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Abstract. Basic ideas on coherence and decoherence of quantum states within the 

framework of Schrödinger ´s equation is presented to graduate and postgraduate 

students of Physics. With simple calculations and plausible arguments we see that is 

possible to understand how coherent states of quantum systems become decoherent 

when they interact with a thermal bath at a constant temperature T. Are also analyzed: 

connections between decoherence and measurement, density matrix, wavefunction 

collapse, quantum states of macroscopic bodies and the Schrödinger´s cat proposition.  
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(I) Introduction 

 We present to graduate and postgraduate students of Physics the basic aspects 

about coherence and decoherence of quantum states
[1,2].

within the framework of 

Schrödinger equation These aspects of the quantum theory that are subjects of active 

research since the 1980s are not usually analyzed or mentioned in textbooks adopted in 

basic Physics course.
[3-6]

 Detailed and extensive studies can be found, for instance, in 

references 1 and 2. In Section 1are defined coherent and incoherent quantum states 

within the Schrödinger´s equation formalism. In Section 2 we explain using simple 

quantum calculations how decoherence of coherent quantum states of molecules occurs, 

for instance, when they interact with a thermal bath at a constant temperature T. In 

Section (2.a) are done few comments on decoherence effect, quantum dissipation and 

qubit. Finally, in Section 3 are analyzed relations of the decoherence effect with 

quantum states of macroscopic bodies, quantum measurement, wavefunction collapse 

and the Schrödinger´s cat proposition. Note that the concept of coherent states 

(microscopic and macroscopic quantum coherence) has been considerably generalized 

becoming a major topic in applied mathematics, mathematical physics and physics 

(quantum optics, Bose-Einstein condensates, quantum field theory, string theory, 

quantum gravity,…).
[7]
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(1) Schrödinger Equation, Coherent and Incoherent Quantum States. 

 

(1.a) Coherent State 

 According to Schrödinger formalism
[3,8-11] 

an isolated system S composed by N 

particles is described in the coordinate representation by a wave function  

 

                                       |ψ (x1, x2,…., xN) >  = |ψ(xN) >                                    (1.1), 

 

where xi (i =1,2,…,N) ≡ (xN) are the particles coordinates. If H is the Hamiltonian 

operator of the system let us indicate by |φn(xN) > (with n =1,2,…) the eigenstates of the 

H, that is, H| φn > = εn |φn  >,  where εn are the energies of the eigenstates |φn >. Taking 

into account that the eigenfunctions {| φn >} of the Hermitean operator H form a 

complete orthonormal set of functions which is a basis in the Hilbert space the function 

|ψ(xN) > can be written as a “coherent state” or “pure state”,
[10,11]

 

 

                                                |ψ(xN) > = Σn an |φn(xN) >                                      (1.2), 

 

where an are arbitrary constants and |φn > the basis vectors in the Hilbert space which 

obey the orthonormality condition 

 

                                       < φm|φn > = ʃ φm
*
(xN) φn(xN)d

N
x = δmn                          (1.3), 

 

xN = {x1, x2,…., xN}  and  d
N
x =  d

3
x1 d

3
x2….d

3
xN is the element of volume in the 

particles coordinate space. Note that in many papers and text books 
[2,11]

 a more 

compact Dirac notation is used putting |φn > = | n > and an = < n | ψ >. As |< ψ | ψ >|
2
= 1 

we see, taking into account (1.3), that the constants an obey the normalization condition 

 

 |< ψ | ψ >|
2
 = (Σn an

*
< φn |)(Σn am

 
| φm >) = (Σn Σm an

*
am< φn | φm >) = Σn |an|

2
 = 1    (1.4). 

