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Abstract: In this paper we study the Feynman Propagator, the Ermakov-
Lewis invariant and the Bohmian Trajectories for the Logarithmic Nonlinear
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1. Introduction: The de Broglie-Bohm Quantum Mechanics and the
Quantum Bohmian Trajectory

In 1948, R. P. Feynman (Feynman, 1948) formulated the following principle
of minimum action for the quantum mechanics:

The transition amplitude between the states | a > and | b > of a quantum-mechanical
system is given by the sum of the elementary contributions, one for each trajectory
passing by | a > at the time t and by | b > at the time t. Each one of these contributions

have the same modulus, but its phase is the classical action Scf for each trajectory.

This principle is represented by the following expression known as the
"Feynman propagator":



K(b,a) = [ exp [%S(a,.b)]Dx(t) (L)

where S(b, a) is the classical action given by:

S(b,a) = j:”L(x, wdt ,  (L.2)

L(x, x, t) is the Lagrangean and D Xx(t) is the Feynman’s Measurement. It indicates that
we must perform the integration taking into account all the ways connecting the states
|a>and | b >.

The eqg. (1.1) which defines K(b, a) is called path integral or Feynman
integral and the Schrédinger wavefunction W(x, t) of any physical system is given by (we
indicate the initial position and initial time by X, and t, respectively): (Feynman and

Hibbs, 1965)

P(x,t) = f:K(x, X010t )P (X t)dx, ,  (1.3)

with the quantum causality condition: (Bernstein, 1985)
lim,, o KX X5tt) =0(x=%,) . (1.4)

2. The Logarithmic Nonlinear Schrodinger-Nassar Equation

In 2013, A. B. Nassar (Nassar, 2013) proposed a logarithmic nonlinear
Schrodinger equation to represent time dependent physical systems. In this article, let us
considerer this same equation with a potential energy V(X, t). Then, we have:

P(x.t) _ n® O°W(xt) .

ih
ot 2m  ox?2

V) — s e (x 0 - < e b > vy, (2.1)

where Y(x, t) is a wave function which describes a given system and « caracterizes the
resolution of the measurement. The last term in the eq. (2.1) arises from the requirement
that the integration of this equation with respect to the variable x under the condition that
for a particle the expectation value of the energy < E(t) > defined as:

<E@M)>=[ ¥ (RDEOYXHdX, (2.2)

must be equal to the expectation values of the kinetic and potential energies.

2.1.1. The Wave Packet of the Logarithmic Nonlinear Schrdédinger-
Nassar Equation



Writting the wave function W(x, t) in the polar form defined by the Madelung-
Bohm transformation: (Madelung, 1926, Bohm, 1952)

Y(x, t) = t) xexp[i S(x, )], (2.1.1.1)

where o(X, t) will be defined in what follows.

Calculating the derivatives temporal and spatial of (2.1.1.1), we get: (Bassalo
et al., 2002)

at;tP—exp@S)( +I¢§J’ (2.1.1.2a)

2
8¢ +2i—

Sop . 'S (asY
—o 2| |, (21.1.2b
xox o q’(ax) } ( )

Now, substituting the egs. (2.1.1.2a,b) into the eq. (2.1) and remembering that
exp [i S] is common factor, we have:
|h(a—(p +ip— oS j

ot ot

2 2 2 2
:—h—[a ¢+2i§a—¢+i¢a S_q)(@j :|+

2m| ox* oX OX ox? oX
+{ (ot —inklin(e)* - < m(p)? >[ixp . (2.1.13)

Multiplying the eq. (2.1.1.3) by 1 and separating the real and imaginary
®»

parts, results:
a) imaginary part

hop_ n [2168 op , 0 S] hzc[ﬁn(go) — < In(p)? >] (2.1.1.4)

@ ot - 2m @ OX OX  OX°
b) real part
2
pB_ 110 (ﬁ] V(D). (2.1.15)
ot 2m (pax OX



2.1.2. Dynamics of the Logarithmic Nonlinear Schrodinger-Nassar
Equation

Now, let us see the correlation between the expressions (2.1.1.4-5) and the
traditional equations of the Ideal Fluid Dynamics (See books on the Fluid Mechanics, for
instance: Streeter and Debler, 1986, Coimbra, 1967, Landau and Lifshitz, 1969, Bassalo,
1973, Cattani, 1990/2005): a) Continuity Equation, b) Euler’s equation. To do this let us
perform the following correspondences:

