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Entanglement of two-qubit photon beam by magnetic field

A. D. Levin,1 , ∗ D. M. Gitman,2 , † and R. A. Castro1 , ‡
1 Institute of Physics, University of São Paulo, Brazil

2 Institute of Physics, University of São Paulo, Brazil; Tomsk State University, Russia

We have studied the possibility of affecting the entanglement measure of 2-qubit system consisting
of two photons with different fixed frequencies but with two arbitrary linear polarizations, moving
in the same direction, by the help of an applied external magnetic field. The interaction between the
magnetic field and the photons in our model is achieved through intermediate electrons that interact
with both the photons and the magnetic field. The possibility of exact theoretical analysis of this
scheme is based on known exact solutions that describe the interaction of an electron subjected to an
external magnetic field (or a medium of electrons not interacting with each other) with a quantized
field of two photons. We adapt these exact solutions to the case under consideration. Using explicit
wave functions for the resulting electromagnetic field, we calculate the entanglement measure of the
photon beam as a function of the applied magnetic field and parameters of the electron medium.

PACS numbers:

1. INTRODUCTION

Entanglement is a pure quantum property which is associated with a quantum non-separability of parts of a
composite system. Entangled states became a power tool for studying both principal questions in quantum theory
and quantum computation and information theory [1—4]. However, we believe that the complete understanding of the
nature of quantum entanglement still requires a detailed consideration of a variety of relatively simple cases, not only
in nonrelativistic quantum mechanics, but in QFT as well, see e.g. [5]. Here models with exact solutions could be
very useful. In this article, we are going to use exact solutions of a relativistic quantum mechanical problem to study
the question of how to prepare entangled states with a given entanglement measure. Namely, we study one way to
affect the entanglement measure of a 2-qubit system, consisting of two photons moving in the same direction with
different frequencies and each one with two possible linear polarizations with the help of an applied external magnetic
field. The interaction between the magnetic field and the photons in our model is achieved through intermediate
electrons that interact both with the photons and the magnetic field. An experimental realization of this theoretical
scheme could be the following. Let us suppose that a beam consisting of the two photons propagating from the signal
sender to a recipient crosses a region filed with free electrons subjected to an action of the magnetic field. Thus,
there appear a possibility of creating an indirect interaction between the external magnetic field and the photon
beam. Leaving the region filled with the electrons the photons will, in the general case, be registered in an entangled
state if their initial state was separable, or, if the initial state was already entangled, they will be registered in an
entangled state with a modified initial entanglement measure. The theoretical support for this scheme is based on
exact solutions of quantum equations of motion that describe an interaction of an electron subjected to an external
magnetic field (or a medium of electrons not interacting with each other) with a quantized field of two photons with
different frequencies and arbitrary linear polarizations. These exact solutions were studied in Refs. [6—10]. In sect. 2
we apply results of this study to the case under consideration. In sect. 3, using wave functions obtained in sect. 2, we
calculate the entanglement measure of the photon beam as a function of the applied magnetic field and parameters
of the electron medium. These calculations are done in the lowest order in the small parameter which appears in the
problem naturally as a product of the fine-structure constant and density of the electron medium to illustrate the
proposed idea. Formulas for the entanglement measure which we use in our problem are placed in the Appendix. It
should be noted that a preliminary consideration of a similar problem was presented in [11].
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2. TWO-QUBIT PHOTON BEAM INTERACTING WITH AN ELECTRON PLACED IN CONSTANT
UNIFORM MAGNETIC FIELD

Consider a system of photons (in what follows photon beam) moving in the same direction n and interacting with
a Dirac electron. At the same time whole the system is placed in an external constant and uniform magnetic field
B = Bn parallel to the photon beam. In fact, this external field affects directly only the electron, but then, due to
electron-photon interaction, affects photons as well. The quantum motion of such a system was studied in detail in
Refs. [6—10]. Solving the problem in the volume box V = L3, one obtains, in fact, quantum states for a photon beam
interacting with a free electron gas with a given particle density ρ = V −1.
Below we describe a class of solutions of this kind that correspond to a photon beam that consists of two photons

with different frequencies, each one with two possible polarizations. The system under consideration is based on the
following Hamiltonian

