

Instituto de Física Universidade de São Paulo

Feynman Propagator, Ermakov-Lewis Invariant and Bohmian Trajectories for the Logarithmic Nonlinear Schrödinger-Nassar Equation

Instituto de Física, Universidade de São Paulo, CP 66.318 05315-970, São Paulo, SP, Brasil

José Maria Filardo Bassalo

Antonio Boulhosa Nassar Mauro Sérgio Dorsa Cattani

Publicação IF 1687 26/09/2014

UNIVERSIDADE DE SÃO PAULO Instituto de Física Cidade Universitária Caixa Postal 66.318 05315-970 - São Paulo - Brasil

Feynman Propagator, Ermakov-Lewis Invariant and Bohmian Trajectories for the Logarithmic Nonlinear Schrödinger-Nassar Equation

José Maria Filardo Bassalo

Academia Paraense de Ciências, 66035-400, Belém, PA

jmfbassalo@gmail.com

Antonio Boulhosa Nassar

Extension Program-Department of Sciences, University of California, Los Angeles, California 90024

nassar@ucla.edu

Mauro Sérgio Dorsa Cattani

Instituto de Física da USP, 05389-970, São Paulo, SP

mcattani@if.usp.br

Abstract: In this paper we study the Feynman Propagator, the Ermakov-Lewis invariant and the Bohmian Trajectories for the Logarithmic Nonlinear Schrödinger-Nassar Equation, linearized along a classical trajectory, by using the quantum mechanical formalism of the de Broglie-Bohm.

Keywords: De Broglie-Bohm Quantum Mechanics; Feynman Propagator, Ermakov-Lewis Invariant, Bohmian Trajectory; Logarithmic Nonlinear Schrödinger-Nassar Equation.

PACS 03.65 - Quantum Mechanics

1. Introduction: The de Broglie-Bohm Quantum Mechanics and the Quantum Bohmian Trajectory

In 1948, R. P. Feynman (Feynman, 1948) formulated the following principle of minimum action for the quantum mechanics:

The transition amplitude between the states $|a\rangle$ and $|b\rangle$ of a quantum-mechanical system is given by the sum of the elementary contributions, one for each trajectory passing by $|a\rangle$ at the time t_a and by $|b\rangle$ at the time t_b . Each one of these contributions have the same modulus, but its phase is the classical action S_{cf} for each trajectory.

This principle is represented by the following expression known as the "Feynman propagator":

$$K(b,a) = \int_{a}^{b} \exp\left[\frac{i}{\hbar}S(a,b)\right]Dx(t)$$
, (1.1)

where S(b, a) is the *classical action* given by:

$$S(b,a) = \int_{t_a}^{t_b} L(x,\dot{x},t)dt$$
, (1.2)

 $L(x, \dot{x}, t)$ is the Lagrangean and D(x(t)) is the Feynman's Measurement. It indicates that we must perform the integration taking into account all the ways connecting the states $|a\rangle$ and $|b\rangle$.

The eq. (1.1) which defines K(b, a) is called *path integral* or *Feynman integral* and the Schrödinger wavefunction $\Psi(x, t)$ of any physical system is given by (we indicate the initial position and initial time by x_o and t_o , respectively): (Feynman and Hibbs, 1965)

$$\Psi(x,t) = \int_{-\infty}^{+\infty} K(x,x_0;t,t_0) \Psi(x_0,t_0) dx_0 , \quad (1.3)$$

with the quantum causality condition: (Bernstein, 1985)

$$\lim_{t,t_0\to 0} K(x,x_0;t,t_0) = \delta(x-x_0) . \quad (1.4)$$

2. The Logarithmic Nonlinear Schrödinger-Nassar Equation

In 2013, A. B. Nassar (Nassar, 2013) proposed a logarithmic nonlinear Schrödinger equation to represent time dependent physical systems. In this article, let us considerer this same equation with a potential energy V(x, t). Then, we have:

$$i\hbar \frac{\partial \Psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + \left[\Psi(x,t) - i\hbar \kappa \left[\ln |\Psi(x,t)|^2 - \left\langle \ln |\Psi(x,t)|^2 \right\rangle \right] \times \Psi(x,t) , \quad (2.1)$$

where $\Psi(x, t)$ is a wave function which describes a given system and κ caracterizes the resolution of the measurement. The last term in the eq. (2.1) arises from the requirement that the integration of this equation with respect to the variable x under the condition that for a particle the expectation value of the energy $\langle E(t) \rangle$ defined as:

$$\langle E(t) \rangle = \int_{-\infty}^{+\infty} \Psi^*(x,t) E(t) \Psi(x,t) dx, \quad (2.2)$$

must be equal to the expectation values of the kinetic and potential energies.

2.1.1. The Wave Packet of the Logarithmic Nonlinear Schrödinger-Nassar Equation

Writting the wave function $\Psi(x, t)$ in the polar form defined by the Madelung-Bohm transformation: (Madelung, 1926, Bohm, 1952)

$$\Psi(x, t) = \varphi(x, t) \times exp[i S(x, t)],$$
 (2.1.1.1)

where $\varphi(x, t)$ will be defined in what follows.

Calculating the derivatives temporal and spatial of (2.1.1.1), we get: (Bassalo et al., 2002)

$$\frac{\partial \Psi}{\partial t} = \exp(iS) \left(\frac{\partial \varphi}{\partial t} + i\varphi \frac{\partial S}{\partial t} \right), \quad (2.1.1.2a)$$

$$\frac{\partial^2 \Psi}{\partial x^2} = \exp(iS) \left[\frac{\partial^2 \varphi}{\partial x^2} + 2i \frac{\partial S}{\partial x} \frac{\partial \varphi}{\partial x} + i\varphi \frac{\partial^2 S}{\partial x^2} - \varphi \left(\frac{\partial S}{\partial x} \right)^2 \right]. \quad (2.1.1.2b)$$

Now, substituting the eqs. (2.1.1.2a,b) into the eq. (2.1) and remembering that exp[i S] is common factor, we have:

$$i\hbar \left(\frac{\partial \varphi}{\partial t} + i\varphi \frac{\partial S}{\partial t} \right) =$$

$$= -\frac{\hbar^2}{2m} \left[\frac{\partial^2 \varphi}{\partial x^2} + 2i \frac{\partial S}{\partial x} \frac{\partial \varphi}{\partial x} + i\varphi \frac{\partial^2 S}{\partial x^2} - \varphi \left(\frac{\partial S}{\partial x} \right)^2 \right] +$$

$$+ \left\{ V(x,t) - i\hbar \kappa \left[\ell n(\varphi)^2 - \langle \ell n(\varphi)^2 \rangle \right] \right\} \times \varphi . (2.1.1.3)$$

Multiplying the eq. (2.1.1.3) by $\frac{1}{\varphi}$ and separating the real and imaginary parts, results:

a) imaginary part

$$\frac{\hbar}{\varphi} \frac{\partial \varphi}{\partial t} = -\frac{\hbar^2}{2m} \left(2 \frac{1}{\varphi} \frac{\partial S}{\partial x} \frac{\partial \varphi}{\partial x} + \frac{\partial^2 S}{\partial x^2} \right) - \hbar \kappa \left[\ell n(\varphi)^2 - \langle \ell n(\varphi)^2 \rangle \right], \quad (2.1.1.4)$$

b) real part

$$-\hbar \frac{\partial S}{\partial t} = -\frac{\hbar^2}{2m} \left[\frac{1}{\varphi} \frac{\partial^2 \varphi}{\partial x^2} - \left(\frac{\partial S}{\partial x} \right)^2 \right] + V(x, t) . \quad (2.1.1.5)$$