Quantum density probability:  [¥(x,t)]" =¥ (x, ) ¥P(xt) <

Quantum mass density:  p(x,t) = p*(x,t) < p(x1) =e(xt), (2.1.2.1a,b)

Gradient of the wave function: RS
m  Ox
Quantum velocity: un(x’ t) = un . (2.1.2.1¢,d)

Bohm quantum potential:

2 2 2 2
Vv, —— L8011 e G50,
2m ¢ ox 2m [p o

Putting the relations (2.1.2.1a-d) into the equation (2.1.1.4) and considering
that &(€n X)/8y = (1/x) (6x/dy) and en(x™) = m £n X, we get:

2
100 __ R [l B9, 05| ey~ <o) 5]
o ot 2m{ @ OX OX  OX

A __hasame)] 1o ( hos
ot mox  oOX 2 ox\.m ox
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ainyp)  masalndp) 10 ,heS
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ot mox x  2oxmad T <ilo)> =
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ov
=V —p% —2k[n(p)-<Mm(p)>lp —



P W) o)< i) Sl . (21.2.2)
ot oX

expression that indicates decoherence of the physical system represented by the
Logarithmic Nonlinear Schrodinger-Nassar Equation (LNLS—-NE) [eq. (2.1)]; then the
Continuity Equation its not preserved.

Now, let us obtained another dynamic equation of the LNLS—-NE. So,
differentiating the eq. (2.1.1.5) with respect x and using the egs. (2.1.2.1a-e), we obtain:

O _ 1o 1@{@}2 LV
@ ox* \ ox OX

oxot 2m ox
g(z@j _
ot\m ox

_ 1o n1d% _13[@]2_@V<x,t>_
mox\ 2m ¢ ox? m ox m ox

2 OX

- = - _=- [un(X,t)]z_lM_)
m OX 2 OX m OX

oV, (x.1) oV, (x.1)

+Vv_ (X1t
qu( ) 6X

:_%§b/(x,t)+vqu(x,t)]. (2.1.2.3)

We must observe that the eq. (2.1.2.3) is an equation similar to the Euler
Equation which governs the motion of a fluid particle.

Considering the substantive differentiation (local plus convective) or
hydrodynamic differentiation: (See books on the Fluid mechanics, for instance)

4_9,v, 2, (2124
dt ot OX
and that:
dx
Voo (X, 1) - =gt (2.1.2.4b)

the eq. (2.1.2.3) could be written as:

d2x OV (xt)
m—-=— -
dt X



d?x

m Fqu(x,t)‘xzx(t) (2.1.2.5)

We note that the eq. (2.1.2.5) has a form of the Second Newton Law, being the
first term of the second member is the classical newtonian force and the second is the
guantum bohmnian force.

2.1.3 The Quantum Wave Packet for the Logarithmic Nonlinear
Schrodinger-Nassar Equation Linearized along a Classical Trajetory

In order to find the quantum wave packet for the Logarithmic Nonlinear
Schrodinger-Nassar Equation (LNLS—NE) linearized along a classical trajetory, let us the
considerer the ansatz: (Nassar, 2013)

_ 2 (£)]Y/2 « _[X_q(t)]z
p(x1) =[2725°(t)] exp{ —252(0 ,  (2.1.3.13)

or [use the eq. (2.1.2.1a,b)]:

o(xt) = [27252 (O] 4 x exp{—%}, (2.1.3.1b)

where 5(t) and g(t) = <x> are auxiliary functions of time, to will be determined in what
follows, representing the width and the center of mass of wave packet, respectively.