Ĥe,γ = Ĥγ + γ0
(
γP̂
)

+mγ0 , P̂ = p̂+ e
[
Â(r) +Aext(r)

]
, r = (x, y, z) . (1)

Here Ĥγ is the Hamiltonian of the two free transversal photons, that move in n direction; γµ =
(
γ0,γ

)
are Dirac

gamma matrices [12]; Â(r) is the operator-valued vector potential of the photons in the Coulomb gauge, Â0 = 0,
div Â(r) = 0; r are electron coordinates; p̂ = −i∇ is the electron momentum operator, and Aext(r) is the vector
potential of the magnetic field in the Landau gauge (Aextx = −By, Aext0 = Aexty = Aextz = 0), B > 0 magnitude of the
magnetic field, e > 0 is the absolute value of the electron charge, and m is the electron mass. Following original work,
we represent solutions in the Heavyside system of units1 . Provided that n is chosen along the axis z, n = (0, 0, 1),
momenta of the photons from the beam are

ks = 2πL−1 (0, 0,ms) = κsn, s = 1, 2, κs = κ0ms, κ0 = 2πL−1, ms ∈ N , (2)

so that

Ĥγ =
∑

s=1,2;λ

κsa
+
s,λas,λ, Â(r) =

∑
s=1,2;λ

1

e

√
ε

2κs

[
as,λe

iκsz + a+s,λe
−iκsz

]
eλ .

Here V = L3 is the quantization box volume, eλ, λ = 1, 2 are real polarization vectors, (eλeλ′ ) = δλ,λ′ , (neλ) = 0
and ε = e2/L3. The photon creation and annihilation operators a+s,λ and as,λ are labeled by s and by λ and obey the
Bose type commutation relations. The only nonzero relations are

as′ ,λ′a
+
s,λ − a

+
s,λas′ ,λ′ = δs,s′ δλ,λ′ , s, s

′ = 1, 2, λ, λ′ = 1, 2.

The quantity ε characterizes a strength of the interaction between the charge and the plane-wave field. If we interpret
ρ = V −1 = L−3 as the electron density, then ε = e2ρ. The dimensionality of ε is [ε] = l−3 (where l is the dimensionality
of length). Being written with ~ and c restored, it has the form:

ε = αρ =
ακ30
8π3

, α =
e2

~c
= 1/137, (3)

where α is the fine-structure constant.
Motion of an electron in the magnetic field can be represented as an oscillator motion, described by new Bose

creation, a+0 , and annihilation, a0, operators,

√
2a+0 = η − ∂η,

√
2a0 = η + ∂η, η =

eBy − px√
eB

. (4)

The operators a0 and a
+
0 commute with every photon operator ak,λ and a

+
k,λ.

Using a canonical transformation, one can diagonalize the total Hamiltonian (1) such that it is reduced to two
terms that describe two subsystems —a subsystem of a quasielectron and a subsystem of quasiphotons —that do not

1 where ~ = c = 1, and the Coulomb law takes the form F = q1q2/4πr2, also mG =
~
c
mH , tG =

1
c
tH , and eG =

√
c~
4π
eH , BG =

√
4πc~BH .
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interact between themselves,

Ĥ = H̃γ + H̃e, H̃e = r0c
+
0 c0 +

m2

2(np)
− ω

2
,

H̃γ =
∑

s=0,1,2;λ

rsλc
+
s,λcs,λ + H̃γ0, H̃γ0 = −

∑
s,k=0,1,2;λ,λ′

rkλ′ |vsλ,kλ′ |2 +
ε (κ1 + κ2)