2.1.2. Dynamics of the Logarithmic Nonlinear Schrödinger-Nassar Equation

Now, let us see the correlation between the expressions (2.1.1.4-5) and the traditional equations of the Ideal Fluid Dynamics (See books on the Fluid Mechanics, for instance: Streeter and Debler, 1986, Coimbra, 1967, Landau and Lifshitz, 1969, Bassalo, 1973, Cattani, 1990/2005): a) *Continuity Equation*, b) *Euler's equation*. To do this let us perform the following correspondences:

Quantum density probability:
$$|\Psi(x,t)|^2 = \Psi^*(x,t)\Psi(x,t)$$
 \leftrightarrow

Quantum mass density:
$$\rho(x,t) = \varphi^2(x,t) \leftrightarrow \sqrt{\rho(x,t)} = \varphi(x,t)$$
, (2.1.2.1a,b)

Gradient of the wave function:
$$\frac{\hbar}{m} \frac{\partial S(x,t)}{\partial x} \leftrightarrow$$

Quantum velocity:
$$v_{qu}(x, t) \equiv v_{qu}$$
, (2.1.2.1c,d)

Bohm quantum potential:

$$V_{qu}(x,t) \equiv V_{qu} = -\frac{\hbar^2}{2m} \frac{1}{\varphi} \frac{\partial^2 \varphi}{\partial x^2} = -\frac{\hbar^2}{2m} \frac{1}{\sqrt{\rho}} \frac{\partial^2 \sqrt{\rho}}{\partial x^2} . \quad (2.1.2.1 \text{ e,f})$$

Putting the relations (2.1.2.1a-d) into the equation (2.1.1.4) and considering that $\partial(\ln x)/\partial y = (1/x) (\partial x/\partial y)$ and $\ln(x^m) = m \ln x$, we get:

$$\frac{1}{\varphi}\frac{\partial\varphi}{\partial t} = -\frac{\hbar}{2m}\left(2\frac{1}{\varphi}\frac{\partial S}{\partial x}\frac{\partial\varphi}{\partial x} + \frac{\partial^{2}S}{\partial x^{2}}\right) - \kappa\left[\ln(\varphi)^{2} - \langle\ln(\varphi)^{2}\rangle\right] \rightarrow$$

$$\frac{\partial[\ln(\varphi)]}{\partial t} = -\frac{\hbar}{m}\frac{\partial S}{\partial x}\frac{\partial[\ln(\varphi)]}{\partial x} - \frac{1}{2}\frac{\partial}{\partial x}\left(\frac{\hbar}{m}\frac{\partial S}{\partial x}\right) - \kappa\left[\ln(\varphi)^{2} - \langle\ln(\varphi)^{2}\rangle\right] \rightarrow$$

$$\frac{\partial(\ln(\varphi))}{\partial t} = -\frac{\hbar}{m}\frac{\partial S}{\partial x}\frac{\partial(\ln(\varphi))}{\partial x} - \frac{1}{2}\frac{\partial}{\partial x}\left(\frac{\hbar}{m}\frac{\partial S}{\partial x}\right) - \kappa\left[\ln(\varphi) - \langle\ln(\varphi)\rangle\right] \rightarrow$$

$$\frac{1}{2}\frac{1}{\varphi}\frac{\partial\varphi}{\partial t} = -v_{qu}\frac{1}{2}\frac{1}{\varphi}\frac{\partial\varphi}{\partial x} - \frac{1}{2}\frac{\partial v_{qu}}{\partial x} - \kappa\left[\ln(\varphi) - \langle\ln(\varphi)\rangle\right] \rightarrow$$

$$\frac{\partial\varphi}{\partial t} = -v_{qu}\frac{\partial\varphi}{\partial x} - \rho\frac{\partial v_{qu}}{\partial x} - 2\kappa\left[\ln(\varphi) - \langle\ln(\varphi)\rangle\right]\rho \rightarrow$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_{qu})}{\partial x} - 2\kappa [\ell n(\rho) - \langle \ell n(\rho) \rangle] \rho , \quad (2.1.2.2)$$

expression that indicates <u>decoherence</u> of the physical system represented by the Logarithmic Nonlinear Schrödinger-Nassar Equation (*LNLS-NE*) [eq. (2.1)]; then the *Continuity Equation* its not preserved.

Now, let us obtained another dynamic equation of the LNLS-NE. So, differentiating the eq. (2.1.1.5) with respect x and using the eqs. (2.1.2.1a-e), we obtain:

$$-\hbar \frac{\partial^{2} S}{\partial x \partial t} = -\frac{\hbar^{2}}{2m} \frac{\partial}{\partial x} \left[\frac{1}{\varphi} \frac{\partial^{2} \varphi}{\partial x^{2}} - \left(\frac{\partial S}{\partial x} \right)^{2} \right] + \frac{\partial V(x,t)}{\partial x} \rightarrow$$

$$\frac{\partial}{\partial t} \left(\frac{\hbar}{m} \frac{\partial S}{\partial x} \right) =$$

$$= -\frac{1}{m} \frac{\partial}{\partial x} \left(-\frac{\hbar^{2}}{2m} \frac{1}{\varphi} \frac{\partial^{2} \varphi}{\partial x^{2}} \right) - \frac{1}{2} \frac{\partial}{\partial x} \left(\frac{\hbar}{m} \frac{\partial S}{\partial x} \right)^{2} - \frac{1}{m} \frac{\partial V(x,t)}{\partial x} =$$

$$= -\frac{1}{m} \frac{\partial V_{qu}(x,t)}{\partial x} - \frac{1}{2} \frac{\partial}{\partial x} \left[v_{qu}(x,t) \right]^{2} - \frac{1}{m} \frac{\partial V(x,t)}{\partial x} \rightarrow$$

$$\frac{\partial v_{qu}(x,t)}{\partial t} + v_{qu}(x,t) \frac{\partial v_{qu}(x,t)}{\partial x} = -\frac{1}{m} \frac{\partial}{\partial x} \left[V(x,t) + V_{qu}(x,t) \right]. \quad (2.1.2.3)$$

We must observe that the eq. (2.1.2.3) is an equation similar to the *Euler Equation* which governs the motion of a fluid particle.

Considering the *substantive differentiation* (local plus convective) or *hydrodynamic differentiation*: (See books on the Fluid mechanics, for instance)

$$\frac{d}{dt} = \frac{\partial}{\partial t} + v_{qu} \frac{\partial}{\partial x} , \quad (2.1.2.4a)$$

and that:

$$v_{qu}(x,t)\Big|_{x=x(t)} = \frac{dx}{dt}$$
, (2.1.2.4b)

the eq. (2.1.2.3) could be written as:

$$m\frac{d^2x}{dt^2} = -\frac{\partial V_{qu}(x,t)}{\partial x} \to$$

$$m\frac{d^2x}{dt^2} = F_{qu}(x,t)\Big|_{x=x(t)}$$
 (2.1.2.5)

We note that the eq. (2.1.2.5) has a form of the *Second Newton Law*, being the first term of the second member is the *classical newtonian force* and the second is the *quantum bohmnian force*.

