     

 

For N = 2 and + it is still possible to obtain the solution in a closed form:
2
 

 

a(ξ, ζ) = {4[cosh(3ξ) +3e
4iζ

 cosh(ξ)]e
iζ/2

}/{cosh(4ξ)+4cosh(2ξ)+3cosh(4ξ)}, 

 

with a shape that changes during the propagation along z with period ζ=π/2. 
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