Taking the eq. (2.1.3.1a), let us calculated the expressions [remember that ¢n (ab)
=¢na+tnband tne®=al:

mlp(x,t)] = fn[[zmsz O xexp{- %}J =

= n[275° (t)] 2 —% . (2132

<lp(x,1)] >=< én[[Zn& 2] ™% x exp{—%}j > =

_ 2 (V112 _ [x—a®)I’
= /n[276“ (1)] <—252(t) > . (2.1.3.3)

Considering that:
[722 exp(-2%)dz :% . (2.1.3.4)

and:



< f(xt) >= f:p(x,t) f(x,t)dx=g(), (2..1.3.5)

we have: (Bassalo et al., 2010)

S (t) 8% p(x,1) (2.1.3.6)
2p(x,t)  ox® T

np(x,t)]- < n[p(x, )] >=—

Insering the eq. (2.1.3.6) into eq. (2.1.2.2), results:

op e _ 5" 82,0)

o ox P00 o

0
o Pq) —%(Dg—p) =0, (2.137a)
X

ot OX

where:
D=x5>. (2.1.3.7b)

Defining (Nassar, 1986a):

g -v -P% 013

then the eq. (2.1.3.7a) will be the form:

P AP o (213.9)
ot oX

Differenting the eq. (2.1.3.1a) in the variables t and x [remembering that x and
t are independent variables], results: (Bassalo et al., 2010)



a(t)
50 50 5°(t)

ot

ap:p{ o, [x —q(t)]} (2.1.3.10)

op _[x=a®)]
P s (2.1.3.11)

Now, substituting the egs. (2.1.3.10,11) into (2.1.3.9) and integrating the
result, we obtain: (Bassalo et al., 2010)

o(t SO qml+dn).  (2.1.3.12)

l9qu (X’t) 5( )

Using the egs. (2.1.3.7b,8,12), we have:

0 _\juix-ql+a®. (21.313)

Vou (X,1) = [5()

To obtain the quantum wave packet [W(x , t)] of the LNLS—NE given by eq.
(2.1), let us expand the functions S(x, t) and un(x, t) around of q(t) up to second Taylor

order. In this way, we have:

S(x.t) = S[a(t), t] + S [a(t). ] x [ — g(1)] +%x[x _qOF  (2.1.3.14)

V(x,t) =V[q(t),t]+V'[q(t),t]x[x—q(t)]+\%x[x—q(t)]2 (2.1.3.15)
Voo (% 1) =V, [a(), t]+V7 [a(t),t]x [x—q(t)] +

QWX[X_W)]Z (2.1.3.16)

2
where (’) and " means, respectively, 9 and 6—2
aq aq

Differentiating the eq. (2.1.3.14) in the variable x, multiplying the result by
h/m, using the egs. (2.1.2.1c,d) and (2.1.3.13), results:



has(t) B . T — ! =

e 11 GO B COR RSO

= v, (x,t) = [%—k] X~ g+ 4 -
s0.0-"12, se.0-T100 0. @1317ap)

Substituting the eq. (2.1.3.17a,b) into the eq. (2.1.3.14), we have:

S(x,t) =S, (t) + q()x[x qO)] + 2h[58_’<] [x—qO]?, (2.1.3.18a)

where:
S, (t) =S[q(t),t], (2.1.3.18b)

are the quantum action.

Differentiating the eq. (2.1.3.18a) in relation to the time t, we obtain (remem-
bering that ox/ot = 0):

e _ 0 )ma@® o )m o 5
r =S,(t) + { L x- O|(t)]} {Zh[é(t) K]x[x— Q(t)]}

g_s (t)+ a) (t)

<X~ q(t)] - (t)

m o) 5 ma(t)  S(t)
Yol st -0 -— = Lo~ el (213.9)

Considering the egs. (2.1.2.1a) and (2.1.3.1b), let us write un given by eq.
(2.1.2.1e) in terms of potencies of [x - q(t)]. Before, we calculate the following

derivations:
dp 0 2 ()14 _[X_Q(t)]2 _
= [[w Q) exp{ 50 }]

_ 2 (Y44 o [x—a(®)]* _[x=a@®?*
= [22°00] exp{ 452 (1) } 8x{ 452 (1) }%



00 o e | D-a®F ] [x-a®l] _[x-q@)
R exp{ 45 () } {262(0} v {252@ }

2’ _ 0 _wX[X—Q(t)] _
ox*  OX 25°(t)

_qpxﬁ [x-a®)]| [x-q®OI %¢ _
ox | 25%(t) 25°%(t)  ox

1 +[X—QGHZX
25°%(t) 454 (1)

= ¢

1% x-aOF __1 = (5435
ookt 45'M)  20°()

Substituting the eq. (2.1.3.20) in the equation (2.1.2.1e), taking into account
the egs. (2.1.3.16), and considering the identity of polynomial, results:

v (Xt):_ﬁ{[x—q(t)]Z_ 1 }:
qui 2m | 45%(t)  25%(t)

=Va[a®), t1+V g, [at) t1x[x-q(t)] +%V"qu [a), tIx[x-a®)]* -

h? h?