 

In this context |an|
2
 is the probability to find a system in the state |φn > with energy εn 

and, consequently, their values depend how the system is created, that is, depend on the 

preparation of the system.
[10,11]

 According to the QM postulates all properties of the 

system in the {xN} space are completely determined by the wave function |ψ(xN) >. The 

statefunction |ψ(xN)> is named pure state or coherent state. The mean value < f > of an 

observable f(xN) of the system in the coherent state |ψ(xN) > is given by, putting fnm =  

< φn |f |φm >, 

 

              < f >  =  (Σn an*< φn |) f (Σm am |φm >)| = Σn |an|
2
fnn  + Σ´nm an*am fnm            (1.5), 

 

where  Σ´nm is a sum over n and m, with n ≠ m. This last term of (1.5) suggests 

“interference” between the different basis elements or quantum alternatives. This is a 

purely quantum effect and represents the non-additivity of the probabilities of quantum 

alternatives. 

 Taking into account the time variable t the wavefunction |Ψ(xN, t)> is given by
[9]

 

 

                                          |Ψ(xN, t)>  = Σn an exp(-iεn t/ћ) |φn(xN) >                         (1.6) 

 

that evolves with the time according to the equation  

 

                          |Ψ(xN, t) > = T(t,to)|Ψ(xN, 0) > = exp[-iH(t-to)/ћ] |Ψ(xN, 0)>           (1.7),  
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where T(t,to)= exp[-iH(t-to)/ћ] is the unitary time evolution operator and t = to is the 

initial time. From (1.7) we see that the normalization |<Ψ(xN, t) |Ψ(xN, t) >|
2
 = 1 is a 

constant of motion; it does not depend on the time t. This unitarity time-evolution 

demands that that any state basis of |Ψ(xN, t)> must remain orthornormal. 

 One example of the unitary wavefunction evolution is the Young diffraction of  

particles (photons, electrons,…). Governed by the Schrödinger equation an incident 

particle in a coherent state (a plane wave) passes by two orifices originating a coherent 

final state |Ψ> composed by two waves |φ1> and |φ2>, that is, |Ψ> = (|φ1> + |φ2>)/√2. 

Similar example is that observed in Michelson interferometer. A photon incident upon a 

semitransparent glass lame that is divided into two equal parts, 50% reflected (|φ1>) and 

50% transmitted ( |φ2>), form a coherent state  |Ψ> = (|φ1> + |φ2>)/√2. 

 

1.b) Incoherent State.  

 Now, let us see what happens when the system S initially in the state |ψo(xN)> 

given by (1.2) interacts with the environment, often modeled as a thermal bath B 

maintained at a constant temperature T. Let us indicate by |χ(ξ) > the state function of 

the bath B, where ξ (a very large number) are the “degrees of freedom” of  B. We 

suppose that the (classic) macroscopic thermal bath is represented by quasi-classic 

wavefunctions provided by the “correspondence principle”.
[8,11]  

We also assume that 

from the initial instant t = 0, when S and B begin to interact, the system S&B is a closed 

system. Let us indicate by H = HS + HB + Vint the total Hamiltonian of S&B, where Vint 

is the interaction potential between S and B. From t ≥ 0 the evolution of system S&B 

will be represented by |ΘSB(xN,ξ,t)> which obeys the equation  

 

      |ΘSB(xN,ξ,t)> = TSB(t,0) |ΘSB(xN,ξ,0)>1 = exp[-iHt/ћ] TSB(t,0) |ΘSB(xN,ξ,0) >1    (1.10), 

 

where, for t = 0,  

                             |ΘSB(xN,ξ,0)>1 = |ΘoSB>1 =  |ψo(xN)> |χ(ξ)> =  Σn an |χ(ξ)> |φn(xN)>.                     

 

 Let us assume that the state basis |φn(xN)> of S is not modified by the bath. Due 

to the entanglement between the S and B the complete function of the S&B system for  

t > 0 will now be written as
[2,10]

 

 

                                        |ΘSB(xN,ξ,t)>1 = |ΘSB>1 = Σn An |χn(ξ)> |φn(xN)>               (1.11), 

 

where |χn(ξ)> is the basis vector of B due to the entanglement effect.  Note that the 

unitary time-evolution (1.10) demands that the basis vectors remains orthonormal, that 

is, < φm(xN) |φn(xN) > = < χn(ξ)| χm(ξ) > = δmn.  