2.1.3 The Quantum Wave Packet for the Logarithmic Nonlinear Schrödinger-Nassar Equation Linearized along a Classical Trajetory

In order to find the quantum wave packet for the Logarithmic Nonlinear Schrödinger-Nassar Equation (*LNLS–NE*) linearized along a classical trajetory, let us the considerer the *ansatz*: (Nassar, 2013)

$$\rho(x,t) = \left[2\pi\delta^2(t)\right]^{-1/2} \times \exp\left\{-\frac{[x-q(t)]^2}{2\delta^2(t)}\right\}, \quad (2.1.3.1a)$$

or [use the eq. (2.1.2.1a,b)]:

$$\varphi(x,t) = \left[2\pi\delta^{2}(t)\right]^{-1/4} \times \exp\left\{-\frac{\left[x - q(t)\right]^{2}}{4\delta^{2}(t)}\right\}, \quad (2.1.3.1b)$$

where $\delta(t)$ and $q(t) = \langle x \rangle$ are auxiliary functions of time, to will be determined in what follows, representing the *width* and the *center of mass of wave packet*, respectively.

Taking the eq. (2.1.3.1a), let us calculated the expressions [remember that $\ln \ell$ (ab) $= \ln \alpha + \ln \beta$ and $\ln e^{\alpha} = \alpha$]:

Considering that:

$$\int_{-\infty}^{+\infty} z^2 \exp(-z^2) dz = \frac{\sqrt{\pi}}{2} , \quad (2.1.3.4)$$

and:

$$\langle f(x,t) \rangle = \int_{-\infty}^{+\infty} \rho(x,t) f(x,t) dx = g(t), \quad (2..1.3.5)$$

we have: (Bassalo et al., 2010)

$$\ell n[\rho(x,t)] - <\ell n[\rho(x,t)] > = -\frac{\delta^2(t)}{2\rho(x,t)} \frac{\partial^2 \rho(x,t)}{\partial x^2}$$
. (2.1.3.6)

Insering the eq. (2.1.3.6) into eq. (2.1.2.2), results:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_{qu})}{\partial x} = -2k\rho(-\frac{\delta^2}{2\rho}\frac{\partial^2 \rho}{\partial x^2}) \longrightarrow$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_{qu})}{\partial x} - \frac{\partial}{\partial x} (D \frac{\partial \rho}{\partial x}) = 0, \quad (2.1.3.7a)$$

where:

$$D = \kappa \delta^2$$
 . (2.1.3.7b)

Defining (Nassar, 1986a):

$$\theta_{qu} = v_{qu} - \frac{D}{\rho} \frac{\partial \rho}{\partial x}, \qquad (2.1.3.8)$$

then the eq. (2.1.3.7a) will be the form:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho \mathcal{G})}{\partial x} = 0. \qquad (2.1.3.9)$$

Differenting the eq. (2.1.3.1a) in the variables t and x [remembering that x and t are independent variables], results: (Bassalo et al., 2010)

$$\frac{\partial \rho}{\partial t} = \rho \left\{ -\frac{\dot{\delta}(t)}{\delta(t)} + \frac{\dot{q}(t)}{\delta^2(t)} [x - q(t)] + \frac{\dot{a}(t)}{\delta^3(t)} [x - q(t)]^2 \right\}, \quad (2.1.3.10)$$

$$\frac{\partial \rho}{\partial x} = -\rho \frac{[x - q(t)]}{\delta^2(t)}.$$
 (2.1.3.11)

Now, substituting the eqs. (2.1.3.10,11) into (2.1.3.9) and integrating the result, we obtain: (Bassalo et al., 2010)

$$\theta_{qu}(x,t) = \frac{\dot{\delta}(t)}{\delta(t)} [x - q(t)] + \dot{q}(t).$$
(2.1.3.12)

Using the eqs. (2.1.3.7b,8,12), we have:

$$v_{qu}(x,t) = \left[\frac{\dot{\delta}(t)}{\delta(t)} - k\right] \times [x - q(t)] + \dot{q}(t). \qquad (2.1.3.13)$$

To obtain the quantum wave packet $[\Psi(x,t)]$ of the *LNLS-NE* given by eq. (2.1), let us expand the functions S(x,t) and $V_{qu}(x,t)$ around of q(t) up to second Taylor order. In this way, we have:

$$S(x,t) = S[q(t),t] + S'[q(t),t] \times [x-q(t)] + \frac{S''[q(t),t]}{2} \times [x-q(t)]^2$$
 (2.1.3.14)

$$V(x,t) = V[q(t),t] + V'[q(t),t] \times [x - q(t)] + \frac{V''[q(t),t]}{2} \times [x - q(t)]^{2}$$
 (2.1.3.15)

$$V_{qu}(x,t) = V_{qu}[q(t),t] + V'_{qu}[q(t),t] \times [x-q(t)] +$$

$$+\frac{V''_{qu}[q(t),t]}{2} \times [x-q(t)]^2 \qquad (2.1.3.16)$$

where (') and " means, respectively, $\frac{\partial}{\partial q}$ and $\frac{\partial^2}{\partial q^2}$.

Differentiating the eq. (2.1.3.14) in the variable x, multiplying the result by \hbar/m , using the eqs. (2.1.2.1c,d) and (2.1.3.13), results:

$$\frac{\hbar}{m} \frac{\partial S(x,t)}{\partial x} = \frac{\hbar}{m} \left\{ S'[q(t),t] + S''[q(t),t] \times [x-q(t)] \right\} =$$

$$= v_{qu}(x,t) = \left[\frac{\dot{S}(t)}{S(t)} - k \right] \times [x-q(t)] + \dot{q}(t) \qquad \rightarrow$$

$$S'[q(t),t] = \frac{m\dot{q}(t)}{\hbar}, \quad S''[q(t),t] = \frac{m}{\hbar} \left[\frac{\dot{q}(t)}{\hbar} - \kappa \right]. \quad (2.1.3.17a,b)$$

Substituting the eq. (2.1.3.17a,b) into the eq. (2.1.3.14), we have:

$$S(x,t) = S_0(t) + \frac{m\dot{q}(t)}{\hbar} \times [x - q(t)] + \frac{m}{2\hbar} \left[\frac{\dot{\delta}(t)}{\delta(t)} - \kappa\right] \times [x - q(t)]^2, \quad (2.1.3.18a)$$

where:

$$S_0(t) \equiv S[q(t), t],$$
 (2.1.3.18b)

are the quantum action.