2κ1κ2
, (5)

where

ε =
ε

(np)
≥ 0, ω =

eB

(np)
≥ 0, (np) = p0 − pz > 0, (6)

p0 is the electron energy and pz is z-projection of the electron momentum, such that for the electron states (np) > 0;
the quantities rkλ are positive roots of the equation∑

s=1,2

ε

r2kλ − κ2s
= 1 +

(−1)
λ−1

ω

rkλ
, r0λ = r0δλ1, (7)

The matrices vsλ,kλ′ are involved in the above mentioned canonical transformation, which being written in matrix
form reads

a = uc− vc+, a+ = c+u+ − cv+; c = u+a+ vTa+, c+ = a+u+ av∗;

uu+ − vv+ = 1, vuT − uvT = 0 . (8)

This linear uniform canonical transformation [13] relates initial creation and annihilation operators ak,λ and a
+
k,λ, k =

0, 1, 2, a0,λ = a0δλ1, to new creation and annihilation operators ck,λ and c+k,λ, k = 0, 1, 2, c0,λ = c0δλ1. The
free photon operators a+s,λ and as,λ, s = 1, 2, λ = 1, 2, are transformed to new quasiphoton operators c+s,λ and cs,λ,
s = 1, 2, λ = 1, 2, and the electron creation and annihilation operators a+0 and a0 are transformed to the corresponding
quasielectron operators c+0 and c0.
For our purposes it is necessary to write here explicitly only the matrices usλ,kλ′ and vsλ,kλ′ that correspond to the

transformation of the photon operators, i.e., matrices with the indices s, k = 1, 2, and λ = 1, 2. These matrices have
the form

usλ,kλ′ =

[(√
rkλ′

κs
+

√
κs
rkλ′

)
(−1)

λ′−1
δλ,1 − iδλ,2

2(r2kλ′ − κ2s)

]
qkλ′ ,

vsλ,kλ′ =

[(√
rkλ′

κs
−
√

κs
rkλ′

)
(−1)

λ′−1
δλ,1 − iδλ,2

2(r2kλ′ − κ2s)

]
qkλ′ ,

qkλ =

[
(−1)

λ
ω

r3kλε
+ 2

∑
s=1,2

(r2kλ − κ2s)−2
]−1/2

. (9)

Stationary states of the system are Ψ = Ψγ ⊗Ψe, where Ψγ is the state vector of the quasiphotons,

Ψγ =
∏

λ1=1,2

(c+1,λ1)
N1,λ1√

N1,λ1 !
|01〉c ⊗

∏
λ2=1,2

(c+2,λ2)
N2,λ2√

N2,λ2 !
|02〉c , (10)

where csλ |0s〉c = 0, s = 1, 2, ∀λ, and Ψe is the state vector of the quasielectron, the explicit form of which is not
important for our purposes.

3. ENTANGLEMENT IN TWO-QUBIT PHOTON BEAM

In this article, to illustrate the proposed idea, we consider the case in which the parameter ε is small. That is why,
in what follow, we calculate all the quantities neglecting terms smaller than ε as ε→ 0.
In this approximation, for k = 1, 2, we obtain

rkλ = κk +

[
2κ2k −

(
κ21 + κ22

)]
ε

(−1)λ−12ω [2κ2k − (κ21 + κ22)] + κk [5κ2k − 3 (κ21 + κ22)] +
κ21κ

2
2

κk

. (11)
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3.1. Photons with antiparallel polarizations

Consider now states (10) with only two quasi-photons, one of the first kind, and another of the second kind, and with
anti-parallel polarizations, which we take as λ1 = 1 and λ2 = 2. Such a state vector corresponds to N1,1 = N2,2 = 1,
N1,2 = N2,1 = 0 and has the form

Ψγ (↑, ↓) = c+1,1c
+
2,2 |0〉c , |0〉c = |01〉c ⊗ |02〉c . (12)