 In these conditions the average value < f > of the quantity f(xN) of the system S 

will be given by, taking into account that <χm|χn> = < φn|φm > = δmn: 

 

        < f > = (Σn an
* 
<χn(ξ)| <φn(xN)| )f(xN) (Σm am |χm(ξ)> |φm(xN)>) = Σn |An|

2
 fnn    (1.12), 

 

where fnn = <φn(xN)|f(xN)| φn(xN)> . 

 

 Comparing (1.5) with (1.12) we verify that the interference terms Σ´nm an*am fnm   

present in (1.5) is not present in (1.12). Only the diagonal terms n contribute to <f >. It 

shows that due to the interaction with the thermal bath the system S is not represented 

by the coherent state |ψ> given by (1.2). Thus, we say that the environment created a 

decoherence effect. The bath interaction has irreversibly converted the quantum 
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behavior characterized by the additive probability amplitudes to classical behavior with 

additive probabilities. Decoherence can be modelled as a non-unitary process by which 

the system S couples with the environment (although the combined system S&B 

evolves in a unitary fashion).
[1,2]

 Thus, the dynamics of S, treated in isolation, are non-

unitary and, as such, are represented by irreversible transformations acting on the S 

Hilbert space. In the Appendix we show how S can be described using the density 

matrix approach. 

 

 

(2) Decoherence Produced by Collisions in a Thermal Bath.                                

 Using a non-rigorous approach we show that it is possible to explain the 

decoherence effect of coherent quantum states of systems (molecules, for instance) 

when they are immersed in a thermal bath (macroscopic system) maintained at a 

constant temperature T. Let us consider the bath as a gas with No ~ 10
23 

rigid particles, 

each one with mass m, obeying the classical Maxwell-Boltzmann distribution. So, the 

number of particles N(v)dv with velocities between v and v +dv is given by
[12]

 N(v)dv = 

4π No (m/kBπT)
3/2

 v
2
 exp(-mv

2
/ kBT)dv, where kB is the Boltzmann constant. According 

to the kinetic theory of gases 
[12,13]

 the gas particles are in continuous motion colliding 

between them. The mean free path between two collisions is given by λ ≈1/nπd
2
, where 

n is the number of particles per unit of volume and is d is particle diameter. The 

estimated mean free time t* between two successive collisions is t* ≈ λ/<v> , where  

<v> is the mean velocity of the particles. For the air, for instance, at T = 273 K (0
o
 C) 

and pressure P =1 atm we have 
[12]

 <v> ≈ 10
5
 cm/s, λ ≈ 2 10

-5
 cm and t* ≈ 2 10

-10
 s. We 

see that each particle has in average 5 billion of collisions by second. The effective 

collision time Tc between two particles is determined by
[11] 

Tc = D/v, where D is the 

closest approach distance. Putting D ~10
-8 

cm and <v> = 10
5
 cm/s results Tc ~ 10

-13
 s.  

 Now, let us consider that a very large number N of molecules is immersed in the 

bath gas of rigid particles at a constant temperature T. To simplify let us take No >> N 

so that we can neglect molecule-molecule collisions: only collisions between rigid 

particles and molecules will be relevant. 

 Assuming that the immersing molecules are initially in a coherent state |ψ(xN)>, 

given by (1.2), they will be submitted to an enormously large number of collisions with 

the rigid particles. In order to estimate the effect of the time dependent interaction 

potential V(t) between the molecules and the rigid particles the molecular state function 

|Ψ(xN,t)> will be written as 
[9] 

 

                                     |Ψ(xN, t)> = Σn an(t) exp(-iεn t/ћ) |φn(xN)>                         (2.1). 