Vy[a).t= ms Vi la®.t]=0, V", [a).t] = T () -

h® h®
AmS2(t) 8ma (1)

V. [q(t),t] = <[x—q®FF . (2.1.3.21)

Using the egs. (2.1.1.5) and (2.1.2.1c,e), we have:

o 2mepox’ 2

_ ﬁ__h_ziaz_mm(z@
m ox

j +V (x,t) >

oS m
h5+5v§u +V (X1 +V,(xt)=0. (2.1.3.22)

Inserting the egs. (2.1.3.13,15,19,21) into eq. (2.1.3.22), we obtain:

: MA® g1 MO - m SO SO 1
S, (1) + — = x[x—dt]-— +2h[5(t) 52(0] [x-q(t)]
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MO SO e MO
S R L Gl S (S RS GIRL O

+ V[q(t),t]+V'[q(t),t]x[x—q(t)]+‘%x[x—q(t)]2 "

h? h?

+4m52(t)_8m54(t)X[X_q(t)] . (2.1.3.23)

Since (x — q)° = 1, we can gather together the eq. (2.1.3.22) in potencies of the
(X —q), obtaining:
2

{hso(t)—%mqZ(t)+V[q(t),t]+ mh Ix[x— g +

AmS2(t)
+ md(t) +V [q() tIx[x—qt)]' +
5(t) 5(t) 2
{2[5(t) st

2

1. .. h ’ _
+§V [q(t),t]- — ()} [x—q@®)] =0. (2.1.3.24)

As the above relation is an identically null polynomium, the coefficients of
the potencies must be all equal to zero, that is:

: 1,1 ., n?
hZ

N : , 1. ~
ot)—2xo(t) +x 5(t)+EV [q(t)’t]_—4m253(t) :

(2.1.3.26)

q(t)+%V'[q(t),t] =0.  (21327)

Assuming that the following initial conditions are obeyed:
q(0)=x,, q0)=v,, 5(0)=J,, 5(0)=b,, (2.1.3.28a-d)
and that [see egs.(2.1.2.1c,d) and (2.1.3.17b)]:

11



s, (0) :% . (2.1.3.29)

the integration of the expression (2.1.3.25) will be given by:

1e .1 h* mv, X
S,(t) == dt'&Emg? (1) -V[q(t),t]- 070, (2.1.3.30
o= [A G OV G b= (213.30)
Taking into account the expressions (2.1.3.18a,b) in the equation (2.1.3.30)
results:
hZ
Aams2(t)

set =2 [ar ™ O gy 1y +

MVoX, | mA(t) m o) 2
+ = - q()]+2h[%—K]X[X—Q(t)]- (2.1.3.31)

This result obtained above permit us, finally, to obtain the wave packet for the
LNLS—NE. Indeed, considering the egs. (2.1.1.1), (2.1.3.1b) and (2.1.3.31), we get:

/4 im 5(t)
0 =27 O <ot IS0 -4 (t)) [X— ()]} x
xp{md(®) q” <X q(t)] + 'mV°X°}x

el [t M) N
op{ L dt [ ~VIa().{] 4m52(t')]}' (2.1.3.32)

2.1.4. Calculation of the Feynman Propagator for the Logarithmic
Nonlinear Schroédinger-Nassar Equation Linearized along a Classical Trajetory

The looked for Feynman-de Broglie-Bohm propagator for the Logarithmic
Nonlinear Schrddinger-Nassar Equation (LNLS—NE) linearized along a classical
trajectory, will be calculated using the egs. (1.3) and (2.1.3.24). However, in the eq. (1.3),
we will put with no loss of generality, t, = 0. Thus: (Bassalo et al., 2002)

P(x,0) = [ KX Xt 1) (x,0dx, - (2.1.4.1)

Initially let us define the normalized quantity:

D(v,, X, ) = (272'502 )”4‘11(v0 xt), (21.4.2)

12



which satisfies the following completeness relation: (Bernstein,1985)

'[jdeOCD*(vo,x,t)d)(vo,x’,t):%hc?u—x’) . (2.1.4.3)

Considering the egs. (2.1.1.1), (2.1.2.1a,b) and (2.1.4.2,3), we get:
P (x,1) x P(x,1) = ¢ (x,1) = p(X,1), (2.1.4.4)
D (Vy, X, )P (Vy, X, 1) =
= 27252 ) W (v, X, 1) P (Vy, X, 1) = 2752 p(vy, X, 1) —

o(Vy, X, 1) = (225 ) D" (v, X, 1) P (vy, X, 1), (2.1.4.5)

On the other side, substituting the eq. (2.1.4.5) into eq. (2.1.3.9), integrating
the result and using the expressions (2.1.3.1a) and (2.1.4.2) results [remembering that

00_020 and ¥ Y(+ w0) — 0, and the integration for parts]:

OX ot Ot oX

a(q>*\11)+8(<1>*‘1’n9qu) 0

_)
ot OX
o 0(D WY,
Qj (cp\y)dx+j oC¥0)y, =
ot 4= e X

- O [+, * to O r+o,  « o1/4 . »
= aLo(cp Pydx +(@WY,,) | 7 = aLo(qz P)dx + (2752) (PP I,,) |

%rw(@*?’)dx =0. (2.1.4.6)

The eq. (2.1.4.6) shows that the integration is time independent.
Consequently:

[ TdX @ (v, X W (K1) = [l ®" (U, X0, D (X ) . (2.1.4.7)

Multiplying the eq. (2.1.4.7) by ®(v,, X, ) and integrating over v_ and using
the eq. (2.1.4.3), we will obtain [remembering that f:dx’f (XW(X—x)=f(x)]:

fwfwdvodx'cjb(vo X, 1D (Vy, X ,D)P(X 1) =

13



= [T v X D0 (0, X, O ¥ (%, 0) >
.[ +mdxl(2_m}(X,—X)T(X',t) = (Z—ﬂhj‘P(x,t) =
| m -
= f:f:dvodxoq)(vo’X't)q)*(VO’XOaO)\P(XO,O) —

P(x,t) = j:{(%’hj [:de@(vo, X, D" (V,, X, ,0)} x W(dx,,0)dx, . (2.1.4.8)

Comparing the egs. (2.1.4.1,8), we have:

K (X, xo,t)=%r:dvoq)(vo,x,t)d>*(v0,x0,0) . (2.1.4.9)

Substituting the egs. (2.1.3.31) and (2.1.4.2) in the equation (2.1.4.9), we
obtain the Feynman Propagator for the LNLS—NE linearized along a classical trajetory,

that we were looking for, that is [remembering that ®”(v,, X,,t) = exp(— %j]:
m (e 0,
KO0 = L oy 50
im _5(t) 1 )
—[==-«]- —q(t
xem{{Zh[a(t) K] 452(t)jX[X q(t)] }x

xexp{i%(t)x[x—q(t)]}x

e MO oo
xexp{g'[o dt (T—V[q(t ).t ]—WJ}, (2.1.4.10)

where q(t) and 6(t) are solutions of the differential equations given by the
egs.(2.1.3.25,26).

Finally, it is important to note that putting « = 0 and V[q(t), t] = 0 into eq.

(2.1.4.10) and egs. (2.1.3.25,26) we obtain the free Feynman propagator. (Feynman and
Hibbs, 1965, Bassalo et al., 2002)

14



3. Ermakov-Lewis Invariants

Many years ago, in 1967, H. R. Lewis (Lewis, 1967) has shown that there is a
conserved quantity, that will be indicated by I, associated with the time dependent
harmonic oscillator (TDHO) with frequency w(t), given by:

1, . .
= J(@a-a)’ +(1), (D)
o
where g and a obey, respectively the equations:

3

G+0°()g =0, d+o’Ma=—. (323)
(94

On the other hand, as the above expressions have also been obtained by V. P.
Ermakov (Ermakov, 1880), the invariants determination of time dependent physical
systems is also known as the Ermakov-Lewis problem. So, considerable efforts have been
devoted to solve this problem and its generalizations, in the last forty years, and in many
works have been published on these subjects (Nassar, 1986b-d).