Differentiating the eq. (2.1.3.18a) in relation to the time t, we obtain (remembering that $\partial x/\partial t = 0$):

$$\frac{\partial S}{\partial t} = \dot{S}_{0}(t) + \frac{\partial}{\partial t} \left\{ \frac{m\dot{q}(t)}{\hbar} \times [x - q(t)] \right\} + \frac{\partial}{\partial t} \left\{ \frac{m}{2\hbar} \left[\frac{\dot{\delta}(t)}{\delta(t)} - \kappa \right] \times [x - q(t)]^{2} \right\} \longrightarrow \frac{\partial S}{\partial t} = \dot{S}_{0}(t) + \frac{m\ddot{q}(t)}{\hbar} \times [x - q(t)] - \frac{m\dot{q}^{2}(t)}{\hbar} + \frac{m}{2\hbar} \left[\frac{\ddot{\delta}(t)}{\delta(t)} - \frac{\dot{\delta}^{2}(t)}{\delta^{2}(t)} \right] \times [x - q(t)]^{2} - \frac{m\dot{q}(t)}{\hbar} \left[\frac{\dot{\delta}(t)}{\delta(t)} - k \right] \times [x - q(t)]. \quad (2.1.3.19)$$

Considering the eqs. (2.1.2.1a) and (2.1.3.1b), let us write V_{qu} given by eq. (2.1.2.1e) in terms of potencies of [x - q(t)]. Before, we calculate the following derivations:

$$\frac{\partial \varphi}{\partial x} = \frac{\partial}{\partial x} \left[[2\pi \delta^2(t)]^{-1/4} \times \exp\left\{ -\frac{[x - q(t)]^2}{4\delta^2(t)} \right\} \right] =$$

$$= \left[[2\pi \delta^2(t)]^{-1/4} \times \exp\left\{ -\frac{[x - q(t)]^2}{4\delta^2(t)} \right\} \times \frac{\partial}{\partial x} \left\{ -\frac{[x - q(t)]^2}{4\delta^2(t)} \right\} \rightarrow$$

$$\frac{\partial \varphi}{\partial x} = -\left[2\pi\delta^{2}(t)\right]^{-1/4} \times \exp\left\{-\frac{\left[x - q(t)\right]^{2}}{4\delta^{2}(t)}\right\} \times \left\{\frac{\left[x - q(t)\right]}{2\delta^{2}(t)}\right\} = -\varphi \times \left\{\frac{\left[x - q(t)\right]}{2\delta^{2}(t)}\right\},$$

$$\frac{\partial^{2} \varphi}{\partial x^{2}} = \frac{\partial}{\partial x} \left\{-\varphi \times \frac{\left[x - q(t)\right]}{2\delta^{2}(t)}\right\} =$$

$$= -\varphi \times \frac{\partial}{\partial x} \left\{\frac{\left[x - q(t)\right]}{2\delta^{2}(t)}\right\} - \frac{\left[x - q(t)\right]}{2\delta^{2}(t)} \times \frac{\partial \varphi}{\partial x} =$$

$$= \varphi \times \frac{1}{2\delta^{2}(t)} + \frac{\left[x - q(t)\right]^{2}}{4\delta^{4}(t)} \times \varphi \to$$

$$\frac{1}{\varphi} \frac{\partial^{2} \varphi}{\partial x^{2}} = \frac{\left[x - q(t)\right]^{2}}{4\delta^{4}(t)} - \frac{1}{2\delta^{2}(t)}. \quad (2.1.3.20)$$

Substituting the eq. (2.1.3.20) in the equation (2.1.2.1e), taking into account the eqs. (2.1.3.16), and considering the identity of polynomial, results:

$$V_{qu}(x,t) = -\frac{\hbar^{2}}{2m} \left\{ \frac{[x-q(t)]^{2}}{4\delta^{4}(t)} - \frac{1}{2\delta^{2}(t)} \right\} =$$

$$= V_{qu}[q(t),t] + V'_{qu}[q(t),t] \times [x-q(t)] + \frac{1}{2}V''_{qu}[q(t),t] \times [x-q(t)]^{2} \rightarrow$$

$$V_{qu}[q(t),t] = \frac{\hbar^{2}}{4m\delta^{2}(t)}, \quad V'_{qu}[q(t),t] = 0, \quad V''_{qu}[q(t),t] = -\frac{\hbar^{2}}{4m\delta^{4}(t)} \rightarrow$$

$$V_{qu}[q(t),t] = \frac{\hbar^{2}}{4m\delta^{2}(t)} - \frac{\hbar^{2}}{8m\delta^{4}(t)} \times [x-q(t)]^{2}. \quad (2.1.3.21)$$

Using the eqs. (2.1.1.5) and (2.1.2.1c,e), we have:

$$-\hbar \frac{\partial S}{\partial t} = -\frac{\hbar^2}{2m} \frac{1}{\varphi} \frac{\partial^2 \varphi}{\partial x^2} + \frac{m}{2} \left(\frac{\hbar}{m} \frac{\partial S}{\partial x} \right)^2 + V(x, t) \rightarrow$$

$$\frac{\partial S}{\partial t} + \frac{m}{2} \frac{\partial^2 \varphi}{\partial x^2} + V(x, t) + V(x, t) = 0 \qquad (2.1.3.20)$$

$$\hbar \frac{\partial S}{\partial t} + \frac{m}{2} v_{qu}^2 + V(x,t) + V_{qu}(x,t) = 0.$$
 (2.1.3.22)

Inserting the eqs. (2.1.3.13,15,19,21) into eq. (2.1.3.22), we obtain:

$$\hbar[\dot{S}_0(t) + \frac{m\ddot{q}(t)}{\hbar} \times [x - q(t)] - \frac{m\dot{q}^2(t)}{\hbar} + \frac{m}{2\hbar} [\frac{\ddot{\delta}(t)}{\delta(t)} - \frac{\dot{\delta}^2(t)}{\delta^2(t)}] \times [x - q(t)]^2 - \frac{m\dot{q}^2(t)}{\hbar} + \frac{m\ddot{q}(t)}{\hbar} \times [x - q(t)]^2 - \frac{m\ddot{q}^2(t)}{\hbar} + \frac{m\ddot{q}(t)}{\hbar} \times [x - q(t)]^2 - \frac{m\ddot{q}(t)}{\hbar} \times [x - q(t)]$$

$$-\frac{m\dot{q}(t)}{\hbar} \left[\frac{\dot{\delta}(t)}{\delta(t)} - \kappa \right] \times \left[x - q(t) \right] + \frac{m}{2} \left\{ \left[\frac{\dot{\delta}(t)}{\delta(t)} - \kappa \right] \times \left[x - q(t) \right] + \dot{q}(t) \right\}^{2} + V\left[q(t), t\right] + V'\left[q(t), t\right] \times \left[x - q(t) \right] + \frac{V''\left[q(t), t\right]}{2} \times \left[x - q(t) \right]^{2} + \frac{\hbar^{2}}{4m\delta^{2}(t)} - \frac{\hbar^{2}}{8m\delta^{4}(t)} \times \left[x - q(t) \right]^{2}. \quad (2.1.3.23)$$

Since $(x-q)^0 = 1$, we can gather together the eq. (2.1.3.22) in potencies of the (x-q), obtaining:

$$\{\hbar \dot{S}_{0}(t) - \frac{1}{2}m\dot{q}^{2}(t) + V[q(t),t] + \frac{\hbar^{2}}{4m\delta^{2}(t)}\} \times [x - q(t)]^{0} + m\ddot{q}(t) + V''[q(t),t] \times [x - q(t)]^{1} + \frac{m}{2} [\frac{\ddot{\delta}(t)}{\delta(t)} - 2\kappa \frac{\dot{\delta}(t)}{\delta(t)} + \kappa^{2}] + \frac{1}{2} V''[q(t),t] - \frac{\hbar^{2}}{8m\delta^{4}(t)}\} \times [x - q(t)]^{2} = 0. \quad (2.1.3.24)$$