  

 Let us show that the collisions transform the molecular coherent state |Ψ(xN, t)> 

given by (2.1) in an incoherent sum of states |φn(xN)> = |n>. To do this we analyze the 

transitions produced by collisions between the initial coherent state | I > = |Ψ(xN, t)>  to 

generic states |m> = |φm(xN)>. According to the time-dependent perturbation theory 
[8]

 

the transition probability WIm between these states, estimated in the first order Born 

approximation, is given by 

 

                                WIm ≈ (2π/ћ) {| < q |< m |V(t)| I >|q´> |
2 

ρ(E)}Av                   (2.2), 

 

where |q > and |q´ > are, respectively, the initial and final momentum of the colliding 

rigid particle, ρ(E) is the density of the final states of these particles with energy E given 

by E = εI + q
2
/2m = εm + q´

2
/2m and the bracket {…}Av means an average over all 
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velocities (according to the Maxwell-Boltzmann distribution) of the colliding particles. 

Since the initial state | I > is given by a sum over the states |n> we will estimate the 

transition probabilities Wnm between generic states |n> → |m>. Analyzing these 

probabilities one can evaluate (2.2). Assuming that the trajectory of the colliding rigid 

particle is a straight line,
[11]

 that is, putting q ≈ q´ one can easily see that Wnm is 

proportional to the square modulus of the matrix element 

 

                        < q |< m |V(t)| n >|q´>  = ʃ<m |V(t) |n > exp(iωmnt) dt                  (2.3), 

 

where ωmn
 
= (εm – εn)/ћ and the time integration is extended from -∞ to ∞. From (2.3) 

we see that if the effective collision time Tc = D/v is appreciably larger than the period 

ωmn
-1

, that is, when 

                                                          ωmn(D/v) >> 1                                               (2.4), 

 

the function exp(iωmnt) in (2.3) oscillates many times during the effective collision time 

and the integral is practically equal to zero, that is, Wnm ≈ 0. That is, these collisions are 

not able to induce transition between the quantum states. These collisions are named 

adiabatic. 

 On the hand, if during the effective collision time is satisfied the inequality  

 

                                                                 ωmn(D/v) ≤  1                                         (2.5), 

 

we have exp(iωmnt) ~1 and (2.3) can be different from zero, resulting Wnm ≠ 0. Since v 

can assume large values it is possible to have Wnm ≠ 0. In other words, these collisions 

would be able to induce transitions between the molecular quantum states. Due to the 

very high frequency of collisions there will be millions of transitions per second 

between the molecular quantum states.  

 In these inelastic n → m collisions there is an energy exchange between the 

~10
23

 translational degrees of freedom of the particles and the internal and translational 

degrees of freedom of the molecules. The molecular gas once immersed in the thermal 

bath after a very short time interval τ ~10
-9

 s (that is, after a few consecutive molecule-

atoms collisions) will be in a state of thermal equilibrium
[13]

 at the temperature T. That 

is, the occupation numbers of the translational and internal energy levels of the atoms 

and molecules will be given by the equilibrium values predicted by the statistical 

distribution function.
[13,14]

 Note that the system S&B reach a stationary state, from the 

very definition of thermal equilibrium or statistical equilibrium.
[14] 

Thus, in a very short 

time τ ~10
-9

 s the probability |an(τ)|
2
 to find a molecule in the state |n> with energy εn 

evolves to a constant value ρn given by the statistical distribution (see Appendix):
[14]

 

 

                                        ρn =  < |an(τ)|
2
> = (1/Z) exp(-εn/kT)                                (2.5), 

 

where Z is the partition function. So, for times t > τ we have an = √ρn for a state |φn>. 