From the point of view of quasi-photons this is a separable state. However, if an observer analyses this state using
tools that register free photons (to be consistent we have to suppose that in the region where such measurements is
performed the magnetic field and the electron density are zero) he will observe an entangled two free photon state.
The wave function of such a state can be obtained from the one eq. (12) by expressing all the quasi-photon operators
and vacuum vectors in terms of the corresponding free photon quantities. In this consideration, we disregard all the
terms quadratic and more than quadratic in the small parameter ε, see (6). One can easily verify that in such an
approximation, one can simply replace the quasi-photon vacua |0s〉c by the corresponding free photon vacua |0〉s,
as,λ |0s〉 = 0, so that

Ψγ (↑, ↓) = c+1,1c
+
2,2 |0〉c ' c

+
1,1c

+
2,2 |0〉 , |0〉 = |01〉 ⊗ |02〉 . (13)

The operator c+1,1c
+
2,2 has to be expressed in terms of the free photon operators using the canonical transformations

(8) and (9). Using the explicit form of the matrices u and v from eqs. (9) one can see that in the approximation
under consideration the last expression for the state vector Ψγ (↑, ↓) (13) takes the form

Ψγ (↑, ↓) '
∑

s,s′,λ,λ′

usλũs′λ′a
+
s,λa

+
s′,λ′ |0〉 , usλ = usλ,11, ũsλ = usλ,22. (14)

Then one can see that in the approximation under consideration we have to neglect terms of the form u1λũ1λ′a
+
1,λa

+
1,λ′

and u2λũ2λ′a
+
2,λa

+
2,λ′ in the right hand side of eq. (14). Thus, we obtain

Ψγ (↑, ↓) '
∑

λ,λ′=1,2

ϑλλ′a
+
1,λa

+
2,λ′ |0〉 , ϑλλ′ = u1λũ2λ′ + ũ1λu, (15)

The vectors a+1,λa
+
2,λ′ |0〉 can be represented as elements of the computational basis |ll′〉 , l, l′ = 0, 1 (35),

|ll′〉 = a+1,l+1 |01〉 ⊗ a
+
2,l′,1 |02〉 , l, l

′ = 0, 1. (16)

Then

Ψγ (↑, ↓) '
∑

λ,λ′=1,2

ϑλλ′ |(λ− 1) (λ′ − 1)〉 = ϑ11 |00〉+ ϑ22 |11〉+ ϑ12 |01〉+ ϑ21 |10〉 ,

ϑ11 = u11,11u21,22 + u21,11u11,22, ϑ12 = u11,11u22,22 + u22,11u11,22,

ϑ21 = u12,11u21,22 + u21,11u12,22, ϑ22 = u12,11u22,22 + u22,11u12,22. (17)

To be able to use results presented in the Appendix to calculate the entanglement measure, we have to identify
the state (17) with the pure 2-qubit state of the general form given by eq. (36). In the case under consideration, we
obtain

υ1 = ϑ11 = u11,11u21,22 + u21,11u11,22, υ2 = ϑ12 = u11,11u22,22 + u22,11u11,22,

υ3 = ϑ21 = u12,11u21,22 + u21,11u12,22, υ4 = ϑ22 = u12,11u22,22 + u22,11u12,22 . (18)

Using the explicit form of the matrices u from eq. (9) and square roots rkλ from eq. (??), we calculate the quantities
υi. They are

υ1 = −(a+ b), υ2 = i(a− b), υ3 = −i(a− b), υ4 = υ1, (19)

where

a =

(√
r11
κ2

+
√

κ2
r11

)(√
r22
κ1

+
√

κ1
r22

)
4 (r211 − κ22) (r222 − κ21)

√
2

(r211−κ21)
2 + 2

(r211−κ22)
2 − ω

r311ε

√
2

(r222−κ21)
2 + 2

(r222−κ22)
2 + ω

r322ε

,

b =

(√
r11
κ1

+
√

κ1
r11

)(√
r22
κ2

+
√

κ2
r22

)
4 (r211 − κ21) (r222 − κ22)