As the above relation is an identically null polynomium, the coefficients of the potencies must be all equal to zero, that is:

$$\dot{S}_{0}(t) = \frac{1}{\hbar} \left\{ \frac{1}{2} m \dot{q}^{2}(t) + V[q(t), t] + \frac{\hbar^{2}}{4m\delta^{2}(t)} \right\}, \qquad (2.1.3.25)$$

$$\ddot{S}(t) - 2\kappa \dot{S}(t) + \kappa^{2} \delta(t) + \frac{1}{m} V''[q(t), t] = \frac{\hbar^{2}}{4m^{2} \delta^{3}(t)}, \qquad (2.1.3.26)$$

$$\ddot{q}(t) + \frac{1}{m} V'[q(t), t] = 0. \qquad (2.1.3.27)$$

Assuming that the following initial conditions are obeyed:

$$q(0) = x_0$$
, $\dot{q}(0) = v_0$, $\delta(0) = \delta_0$, $\dot{\delta}(0) = b_0$, (2.1.3.28a-d)

and that [see eqs.(2.1.2.1c,d) and (2.1.3.17b)]:

$$S_0(0) = \frac{mv_0x_0}{\hbar}$$
, (2.1.3.29)

the integration of the expression (2.1.3.25) will be given by:

$$S_0(t) = \frac{1}{\hbar} \int_0^t dt' \{ \frac{1}{2} m \dot{q}^2(t') - V[q(t'), t'] - \frac{\hbar^2}{4m\delta^2(t')} \} + \frac{m v_0 x_0}{\hbar} . \quad (2.1.3.30)$$

Taking into account the expressions (2.1.3.18a,b) in the equation (2.1.3.30) results:

$$S(x,t) = \frac{1}{\hbar} \int_0^t dt' \{ \frac{m\dot{q}^2(t')}{2} - V[q(t'),t'] - \frac{\hbar^2}{4m\delta^2(t')} \} + \frac{mv_0x_0}{\hbar} + \frac{m\dot{q}(t)}{\hbar} \times [x - q(t)] + \frac{m}{2\hbar} [\frac{\dot{\delta}(t)}{\delta(t)} - \kappa] \times [x - q(t)]^2 . \quad (2.1.3.31)$$

This result obtained above permit us, finally, to obtain the wave packet for the *LNLS-NE*. Indeed, considering the eqs. (2.1.1.1), (2.1.3.1b) and (2.1.3.31), we get:

$$\Psi(x,t) = [2\pi\delta^{2}(t)]^{-1/4} \times \exp\{(\frac{im}{2\hbar} [\frac{\dot{\delta}(t)}{\delta(t)} - \kappa] - \frac{1}{4\delta^{2}(t)}) \times [x - q(t)]^{2}\} \times \exp\{\frac{im\dot{q}(t)}{\hbar} \times [x - q(t)] + \frac{imv_{0}x_{0}}{\hbar}\} \times \exp\{\frac{i}{\hbar} \int_{0}^{t} dt' [\frac{m\dot{q}^{2}(t)}{2} - V[q(t'), t'] - \frac{\hbar^{2}}{4m\delta^{2}(t')}]\}. \quad (2.1.3.32)$$

2.1.4. Calculation of the Feynman Propagator for the Logarithmic Nonlinear Schrödinger-Nassar Equation Linearized along a Classical Trajetory

The looked for Feynman-de Broglie-Bohm propagator for the Logarithmic Nonlinear Schrödinger-Nassar Equation (LNLS-NE) linearized along a classical trajectory, will be calculated using the eqs. (1.3) and (2.1.3.24). However, in the eq. (1.3), we will put with no loss of generality, $t_0 = 0$. Thus: (Bassalo et al., 2002)

$$\Psi(x,t) = \int_{-\infty}^{+\infty} K(x,x_0;t,t_0) \Psi(x_0,0) dx_0 \quad . \tag{2.1.4.1}$$

Initially let us define the normalized quantity:

$$\Phi(v_0, x, t) = (2\pi\delta_0^2)^{1/4} \Psi(v_0, x, t) , \quad (2.1.4.2)$$

which satisfies the following *completeness relation*: (Bernstein, 1985)

$$\int_{-\infty}^{+\infty} dv_0 \Phi^*(v_0, x, t) \Phi(v_0, x', t) = \frac{2\pi\hbar}{m} \delta(x - x') . \quad (2.1.4.3)$$

Considering the eqs. (2.1.1.1), (2.1.2.1a,b) and (2.1.4.2,3), we get:

$$\Psi^{*}(x,t) \times \Psi(x,t) = \varphi^{2}(x,t) = \rho(x,t), \qquad (2.1.4.4)$$

$$\Phi^{*}(v_{0},x,t)\Psi(v_{0},x,t) =$$

$$= (2\pi\delta_{0}^{2})^{1/4}\Psi^{*}(v_{0},x,t)\Psi(v_{0},x,t) = (2\pi\delta_{0}^{2})^{1/4}\rho(v_{0},x,t) \longrightarrow$$

$$\rho(v_{0},x,t) = (2\pi\delta_{0}^{2})^{-1/4}\Phi^{*}(v_{0},x,t)\Psi(v_{0},x,t). \qquad (2.1.4.5)$$

On the other side, substituting the eq. (2.1.4.5) into eq. (2.1.3.9), integrating the result and using the expressions (2.1.3.1a) and (2.1.4.2) results [remembering that $\frac{\partial}{\partial x} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial x}$ and $\Psi^* \Psi(\pm \infty) \to 0$, and the integration for parts]:

$$\frac{\partial(\Phi^*\Psi)}{\partial t} + \frac{\partial(\Phi^*\Psi)}{\partial x} = 0 \longrightarrow$$

$$\frac{\partial}{\partial t} \int_{-\infty}^{+\infty} (\Phi^*\Psi) dx + \int_{-\infty}^{+\infty} \frac{\partial(\Phi\Psi)}{\partial x} dx =$$

$$= \frac{\partial}{\partial t} \int_{-\infty}^{+\infty} (\Phi^*\Psi) dx + (\Phi^*\Psi) \frac{\partial}{\partial x} dx + (2\pi\delta_0^2)^{1/4} (\Psi^*\Psi) \frac{\partial}{\partial x} dx \longrightarrow$$

$$\frac{\partial}{\partial t} \int_{-\infty}^{+\infty} (\Phi^*\Psi) dx = 0 . \quad (2.1.4.6)$$

The eq. (2.1.4.6) shows that the integration is time independent. Consequently:

$$\int_{-\infty}^{+\infty} dx' \Phi^*(v_0, x', t) \Psi(x', t) = \int_{-\infty}^{+\infty} dx_0 \Phi^*(v_0, x_0, t) \Psi(x_0, t) . \qquad (2.1.4.7)$$