3.1. The Ermakov-Lewis Invariants for the Logarithmic Nonlinear
Schrodinger-Nassar Equation

Now, let us investigate the existence (or not) of these invariants for the
Logarithmic Nonlinear Schrédinger-Nassar Equation (LNLS—NE) with the potential V(x,
t) given by:

V(x,t)=%ma)2(t)x2, (3.1.1)

which is the Time Dependent Harmonic Oscillator Potential (TDHOP).
Taking the eq. (2.1.2.3) and considering the eq. (3.1.1), results:

Ny, (X, 1) Ny, (X,1) 1 OV, (X,1) -
OX

+ @ ()X = (3.1.2)

+ Vg, (X,1)

In order to integrate the eq. (3.1.2) let us assume that the expected value of

(x.1)

NV, . . .
quantum force[“a—] is equal to zero for all times t, that is:
X
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V., (x,t) vV,
<q—> —> <~ g

OX ox |x=q(t)1 <x>=q(). (3.1.3a-c)

In this way, using the eq. (2.1.2.1f), we can write the eq. (3.1.2) into two
parts:

g (%,1) g (x,1)

™ +o’ ()x=k{)x[x—q®)], (3.1.4)

+Vg, (X1)

o) nt 1 o p(xt) |
x| 2m? [p(x,t)  ox®

Performing the differentiations indicated in the eq. (3.1.5) we get:

k() x[x-q®)].  (3.1.5)

h? 1 83p(x,t)_ 2 op(x,t) 8% p(x,t) +
am? “p(x,t)  ox® pe(x,t)  ox ox?

s 1 P xx—qm)].  (3.16)

o (x,t)  ox

To integrate the eq. (3.1.6) it is necessary to known the initial condition for
p(x,t). (Bassalo et al.,, 2002) Let us assume that for t = 0 the physical system is
represented by a normalized Gaussian wave packet, centered at q(0), that is:

p(x0) = (275" O o, T 3= o 7). (317)

where:

A=2752(0),B=x—-q(0),C =252(0) . (3.1.8-10)

Since the eq. (3.1.7) is a particular solution of the eq. (3.1.6), we must have:

h? 1 agp(X,O)_ 2 9p(x,0) 0% p(x,0) +
am* “p(x,0) ox® p%(x,0) ox ox>
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1 0p(x,0)s
ol o KO- B

Making the differentiation indicated in the eq. (3.1.11), results: (Bassalo et al.,

2002)
m x[x=q(0)] = x(0) x[x—q(0)] —>
0= 3112)
~ 4m?54(0) o
and:
540y =" (3.1.13)
 4m%k(0) o
Comparing the egs. (3.1.12,13) with the egs. (3.1.6,7), by analogy we get:
h2
k(t) St (3.1.14)
_ 2 (+\7-1/2 [x- q(0)1*
px,t) =[275" ()] exp{ 252(1) =, (3119
and:
s = (3.1.16)
amk(t) o

Using the eq. (2.1.3.13) we calculate the following differentiations
(remembering that t and x as independent variables):

v, (Xt
w1t 0 {[5(t)

a s xIx[x=q()]+q®)} =

00) 0", 1y —qqey -2 -

[5(0 5 (t) 5(t)

K% () +§(t), (3.1.17)
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N (X1 2 S(t) 5(t)
o 8x{[5(t) KIx[x=q®]+ 4} === 50~ (3.1.18)

Putting the egs. (2.1.3.13) and (3.1.17,18) into the eq. (3.1.4), considering the
eg. (3.1.14), adding and subtracting the term oaz(t) q(t), results: (Bassalo et al., 2002)

PO _ O 1 qn-2O -

50 520 50 x]>q(t) +6(t) +

{[?E;—K]x[x—q(t)hq(t)}x[ 8 K] +
+w2(t>x[x—q(t)]+w2(t)xq(t)=4mf—54(t)=
o) o) .. h’ ~
g 250~ @ O XA +

+ [G() + @® OaW]x[x-q®)]° =0. (3.1.19)

To satisfy eq. (3.1.19), the following conditions must be obeyed:

@—2@K+K2+a}2(t)— f24 =0
5050 am’s* (1)
5(t) = 25(0) + [k + 0 ]S (1) = mf’—;(t), (3.1.20)

4O +@2(tqt) =0.  (3.1.21)

Putting:

5(t) = Un: ZJ at), (3.1.22)

18



we obtain:

hZ
Am?