√
2

(r211−κ21)
2 + 2

(r211−κ22)
2 − ω

r311ε

√
2

(r222−κ21)
2 + 2

(r222−κ22)
2 + ω

r322ε

. (20)
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Then we use eqs. (39), (41), and (42) to obtain the quantity y,

y = 4
∣∣(a2 − b2)∣∣ =

∣∣∣∣∣1− 2ωε

(
κ
(1)
11

κ1
− κ

(1)
22

κ2

)∣∣∣∣∣ = 1− εΦ, 0 ≤ εΦ < 1,

Φ = ω

(
κ2 (ω − κ2)2 − κ31 − 2ωκ21 − ω2κ1

)
2κ1κ2 (ω + κ1)

2
(ω − κ2)2

. (21)

The asymptotic behavior of the enanglement measure E (Ψγ (↑, ↓)) as ε→ 0 reads

E (Ψγ (↑, ↓)) =
Φ

2 ln 2
[ε (1− ln (Φ/2))− ε ln ε] . (22)

One can verify that the enanglement measure E (Ψγ (↓, ↑)) has the same form (22).
We have calculated the entangelment measure for different values of cyclotron frequencies ω = 0÷0.5THz achievable

in a laboratory. For this study we selected photon angular frequencies starting with red light κ1 = 2500THz and
calculate the E (Ψγ (↑, ↓)) as a function of ∆κ = κ2−κ1 ranging from red to ultraviolet. The result is shown in figure
1 as a surface plot, where the color gradient represents the values of entangelment measure.

FIG. 1: Eenanglement measure E (Ψγ (↓, ↑)) as afunction of ω and ∆κ, with ε = 0.1.

3.2. Photons with parallel polarizations aligned along the magnetic field

Let us reconsider states (10) with only two quasiphotons, one of the first kind, and another one of the second
kind and with parallel polarizations λ1 = 1 and λ2 = 1. Such a state vector corresponds to N1,1 = N2,1 = 1,
N1,2 = N2,2 = 0 and has the form

Ψγ (↑, ↑) = c+1,1c
+
2,1 |0〉c , |0〉c = |01〉c ⊗ |02〉c . (23)

Using the same arguments that were used in the case of antiparallel polarizations, we obtain

Ψγ (↑, ↑) ' ϑ11 |00〉+ ϑ22 |11〉+ ϑ12 |01〉+ ϑ21 |10〉 ,

where

ϑ11 = u11,11u21,21 + u21,11u11,21, ϑ12 = u11,11u22,21 + u22,11u11,21,

ϑ21 = u12,11u21,21 + u21,11u12,21, ϑ22 = u12,11u22,21 + u22,11u12,21. (24)
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Using the explicit form of the matrices u from eq. (9) and square roots rkλ from eq. (??), we calculate the quantities
υi. They are

υ1 = a+ b, υ2 = −iυ1, υ3 = −iυ1, υ4 = −υ1, (25)

where

a =

(√
r11
κ2

+
√

κ2
r11

)(√
r21
κ1

+
√

κ1
r21

)
4 (r211 − κ22) (r221 − κ21)

√
2

(r211−κ21)
2 + 2

(r211−κ22)
2 − ω

r311ε

√
2

(r221−κ21)
2 + 2

(r221−κ22)
2 − ω

r321ε

,

b =

(√
r11
κ1

+
√

κ1
r11

)(√
r21
κ2

+
√

κ2
r21

)
4 (r211 − κ21) (r221 − κ22)

√
2

(r211−κ21)2
+ 2

(r211−κ22)2
− ω

r311ε

√
2

(r221−κ21)2
+ 2

(r221−κ22)2
− ω

r321ε

. (26)

Then we use eqs. (39), (41), and (42) to obtain the quantity y and the entanglement measure of the state Ψγ (↑, ↑) :

y =

√
4 |υ1iυ1 + (−iυ1) (−υ1)|2 = 4

∣∣υ21∣∣ = 1, E(Ψγ (↑, ↑)) = 0. (27)