Multiplying the eq. (2.1.4.7) by $\Phi(v_o, x, t)$ and integrating over v_o and using the eq. (2.1.4.3), we will obtain [remembering that $\int_{-\infty}^{+\infty} dx' f(x') \delta(x'-x) = f(x)$]:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dv_0 dx' \Phi(v_0, x, t) \Phi^*(v_0, x', t) \Psi(x', t) =$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dv_0 dx_0 \Phi(v_0, x, t) \Phi^*(v_0, x_0, 0) \Psi(x_0, 0) \rightarrow$$

$$\int_{-\infty}^{+\infty} dx \left(\frac{2\pi\hbar}{m} \right) \delta(x' - x) \Psi(x', t) = \left(\frac{2\pi\hbar}{m} \right) \Psi(x, t) =$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dv_0 dx_0 \Phi(v_0, x, t) \Phi^*(v_0, x_0, 0) \Psi(x_0, 0) \rightarrow$$

$$\Psi(x, t) = \int_{-\infty}^{+\infty} \left\{ \left(\frac{2\pi\hbar}{m} \right) \int_{-\infty}^{+\infty} dv_0 \Phi(v_0, x, t) \Phi^*(v_0, x_0, 0) \right\} \times \Psi(dx_0, 0) dx_0 . (2.1.4.8)$$

Comparing the eqs. (2.1.4.1,8), we have:

$$K(x, x_0, t) = \frac{m}{2\pi\hbar} \int_{-\infty}^{+\infty} dv_0 \Phi(v_0, x, t) \Phi^*(v_0, x_0, 0) . \qquad (2.1.4.9)$$

Substituting the eqs. (2.1.3.31) and (2.1.4.2) in the equation (2.1.4.9), we obtain the Feynman Propagator for the *LNLS-NE* linearized along a classical trajetory, that we were looking for, that is [remembering that $\Phi^*(v_0, x_0, t) = \exp\left(-\frac{imv_0x_0}{\hbar}\right)$]:

$$K(x, x_0, t) = \frac{m}{2\pi\hbar} \int_{-\infty}^{+\infty} dv_0 \sqrt{\frac{\delta_0}{\delta(t)}} \times \exp\left\{\left(\frac{im}{2\hbar} \left[\frac{\dot{\delta}(t)}{\delta(t)} - \kappa\right] - \frac{1}{4\delta^2(t)}\right) \times \left[x - q(t)\right]^2\right\} \times \exp\left\{i\frac{m\dot{q}(t)}{\hbar} \times \left[x - q(t)\right]\right\} \times \exp\left\{i\frac{m\dot{q}(t)}{\hbar} \times \left[x - q(t)\right]\right\} \times \exp\left\{\frac{i}{\hbar} \int_0^t dt \left(\frac{m\dot{q}^2(t')}{2} - V[q(t'), t'] - \frac{\hbar^2}{4m\delta^2(t')}\right)\right\}, \quad (2.1.4.10)$$

where q(t) and $\delta(t)$ are solutions of the differential equations given by the eqs.(2.1.3.25,26).

Finally, it is important to note that putting $\kappa = 0$ and V[q(t'), t'] = 0 into eq. (2.1.4.10) and eqs. (2.1.3.25,26) we obtain the free Feynman propagator. (Feynman and Hibbs, 1965, Bassalo et al., 2002)

3. Ermakov-Lewis Invariants

Many years ago, in 1967, H. R. Lewis (Lewis, 1967) has shown that there is a conserved quantity, that will be indicated by I, associated with the time dependent harmonic oscillator (TDHO) with frequency $\omega(t)$, given by:

$$I = \frac{1}{2}(\dot{\alpha}q - \dot{q}\alpha)^2 + (\frac{q}{\alpha})^2, \qquad (3.1)$$

where q and α obey, respectively the equations:

$$\ddot{q} + \omega^2(t)q = 0, \quad \ddot{\alpha} + \omega^2(t)\alpha = \frac{1}{\alpha^3}. \quad (3.2,3)$$

On the other hand, as the above expressions have also been obtained by V. P. Ermakov (Ermakov, 1880), the invariants determination of time dependent physical systems is also known as the *Ermakov-Lewis problem*. So, considerable efforts have been devoted to solve this problem and its generalizations, in the last forty years, and in many works have been published on these subjects (Nassar, 1986b-d).

3.1. The Ermakov-Lewis Invariants for the Logarithmic Nonlinear Schrödinger-Nassar Equation

Now, let us investigate the existence (or not) of these invariants for the Logarithmic Nonlinear Schrödinger-Nassar Equation (LNLS-NE) with the potential V(x, t) given by:

$$V(x,t) = \frac{1}{2}m\omega^2(t)x^2$$
, (3.1.1)

which is the Time Dependent Harmonic Oscillator Potential (TDHOP).

Taking the eq. (2.1.2.3) and considering the eq. (3.1.1), results:

$$\frac{\partial v_{qu}(x,t)}{\partial t} + v_{qu}(x,t) \frac{\partial v_{qu}(x,t)}{\partial x} + \omega^{2}(t)x = -\frac{1}{m} \frac{\partial V_{qu}(x,t)}{\partial x} . \quad (3.1.2)$$

In order to integrate the eq. (3.1.2) let us assume that the expected value of *quantum force* [$\frac{\partial V_{qu}(x,t)}{\partial x}$] is equal to zero for all times t, that is:

$$<\frac{\partial V_{qu}(x,t)}{\partial x}>. \rightarrow 0 \leftrightarrow \frac{\partial V_{qu}}{\partial x} \mid_{x=q(t)}, =q(t).$$
 (3.1.3a-c)

In this way, using the eq. (2.1.2.1f), we can write the eq. (3.1.2) into two parts:

$$\frac{\partial v_{qu}(x,t)}{\partial t} + v_{qu}(x,t)\frac{\partial v_{qu}(x,t)}{\partial x} + \omega^2(t)x = k(t) \times [x - q(t)], \quad (3.1.4)$$

$$\frac{\partial}{\partial x} \left[\frac{\hbar^2}{2m^2} \frac{1}{\sqrt{\rho(x,t)}} \frac{\partial^2 \sqrt{\rho(x,t)}}{\partial x^2} \right] = k(t) \times [x - q(t)]. \tag{3.1.5}$$

Performing the differentiations indicated in the eq. (3.1.5) we get:

$$\frac{\hbar^{2}}{4m^{2}} \left\{ \frac{1}{\rho(x,t)} \frac{\partial^{3} \rho(x,t)}{\partial x^{3}} - \frac{2}{\rho^{2}(x,t)} \frac{\partial \rho(x,t)}{\partial x} \frac{\partial^{2} \rho(x,t)}{\partial x^{2}} + \frac{1}{\rho^{3}(x,t)} \left[\frac{\partial \rho(x,t)}{\partial x} \right]^{3} \right\} = k(t) \times [x - q(t)].$$
(3.1.6)

To integrate the eq. (3.1.6) it is necessary to known the initial condition for $\rho(x,t)$. (Bassalo et al., 2002) Let us assume that for t=0 the physical system is represented by a normalized Gaussian wave packet, centered at q(0), that is:

$$\rho(x,0) = \left[2\pi\delta^2(0)\right]^{-1/2} \exp\left\{-\frac{\left[x - q(0)\right]^2}{2\delta^2(0)}\right\} = \frac{1}{\sqrt{A}} \exp\left(-\frac{B^2}{C}\right), \quad (3.1.7)$$

where:

$$A = 2\pi\delta^{2}(0), B = x - q(0), C = 2\delta^{2}(0)$$
. (3.1.8-10)