S@t) = () a(t), S(t):(fw)““o'é(t). (3.1.23,24)

Inserting the egs. (3.1.22-24) into the eq. (3.1.20) and multiplyng the result by
a, We get: (Bassalo et al., 2002)

3

& — 2ax + (w* +K2)a=i. (3.1.25)
a

Finally, eliminating the factor ® into the egs. (3.1.20,21), we get:

d—ZdK+(a)2+K2)a=i3 — &q—qa—2qu+;<2aq=i3 N
a a

i(a‘ea—da)z%ﬂqu—xzaq —
dt o

(aq—qa)%(aq—qa)=(aq—qa)i+(aq—qa)(2m<q—z<2aq) -

a3

d g
at'e)

d 1 . . N2 d.1,q,, (D ey 2 2 N
E[E(aq_qa) ]+E[E(E) 1=-(2axq - k" o)

SHE (@a-00)* + (D = -Qan - s*a)aa’ (D)

% — _(2ax - K*a)qa’ %(g) . (3.1.36)
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where [see eq. (3.1)]:
= %(dq_qa)z +(ﬂ)2, (3.1.37)
o

which represents the Ermakov-Lewis Invariant (ELI) of the TDHO. (Bassalo et al., 2002)

In conclusion, the eq. (3.1.36) we have shown that the LNLS—NE has not an
ELI for the TDHO.

4. The Bohmian Trajectories for the Logarithmic Nonlinear Schrddinger-
Nassar Equation

The associated Bohmian Trajectories (Nassar, 2013, Sanz, 2000, Pan, 2010,
Holland, 2005, Wyatt, 2005) for the Logarithmic Nonlinear Schrodinger-Nassar Equation
(LNLS—NE) of an evolving ith particle of the ensemble with an initial position x ; can be

calculated by considering that:
X; (1) = Vg, [x (0),1]. (4.1)
Then substituting the eq. (4.1) into eq. (2.1.3.13), results:
5(t)

Xi(t) = [%_k]x[xi O -a®]+a®) —

0

iy — 100 1t gy L k®-a® _o®
%0 -4 = [5 = KIx[x 0 - a)] x(O_a® o~

t d ¢ d .
Jy 5 tenx, © —a@Dot = [ {enls @Dt - [ ot —

pO-am1_, 50 o O-a®]_sw)
[XOi - qo] 50 [XOi - qo] 50

5(@)
5(0)

—exp(st) —

X; (1) = q(t) + (X — ) % xexp(-xt) . (4.2)

The egs. (3.1.20,21) show that a continuous measurement of a quantum wave
packet gives specific features to its evolution: the appearance of distinct classical and
quantum elements, respectively. This measurement consists of monitoring the position of
the quantum systems and the result is the measured classical path q(t) for t within a
quantum uncertainty 5(t).
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4.1 The Bohmian Trajectories for the Logarithmic Nonlinear
Schrodinger-Nassar Equation in Stationary Regime

From the egs. (3.1.20,21), we note that for k # 0 a stationary regime can be
reached and that the width of the wave packet can be related to the resolution of
measurement as follows. Then, considering that §(t) = cte [s(t)=0] in the egs.
(3.1.20,21), we have:

[x° + 015, :L — K’ :i—a)2 (4.33)
4m*s; 2

wherel:

2ms;

" ) =6,8x10"*s, (4.3b)

75 = (

is the Bohmtime constant which determines the time resolution of the quantum
measurement, and:

GO +@pa) =0  —  q(t) =g, exp(Eimgt). (4.4)

The egs. (4.3a,b) means that if an initially free wave packet is kept under a
certain continuous measurement, its width (60) may not spread in time. Then, the

associated Bohmnian Trajectories (BT) [eq. (4.2)] of an evolving ith particle of the
ensemble with an initial position Xoi Is giving by:

X, (t) = G x XD (£imyt) + (X — o) xeXp(-kt) . (4.5)
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