3.3. Photons with parallel polarizations aligned against the magnetic field

Now we consider states (10) with only two quasi-photons, one of the first kind, and another one of the second kind
and with parallel polarizations λ1 = 2, λ2 = 2. Such a state vector corresponds to N1,2 = N2,2 = 1, N1,1 = N2,1 = 0
and has the form

Ψγ (↓, ↓) = c+1,2c
+
2,2 |0〉c , |0〉c = |01〉c ⊗ |02〉c . (28)

Using the same arguments that were used in the previous cases, we obtain

Ψγ (↓, ↓) ' ϑ11 |00〉+ ϑ22 |11〉+ ϑ12 |01〉+ ϑ21 |10〉 , (29)

where

ϑ11 = u11,12u21,22 + u21,12u11,22, ϑ12 = u11,12u22,22 + u22,12u11,22,

ϑ21 = u12,12u21,22 + u21,12u12,22, ϑ22 = u12,12u22,22 + u22,12u12,22 . (30)

Using the explicit form of the matrices u from eq. (9) and square roots rkλ from eq. (??), we calculate the quantities
υi. They are

υ1 = (a+ b), υ2 = i(a+ b), υ3 = i(a+ b), υ4 = −υ1, (31)

where

a =

(√
r12
κ2

+
√

κ2
r12

)(√
r22
κ1

+
√

κ1
r22

)
4 (r212 − κ22) (r222 − κ21)

√
2

(r212−κ21)
2 + 2

(r212−κ22)
2 + ω

r312ε

√
2

(r222−κ21)
2 + 2

(r222−κ22)
2 + ω

r322ε

,

b =

(√
r12
κ1

+
√

κ1
r12

)(√
r22
κ2

+
√

κ2
r22

)
4 (r212 − κ21) (r222 − κ22)

√
2

(r212−κ21)
2 + 2

(r212−κ22)
2 + ω

r312ε

√
2

(r222−κ21)
2 + 2

(r222−κ22)
2 + ω

r322ε

. (32)

With the help of eqs. (39), (41), and (42) we obtain the quantity y,

y = 4
∣∣∣(a+ b)

2
∣∣∣ =

∣∣∣∣∣1− 2εω

(
κ
(1)
12

κ1
+
κ
(1)
22

κ2

)∣∣∣∣∣ = 1− εΦ, 0 ≤ εΦ < 1,

Φ = ω

(
ω2κ2 + κ1

(
ω2 − 4ωκ2 + κ22

)
+ κ21κ2

)
2κ1κ2 (ω − κ1)2 (ω − κ2)2

. (33)
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Then the asymptotic behavior of the entanglement measure E (Ψγ (↓, ↓)) as ε→ 0 reads:

E (Ψγ (↓, ↓)) =
Φ

2 ln 2
[ε (1− ln (Φ/2))− ε ln ε] . (34)

FIG. 2: Enanglement measure E (Ψγ (↓, ↓)) as a function of ω and ∆κ, with ε = 0.1.

FIG. 3: Difference E (Ψγ (↓, ↑))− E (Ψγ (↓, ↓)) - as a function of ω and ∆κ, with ε = 0.1.
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4. CONCLUDING REMARKS