Since the eq. (3.1.7) is a particular solution of the eq. (3.1.6), we must have:

$$\frac{\hbar^2}{4m^2} \left\{ \frac{1}{\rho(x,0)} \frac{\partial^3 \rho(x,0)}{\partial x^3} - \frac{2}{\rho^2(x,0)} \frac{\partial \rho(x,0)}{\partial x} \frac{\partial^2 \rho(x,0)}{\partial x^2} \right. +$$

+
$$\frac{1}{\rho^3(x,0)} \left[\frac{\partial \rho(x,0)}{\partial x} \right]^3 \} = k(0) \times [x - q(0)].$$
 (3.1.11)

Making the differentiation indicated in the eq. (3.1.11), results: (Bassalo et al., 2002)

$$\frac{\hbar^2}{4m^2\delta^4(0)} \times [x - q(0)] = \kappa(0) \times [x - q(0)] \rightarrow$$

$$\kappa(0) = \frac{\hbar^2}{4m^2\delta^4(0)}, \quad (3.1.12)$$

and:

$$\delta^4(0) = \frac{\hbar^2}{4m^2k(0)}.$$
 (3.1.13)

Comparing the eqs. (3.1.12,13) with the eqs. (3.1.6,7), by analogy we get:

$$k(t) = \frac{\hbar^2}{4m^2 \delta^4(t)}$$
, (3.1.14)

$$\rho(x,t) = [2\pi\delta^2(t)]^{-1/2} \exp\{-\frac{[x-q(t)]^2}{2\delta^2(t)}\}, \quad (3.1.15)$$

and:

$$\delta^4(t) = \frac{\hbar^2}{4mk(t)} \ . \tag{3.1.16}$$

Using the eq. (2.1.3.13) we calculate the following differentiations (remembering that t and x as independent variables):

$$\frac{\partial v_{qu}(x,t)}{\partial t} = \frac{\partial}{\partial t} \{ [\frac{\dot{\delta}(t)}{\delta(t)} - \kappa] \times [x - q(t)] + \dot{q}(t) \} =$$

$$= \left[\frac{\ddot{\delta}(t)}{\delta(t)} - \frac{\dot{\delta}^2(t)}{\delta^2(t)}\right] \times \left[x - q(t)\right] - \left[\frac{\dot{\delta}(t)}{\delta(t)} - \kappa\right] \times \dot{q}(t) + \ddot{q}(t), \quad (3.1.17)$$

$$\frac{\partial v_{qu}(x,t)}{\partial x} = \frac{\partial}{\partial x} \{ [\frac{\dot{\delta}(t)}{\delta(t)} - \kappa] \times [x - q(t)] + \dot{q}(t) \} = \frac{\dot{\delta}(t)}{\delta(t)} - \kappa. \quad (3.1.18)$$

Putting the eqs. (2.1.3.13) and (3.1.17,18) into the eq. (3.1.4), considering the eq. (3.1.14), adding and subtracting the term $\omega^2(t)$ q(t), results: (Bassalo et al., 2002)

$$\left[\frac{\ddot{\delta}(t)}{\delta(t)} - \frac{\dot{\delta}^{2}(t)}{\delta^{2}(t)}\right] \times \left[x - q(t)\right] - \left[\frac{\dot{\delta}(t)}{\delta(t)} - \kappa\right] \times \dot{q}(t) + \ddot{q}(t) + \\
+ \left\{\left[\frac{\dot{\delta}(t)}{\delta(t)} - \kappa\right] \times \left[x - q(t)\right] + \dot{q}(t)\right\} \times \left[\frac{\dot{\delta}(t)}{\delta(t)} - \kappa\right] + \\
+ \omega^{2}(t) \times \left[x - q(t)\right] + \omega^{2}(t) \times q(t) = \frac{\hbar^{2}}{4m^{2}\delta^{4}(t)} = 0 \rightarrow \\
\left[\frac{\ddot{\delta}(t)}{\delta(t)} - 2\frac{\dot{\delta}(t)}{\delta(t)} \kappa + \kappa^{2} + \omega^{2}(t) - \frac{\hbar^{2}}{4m^{2}\delta^{4}(t)}\right] \times \left[x - q(t)\right]^{1} + \\
+ \left[\ddot{q}(t) + \omega^{2}(t)q(t)\right] \times \left[x - q(t)\right]^{0} = 0 . \quad (3.1.19)$$

To satisfy eq. (3.1.19), the following conditions must be obeyed:

$$\frac{\ddot{\delta}(t)}{\delta(t)} - 2\frac{\dot{\delta}(t)}{\delta(t)}\kappa + \kappa^2 + \omega^2(t) - \frac{\hbar^2}{4m^2\delta^4(t)} = 0 \quad \to \quad$$

$$\ddot{\delta}(t) - 2\delta(t)\kappa + [\kappa^2 + \omega^2(t)]\delta(t) = \frac{\hbar^2}{4m^2\delta^3(t)}, \quad (3.1.20)$$

$$\ddot{q}(t) + \omega^2(t)q(t) = 0$$
. (3.1.21)

Putting:

$$\delta(t) = \left(\frac{\hbar^2}{4m^2}\right)^{1/4} \alpha(t) , \quad (3.1.22)$$

we obtain:

$$\dot{\delta}(t) = (\frac{\hbar^2}{4m^2})^{1/4} \dot{\alpha}(t), \qquad \ddot{\delta}(t) = (\frac{\hbar^2}{4m^2})^{1/4} \ddot{\alpha}(t) . \qquad (3.1.23,24)$$

Inserting the eqs. (3.1.22-24) into the eq. (3.1.20) and multiplying the result by α , we get: (Bassalo et al., 2002)

$$\ddot{\alpha} - 2\dot{\alpha}\kappa + (\omega^2 + \kappa^2)\alpha = \frac{1}{\alpha^3}.$$
 (3.1.25)

Finally, eliminating the factor ω^2 into the eqs. (3.1.20,21), we get:

$$\ddot{\alpha} - 2\dot{\alpha}\kappa + (\omega^2 + \kappa^2)\alpha = \frac{1}{\alpha^3} \rightarrow \ddot{\alpha}q - \ddot{q}\alpha - 2\dot{\alpha}\kappa q + \kappa^2\alpha q = \frac{q}{\alpha^3} \rightarrow$$

$$\frac{d}{dt}(\dot{\alpha}q - \dot{q}\alpha) = \frac{q}{\alpha^3} + 2\dot{\alpha}\kappa q - \kappa^2\alpha q \quad \rightarrow$$

$$(\dot{\alpha}q - \dot{q}\alpha)\frac{d}{dt}(\dot{\alpha}q - \dot{q}\alpha) = (\dot{\alpha}q - \dot{q}\alpha)\frac{q}{\alpha^3} + (\dot{\alpha}q - \dot{q}\alpha)(2\alpha\kappa q - \kappa^2\alpha q) \quad \rightarrow$$

$$\frac{d}{dt}\left[\frac{1}{2}(\dot{\alpha}q - \dot{q}\alpha)^{2}\right] + \frac{d}{dt}\left[\frac{1}{2}(\frac{q}{\alpha})^{2}\right] = -(2\dot{\alpha}\kappa q - \kappa^{2}\alpha q)\alpha^{2}\frac{d}{dt}(\frac{q}{\alpha}) \longrightarrow$$

$$\frac{d}{dt}\left\{\left[\frac{1}{2}(\dot{\alpha}q - \dot{q}\alpha)^2 + \left(\frac{q}{\alpha}\right)^2\right]\right\} = -(2\dot{\alpha}\kappa - \kappa^2\alpha)q\alpha^2\frac{d}{dt}\left(\frac{q}{\alpha}\right) \longrightarrow$$

$$\frac{dI}{dt} = -(2\dot{\alpha}\kappa - \kappa^2 \alpha)q\alpha^2 \frac{d}{dt}(\frac{q}{\alpha}), \qquad (3.1.36)$$

where [see eq. (3.1)]:

$$I = \frac{1}{2}(\dot{\alpha}q - \dot{q}\alpha)^2 + (\frac{q}{\alpha})^2, \quad (3.1.37)$$

which represents the Ermakov-Lewis Invariant (ELI) of the TDHO. (Bassalo et al., 2002)

In conclusion, the eq. (3.1.36) we have shown that the *LNLS-NE* <u>has not</u> an *ELI* for the *TDHO*.