 So, using (2.1), the mean value < f > of a molecular quantity f(xN) is given by,  

 

                  < f > =  {< Ψ(xN, t)|f |Ψ(xN, t) >}Av   

 

                           = {(Σn an* exp(iεn t/ћ) < φn |) f (Σm am exp(-iεm t/ћ) |φm >)}Av 

 

                               = Σn ρn fnn + {Σ´nm √ρn√ρmfnm exp[i ωnmt]}Av                          (2.6),  
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where the bracket {…}Av indicates a time average, the sum Σ´nm is over n and m with  

n ≠ m and ωnm = (εn –εm)/ћ. As the measurement time t is usually very large compared 

with the molecular periods ωnm
-1

 the average value of the sum Σ´nm  is equal to zero. 

Consequently, the mean value of a quantity f of a molecule immersed in a thermal bath 

becomes given by…. 

                                                         < f > =  Σn ρn fnn                                                                     (2.7). 

 

Note that the mean values (2.7) and (1.5) are completely different. In (2.7) we have only 

the diagonal matrix elements fnn and instead of |an|
2
 we have the statistical weight ρn. So, 

due to the environment interactions the molecular state function is no more described by 

a coherent state (1.2) or (1.6). It is represented by an incoherent mixture of the states 

|φn> with a statistical weight ρn satisfying the relation Σn ρn = 1. We say that the system 

is in an incoherent state. This expresses the fact that to obtain the mean value < f > we 

must know the statistical probability ρn to find the molecule in the pure states |φn > and 

use (2.7).  

 

(2.a) Conclusions and Addendum. 

 We saw that coherent quantum states of isolated molecules are destroyed when 

they interact with the environment and that it occurs in a very short time scale ~ 10
-9

s. 

In other words, the environment generate decoherence of coherent quantum states. 

Quantum decoherence 
[1,2]

 is the loss of coherence or ordering of the phase angles 

between the components of a system in a quantum superposition defined by (1.2) or 

(1.6). The components of the coherent (or “pure”) statefunction are decoupled from the 

coherent system and acquire phases from their immediate surroundings. A total 

superposition of the global wavefunction still exists (and remains coherent at the global 

level). These aspects were seen in Section 1 analyzing the entanglement between the 

quantum states of the bath and of the molecules. The bath interaction converts 

irreversibly the quantum behavior characterized by the additive probability amplitudes 

to classical behavior with additive probabilities. 

 With quite similar arguments one can explain quantum decoherence effects 

when any kind of quantum systems initially in coherent states interact with a thermal 

bath (“environment”) or interact between them forming a macroscopic aggregate 

maintained at a constant temperature T.  

 Quantum dissipation is the branch of physics that studies the quantum 

analogue of the process of irreversible loss of energy observed at the classical level. Its 

main purpose is to derive the laws of classical dissipation from the framework of QM. It 

shares many features with the subjects of quantum decoherence and quantum theory of 

measurement.
[15]

 Dissipation is a decoherent process by which the populations of 

quantum states are changed due to entanglement with a bath.
[15]

 

 Quantum bit or qubit. Bit is the classical basic unit of information always 

understood to be a 0 or a 1. Quantum bit or qubit is the unit of quantum information
[16]

 

represented by the coherent state |Ψ > = α |0> + β |1>, where α and β are probability 

amplitudes, in general, both complex numbers that are constrained by the equation 

|α|
2
+|β|

2
=1. In the Bloch sphere

[16]
 representation α = cos(θ/2), β =e

iφ/2 
sin(θ/2)  (north 

pole z = |0> and south pole z = |1>) . 
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(3) Macroscopic Bodies Decoherence. 

 One of the most worrying difficult in the interpretation of QM is the problem of 

interferences between quantum states of macroscopic bodies which is predicted by 

linear theories and practically never observed. Let us see how this problem can be 

understood taking into account the decoherence quantum effect.
[1] 

 To describe an isolated microscopic system with Schrödinger´s equation one 

uses a somewhat small set of known variables and parameters (positions of the particles, 

masses, spins,…) and well known interaction potentials between the particles. In these 

conditions solving Schrödinger equation the system wavefunction is given by a 

coherent superposition of states (1.2). Assuming that there are only two possible states, 

 

                                              |ψ(x)> = a1 |φ1(x) > + a2 |φ2(x) >                               (3.1), 

 

where x indicates all known variables and parameters necessary to describe the system.  