Considering an adequate quantum mechanical model, we have demonstrated that a 2-qubit system, consisting of two
photons moving in the same direction with different frequencies and each one with two possible linear polarizations,
can be controllably entangled with the help of an applied external magnetic field via an intermediate interaction
with the electron medium. Then, we succeeded to express the corresponding entanglement measure via problem
parameters, such as photon frequencies, magnitude of the magnetic field, and parameters of the electron medium. We
have discovered that, in the general case, the entanglement measure depends on the magnitude of the applied magnetic
field and, thus, can be controlled by the latter. As a rule, entanglement increases with increasing magnetic field (with
increasing cyclotron frequency). In this relation, it should be noted that we did not consider resonance cases where
cyclotron frequency approaches photon frequencies. Obviously, the entanglement depends on the parameters that
specify the electron medium such as the electron density and electron energy and momentum. We did not study this
dependence in this work; these characteristics were fixed by choosing a natural, small parameter in our calculations.
The obtained results allow us to see how the entanglement measure depends on the fixed parameters that characterize
the system under consideration, i.e. on the choice of initial states of the photons and on photon frequencies. Thus we
have the following observations: if both photon polarizations coincide and coincide with the direction of the magnetic
field, then no entanglement occurs. The entanglement takes place if at least one photon polarizations is aligned against
the magnetic field. In this respect, we have a direct analogy with the Pauli interaction between spin and a magnetic
field. However, it seams that this interaction depends also on the photon frequency and the resulting entanglement
effect depends on both photon frequencies, or on the first photon frequency and the difference between the frequencies.
In case that was initially chosen, i.e. parallel photon polarizations against the magnetic field, entanglement increases
as this difference grows. When polarizations of both photons are opposite to the magnetic field, the entanglement
effect depends on the combination of the magnetic field magnitude and the difference in photon frequencies.
We understand that our study is based on exact solutions of the model problem - electron interacting with a

quantized field of two photons and with a constant uniform magnetic field. First of all, the constant uniform magnetic
field is an idealization, which cannot be realized experimentally. However, such an idealization allows exact solutions
and is often used in QED. Sometimes, one can verify that local space-time processes do not depend essentially on the
asymptotic behavior of the external field. More realistic results could be obtained if magnetic fields vanishing on space-
time infinity were used. In calculating the entanglement measure, we have also used the first order approximation in
the natural parameter ε = ρ

137(np) , supposing that it is small, ε ∼ 0.1. In fact, this imposes restrictions on the electron
density ρ and electron energy and momentum, (np) = p0 − pz. However, this approximation was enough for our semi
qualitative preliminary study of the problem. All the above-mentioned approximations would have to be carefully
estimated in order to extract real numbers for possible experimental realization of the controlled entanglement of
photons by a magnetic field.

Quantum entanglement in 2-qubit systems
Let us consider a 2-qubit quantum system, i.e., a composite quantum system that includes two 1-qubit systems

A1 and A2, each of them having 2-dimensional Hilbert space HAa = C2, a = 1, 2. In the spaces HAa we use the
orthonormal basis |ϑ1〉 = |0〉 =

(
1 0

)T
, |ϑ2〉 = |1〉 =

(
0 1

)T
. The composite system has 4-dimensional Hilbert

space H = HA1
⊗HA2

= C2 ⊗ C2. In the latter space, we use the so-called computational orthonormalized basis

|ϑ1〉 = |00〉 =
(

1 0 0 0
)T
, |ϑ2〉 = |01〉 =

(
0 1 0 0

)T
,

|ϑ3〉 = |10〉 =
(

0 0 1 0
)T
, |ϑ4〉 = |11〉 =

(
0 0 0 1

)T
, (35)

where |ab〉 = |a〉 ⊗ |b〉. A pure 2-qubit state |Ψ〉 of the general form reads

|Ψ〉 =

4∑
i=1

υi |ϑi〉 ,
4∑
i=1

|υi|2 = 1. (36)

Its density operator R̂ has the form

R̂ = |Ψ〉〈Ψ| = [υ1 |00〉+ υ2 |01〉+ υ3 |10〉+ υ4 |11〉] [〈00|υ∗1 + 〈01|υ∗2 + 〈10|υ∗3 + 〈11|υ∗4 ] , (37)