4. The Bohmian Trajectories for the Logarithmic Nonlinear Schrödinger-Nassar Equation

The associated Bohmian Trajectories (Nassar, 2013, Sanz, 2000, Pan, 2010, Holland, 2005, Wyatt, 2005) for the Logarithmic Nonlinear Schrödinger-Nassar Equation (LNLS-NE) of an evolving ith particle of the ensemble with an initial position x_{0i} can be calculated by considering that:

$$\dot{x}_i(t) = v_{au}[x_i(t), t].$$
 (4.1)

Then substituting the eq. (4.1) into eq. (2.1.3.13), results:

$$\dot{x}_{i}(t) = \left[\frac{\delta(t)}{\delta(t)} - k\right] \times \left[x_{i}(t) - q(t)\right] + \dot{q}(t) \longrightarrow$$

$$\dot{x}_{i}(t) - \dot{q}(t) = \left[\frac{\dot{\delta}(t)}{\delta(t)} - k\right] \times \left[x_{i}(t) - q(t)\right] \longrightarrow \frac{\dot{x}_{i}(t) - \dot{q}(t)}{x_{i}(t) - q(t)} = \frac{\dot{\delta}(t)}{\delta(t)} - \kappa \longrightarrow$$

$$\int_{0}^{t} \frac{d}{dt} \left\{ \ln[x_{i}(t) - q(t)] \right\} dt = \int_{0}^{t} \frac{d}{dt} \left\{ \ln[\delta(t)] \right\} dt - \int_{0}^{t} \kappa dt \longrightarrow$$

$$\ln\left[\frac{\left[x_{i}(t) - q(t)\right]}{\left[x_{0i} - q_{0}\right]} = \ln\left(\frac{\delta(t)}{\delta_{0}}\right) - \kappa t \longrightarrow \frac{\left[x_{i}(t) - q(t)\right]}{\left[x_{0i} - q_{0}\right]} = \frac{\delta(t)}{\delta_{0}} - \exp(\kappa t) \longrightarrow$$

$$x_{i}(t) = q(t) + (x_{0i} - q_{0}) \times \frac{\delta(t)}{\delta(0)} \times \exp(-\kappa t) . \tag{4.2}$$

The eqs. (3.1.20,21) show that a continuous measurement of a quantum wave packet gives specific features to its evolution: the appearance of distinct classical and quantum elements, respectively. This measurement consists of monitoring the position of the quantum systems and the result is the measured classical path q(t) for t within a quantum uncertainty $\delta(t)$.

4.1 The Bohmian Trajectories for the Logarithmic Nonlinear Schrödinger-Nassar Equation in Stationary Regime

From the eqs. (3.1.20,21), we note that for $\kappa \neq 0$ a stationary regime can be reached and that the width of the wave packet can be related to the resolution of measurement as follows. Then, considering that $\delta(t) = cte\ [\dot{\delta}(t) = 0]$ in the eqs. (3.1.20,21), we have:

$$[\kappa^2 + \omega_0^2] \delta_0 = \frac{\hbar^2}{4m^2 \delta_0^3} \to \kappa^2 = \frac{1}{\tau_R^2} - \omega_0^2 , \quad (4.3a)$$

where^[4]:

$$\tau_B = (\frac{2m\delta_0^2}{\hbar}) = 6.8 \times 10^{-26} s$$
, (4.3b)

is the *Bohmtime constant* which determines the time resolution of the quantum measurement, and:

$$\dot{q}(t) + \omega_0^2 q(t) = 0$$
 \rightarrow $q(t) = q_0 \exp(\pm i\omega_0 t)$. (4.4)

The eqs. (4.3a,b) means that if an initially free wave packet is kept under a certain continuous measurement, its width (δ_0) may not spread in time. Then, the associated *Bohmnian Trajectories* (BT) [eq. (4.2)] of an evolving *ith* particle of the ensemble with an initial position x_{0i} is giving by:

$$x_i(t) = q_0 \times \exp(\pm i\omega_0 t) + (x_{0i} - q_0) \times \exp(-kt)$$
 (4.5)

REFERENCES

FEYNMAN RP (1948). Reviews of Modern Physics 20: 367.

FEYNMAN RP, HIBBS AR (1965). **Quantum Mechanics and Path Integrals**, McGraw-Hill Book Company, USA.

BERNSTEIN IB (1985). Physical Review A32: 1.

NASSAR AB (2013). *Annals of Physics* **331**: 317.

MADELUNG E (1926). Zeitschrift für Physik 40: 322.

BOHM D (1952). Physical Review 85: 166.

BASSALO JMF, ALENCAR PTS, CATTANI MSD, NASSAR AB (2002). **Tópicos da Mecânica Quântica de de Broglie-Bohm**, EDUFPA; -----. 2010. E-Book (http://publica-sbi.if.usp.br/PDFs/pd1655.pdf.

See books on the Fluid Mechanics, for instance:

STREETER VL, DEBLER WR (1966). **Fluid Mechanics**, McGraw-Hill Book Company, Incorporation.

COIMBRA AL (1967). Mecânica dos Meios Contínuos, Ao Livro Técnico S. A.

LANDAU L, LIFSHITZ E (1969). Mécanique des Fluides. Éditions Mir.

BASSALO JMF (1973). Introdução à Mecânica dos Meios Contínuos, EDUFPA.

CATTANI MSD (1990/2005). Elementos de Mecânica dos Fluidos, Edgard Blücher.

BASSALO JMF, ALENCAR PTS, SILVA DG, NASSAR AB, CATTANI MSD (2010). *arXiv:1010.2640v1*. [quant-ph].

NASSAR AB (1986a). Journal of Mathematical Physics 27: 2949.

LEWIS, HR (1967). *Physical Review Letters*, **18**(13): 510; **18**(15): 636(E).

ERMAKOV VP (1880). Universitetskie Izvestiya, Kiev, 9: 1.

NASSAR AB (1986b). *Journal of Mathematical Physics*, **27**(3): 755;----. (1986c). *Journal of Mathematical Physics*, **27**(12): 2949;----. (1986d). *Physical Review* **A 33**(3): 2134.

SANZ AS, BORONDO F, MIRET-ARTÉS S (2000). Physical Review B 61: 7743.

PAN AK (2010). Pramana Journal of Physics 74: 867.

HOLLAND P (2005). Annals of Physics 315: 505.

WYATT RE (2005). Quantum Dynamics with Trajectories, Springer, New York.