So, putting fij = < φj(x)|f(x)|φj(x) > ( i,j=1,2) the mean value of the observable f(x) is 

given by 

 

                              < f > =  < f(x) > = |a1|
2
 f11 +|a2|

2
 f22 + a1*a2 f12 + a2*a1 f21          (3.2), 

 

showing interference between the states 1 and 2. 

 Now, let us suppose that we have a macroscopic body composed by a small 

system (a microscopic system) that depends on the small fraction x of known variables 

and by a large part (macroscopic) that depends on billions and billions of unknown 

degrees of freedom or variables Y. The Hamiltonian of this macroscopic body is 

H(x,Y); |ϕ1(x,Y) > and |ϕ2(x,Y) two different eigenstates of H, that is, H |ϕn(x,Y) > =  

En |ϕn(x,Y) >, with n=1,2.  Let us assume that this system could be represented by a 

coherent superposition of the states 1 and 2: 

 

                                             |ψ(x,Y)>  = A1 |ϕ1(x,Y) > + A2 |ϕ2(x,Y) >                     (3.3). 

 

One may expect that the two final functions |ϕ1(x,Y) > and |ϕ2(x,Y) > are very different 

in their fine Y dependence. This means particularly that for each value of Y they have 

very different phases, which vary strongly in each wave function with no direct relation 

to each other.
[1,17] 

 If only the the x-variables are observed the mean value < f > = <f(x)>  

is given by 

 

             < f > = <ψ(x,Y)|f(x)| ψ(x,Y)> = ʃdx f(x){Σij Ai
*
Aj ʃdY ϕi

*
(x,Y) ϕj(x,Y)}     (3.4). 

 

Due to very different phases of the functions |ϕ1(x,Y) > and |ϕ2(x,Y) > we would have 

 

                                                     ʃdY ϕi
*
(x,Y) ϕj(x,Y) = 0                                         (3.5), 

 

for any x values, showing that there is suppression of the macroscopic interferences. 

From this we can conclude that the coherent superposition of different quantum states of 

a macroscopic body is meaningless. The quantum states of macroscopic body are 

incoherent states; there is no quantum interference between them.  

 As is practically impossible to known the billions of degrees of freedom Y, 

decoherence can be viewed as the loss of information from the system.
[2]

 Decoherence 

can also be understood as the absence of macroscopic interferences. This helps us to 
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understand why the interaction with the environment is responsible for the quantum 

decoherence of a microscopic system. 

 

(3.a) Measurement, wavefunction collapse and decoherence.  

 Absent measurement the state function of an isolated system evolves in a 

leisurely and deterministic way, according to the Schrödinger equation (see Section 1). 

In this way quantum mechanics looks like a rather ordinary field theory much simpler 

than classical electrodynamics, for example, since there is only one field (ψ), instead of 

two (E and B).
[5] 

According to the Copenhagen Quantum Mechanics postulates in the 

measurement process, when a microscopic system interacts with an instrument (an 

observer) which is a macroscopic system, there is a wavefunction collapse. That is, the 

system wavefunction initially in a superposition of different states given by (1.2) 

appears to reduce to a single one of the states after interaction with an observer.  

However, it was shown in Section 2 that the interaction of a macroscopic system with 

microscopic one which was initially in a coherent superposition of states |n> transforms 

this pure state in an incoherent mixture of states |n>. The weighting of each outcome in 

the mixture in case of measurement is exactly that which gives the probabilities of the 

different results of such a measurement. The measurement is a bizarre process that 

generates the conceptual difficulties like indeterminacy, nonlocality and the collapse of 

the wavefunction.
[1,2]

 

 It is important to remark that decoherence by itself does not give a complete 

solution of the measurement problem since all components of the wavefunction still 

exist in a global superposition.
[1,2]