Calculating the reduced density operator ρ̂(1) of the subsystem A1, we obtain

ρ̂(1) = tr2R̂ = 〈0|R̂ |0〉+ 〈1|R̂ |1〉 = |υ1|2 |0〉 〈0|+ υ1υ
∗
3 |0〉 〈1|

+ |υ2|2 |0〉 〈0|+ υ2υ
∗
4 |0〉 〈1|+ υ3υ

∗
1 |1〉 〈0|+ |υ3|2 |1〉 〈1|+ υ4υ

∗
2 |1〉 〈0|+ |υ4|2 |1〉 〈1|. (38)
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Taking into account that

|0〉 〈0| = (I + σ3) /2, |1〉 〈1| = (I − σ3) /2, |0〉 〈1| = (σ1 + iσ2) /2, |0〉 〈1| = (σ1 − iσ2) /2,

we obtain matrix elements ρ(1)ab , a, b = 1, 2 of the operator ρ̂(1),

ρ
(1)
11 = |υ1|2 + |υ2|2, ρ

(1)
12 = υ1υ

∗
3 + υ2υ

∗
4 , ρ

(1)
21 = υ3υ

∗
1 + υ4υ

∗
2 , ρ

(1)
22 = |υ3|2 + |υ4|2. (39)

The entanglement measure E (Ψ) in the system under consideration can be calculated as the information entropy
(the von Neumann entropy with Boltzmann constant the is equal to 1/ ln 2) of the reduced density operator ρ̂(1) of
subsystems A1 (the same results we obtain calculating the von Neumann entropy of the reduced operator ρ̂(2) = tr1R̂
of the subsystem A2) [14],

E(1) (Ψ) = −tr
(
ρ̂(1) log2 ρ̂

(1)
)
. (40)

It should be noted that other quantitative characteristics of the entanglement measure exist, see Refs. [15, 16] and
[17—24].
The quantity E (Ψ) = −tr (ρ̂ log2 ρ̂) we calculate for an arbitrary 2× 2 matrix ρ̂ = (ρab). First we find eigenvalues

λa, a = 1, 2, of ρ̂,

λa =
1

2
[ρ11 + ρ22 + (−1)

a
y] , y =

+

√
(ρ11 − ρ22)2 + 4 |ρ12|2. (41)

Using these eigenvalues, we find

E (Ψ) = −
∑
a=1,2

λa log2 λa = − 1

ln 4

[
(1− y) ln

(
1− y

2

)
+ (1 + y) ln

(
1 + y

2

)]
= − [z log2 z + (1− z) log2(1− z)] , z =

1 + y

2
. (42)

One can see that expression (42) has the form derived in Ref. [15, 16]) with z = 1
2

(
1 +
√

1− C2
)
, where the

quantity C is called the concurrence. According to Ref. [15, 16]) it can be calculated as C =

∣∣∣∣∣∑
k

α2k

∣∣∣∣∣ , where αk are
decomposition coeffi cients of the state vector |Ψ〉 =

4∑
k=1

αk|ek〉 of a 2-qubit system with respect to the so-called magic

basis |ek〉. Our result (42) allows one to calculate the entanglement measure E (Ψ) using decomposition coeffi cients
of the state vector in the computational basis.
Applying this general formula (42) to the case under consideration, where eqs. (39) hold, we obtain

E(1) (Ψ) = −
[
z(1) log2 z

(1) +
(

1− z(1)
)

log2(1− z(1))
]
,

z(1) =
1

2

[
1 +

√
(|υ1|2 + |υ2|2 − |υ3|2 − |υ4|2)2 + 4 |υ1υ∗3 + υ2υ∗4 |

2

]
.

Using the normalization condition (36) one can see that E(2) (Ψ) = −tr
(
ρ̂(2) log2 ρ̂

(2)
)

= E(1) (Ψ) .
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[19] K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998).
[20] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[21] J. Eisert, and H.J. Briegel, Phys. Rev. A 64, 022306 (2001).
[22] G. Vidal and R.F. Werner, Phys. Rev. A 65, 032314 (2002).
[23] O. Rudolph, Phys. Rev. A 67, 032312 (2003).
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