 That is, decoherence does not generate actual wave 

function collapse.
[1,2]

It gives only an appearance of wavefunction collapse. Decoherence 

does not claim to provide a mechanism for the actual wavefunction collapse; rather it 

puts forth a reasonable mechanism for the appearance of wavefunction collapse.
[1,2]

 

 Note that when we submit a macroscopic system to a measurement process it 

interacts with a macroscopic instrument. In this act there is no decoherence of the 

macroscopic system state since ab initio it was in a decoherent state. As seen before, 

macroscopic bodies are represented by an incoherent state: when this system is 

measured there is no wavefunction collapse. Wavefunction collapse happens only for 

systems described by coherent states.   
 

(3.b) Schrödinger´s Cat. 

 Schrödinger´s cat is a thought experiment,
[18]

 proposed by the Austrian physicist 

Erwin Schrödinger in 1935, sometimes described as a paradox. It illustrates what he 

saw as the problem of the Copenhagen interpretation of QM applied to macroscopic 

objects. This proposition is presented and extensively analyzed in many books 
[5]

 and 

articles.
[18]

 Shortly, “a cat, a flask of poison, and a radiative source are placed in a 

sealed box. If an internal monitor (Geiger detector) detects radioactivity (i.e. a single 

atom decaying) the flask is shattered, releasing the poison that kills the cat.” 

 Considering the decoherence effect let us help the reader to understand the 

essential aspects of this proposition answering the following questions: 

 

(1) Is it possible before the measurement to describe the cat state |Ψ> inside the box 

with a coherent wavefunction 

 

                                          |Ψ>  = (|Ψalive> + |Ψdead>)/√2                                         (3.1), 

 

where  |Ψalive> and |Ψdead> describe the cat alive and dead, respectively ?  
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(2)The cat is neither alive nor dead, but a linear combination of both things till the 

observation is done, say till you observe the situation by a glass window. In this 

moment the observation forces the cat to “assume a position”: alive or dead. If you see 

that it is dead, was your observation that killed the cat? 

 

 To answer the first question let us consider Section 3: since the cat is a 

macroscopic system it cannot be described by a coherent state | Ψ > given by (3.1). That 

is, the cat is alive or dead, not both alive and dead. The coherent superposition of 

macroscopic objects in two completely different states is an absurd.  

 Let us consider the second question. According to the QM postulates the 

measurement process occurs when a microscopic system interacts with a macroscopic 

system. In this event there is a collapse of the microscopic wavefunction (see Section 

3.a). In this context the most acceptable answer for the second question is that the 

Geiger counter discharge constitutes the real measurement process and not the human 

observation. 
 

Acknowledgements. The author thanks the librarian Virginia de Paiva for his 

invaluable assistance in the pursuit of various texts used as references in this article.  

 

 

APPENDIX.  Density matrix approach. 

 Let us present two different density matrix approaches for: (1) isolated systems 

and (2) systems immersed in a thermal bath (B). 

 

(1) Isolated Systems. 

 Assuming that the composed system S&B defined in Section 1 is an isolated 

system let us calculate, with a density matrix approach,
[10,11]

 the mean value of a 

physical quantity g(xN) of the subsystem S. So, taking into account that the system S&B 

is represented by the incoherent state (see Section 1): 

 

                                             |ΘSB(xN,ξ)> =  ΣsAs |ϕs(ξ)> |φs(xN)>                          (A.1), 

 

where {φs(xN)} form complete orthonormal set of eigenfunctions of some operator S(xN) 

acting upon the coordinates of the subsystem S, {ϕs(ξ)} is the set of functions which 

give a complete description of the bath
 [10,11]

 and the constants As obey the condition 

 Σs |As|
2
 =1. Thus, the mean value  < g(xN)> = < g > is given by 

                  

 < g > = <ΘSB(xN,ξ)| g(xN)| ΘSB(xN,ξ)> =ʃʃ Θ*SB(xN,ξ) g(xN) ΘSB(xN,ξ) dxN dξ     (A.2). 

 

Substituting (A.1) into (A.2) we have, 

                                                                < g >= Σss´
 
ρss´gs´s                                      (A.3), 

where 

                      gs´s = ʃφs´
*
(xN) g(xN) φs(xN) dxN     and      ρs´s = ʃϕs

*
(ξ) ϕs´(ξ)d ξ                     

 

are the matrix elements of the density matrix ρ.  Since < g > is real the matrix ρs´s is 

Hermitean, that is, ρs´s = ρ*s´s. Using the matrix operator ρ and the operator g the mean 

value of g will be given by the trace of matrix operator ρg: 

 

                                            < g > = Σs (ρg )ss = Tr(ρg )                                           (A.4). 

 



 

10 
 

This form (A.4) has the advantage that allows us to calculate < g > with help of any 

arbitrary complete, orthogonal, normalized set of wave functions: the trace of an 

operator is independent of the choice of the system of functions in terms of which the 

matrix elements are defined.
[10,14]

 

 

(2) Systems Immersed in a Thermal Bath. 

 Now, the density matrix will be calculate following the Statistical Mechanics 

formalism assuming that the S&B is a macroscopic system immersed in a very large 

thermal bath at a constant temperature T. The system S&B that is now a subsystem of 

the very large bath will be taken as a “closed system” (rigorously, “quasi-closed”) that 

is represented by a state function
[14]

 
 

                                        |ΘSB(xN,ξ,t)> = Σj cj exp(-iEjt/ћ) |ψj(xN,ξ)>                                    (A.5), 

 

where |ψj(xN,ξ)> are the basis vectors of the system S&B, H|ψj(xN,ξ)> = Ej|ψj(xN,ξ)> and 

H is the total Hamiltonian of S&B. With this representation the mean value of any 

quantity f(xN,ξ) of S&B is written as  

 

                                                 < f(t)>= Σij
 
ρij(t) fji                                                                             (A.6), 

 

where                 ρij(t) = ci
*
cj exp[-i(Ei-Ej)t/ћ]       and       fji = <ψj(xN,ξ)|f(xN,ξ)|ψi(xN,ξ)>. 

 

In this way, 

                                             ∂ρij(t)/∂t = (i/ћ) (Ei-Ej) ρij(t)                                         (A.7). 

 

Equations (A.7) may be rewritten in the general form
[10,14]

 

 

                                      (Ei-Ej) ρij(t) = Σm
 
[ρim(t) Hmj – Him ρmj(t)]                            (A.8). 

 

Hence we have for the operators ρ and H:
[10]

 

 

                                              ∂ρ/∂t = (i/ћ) (ρH – Hρ)                                                 (A.9). 

 

 From (A.9) we verify that ρ will be a constant of motion, that is, ∂ρ/∂t =0 if the 

operators ρ and H commute, that is, when [ρ, H] = 0.
[10,14]

 The system would be in a 

stationary state. In these conditions, supposing that the bath is at a constant temperature 

T it implies that the system is in thermal equilibrium or statistical equilibrium.
[14] 

 From 

(A.7) results that ∂ρij(t)/∂t = 0, that is, the matrix ρij is diagonal: ρij = ρijδij.  So, (A.6) 

becomes 

                                                     < f > = Σi
 
ρi fii                                                                                 (A.10). 

 

Eq.(A.9) is satisfied, for instance, if ρ = ρ(H): the function ρ being a function of an 

integral of motion H is itself an integral of motion. According to the Statistical 

Mechanics
10,14

 

                                                 ρ(H) = (1/Z) exp(-H/kT)                                          (A.11),  

 

where Z is the “partition function”.  So, the function ρi= ρii = ρ(Ei) gives the probability 

to find a state with energy Ei . In quantum statistics this function, called “distribution 

function”, is given by
[14]

 

                                                  ρ(Ei) = (1/Z) exp(-Ei/kT)                                        (A.12). 
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