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Abstract. This paper was written to graduate and postgraduate students of Physics and 

Engineering to show the fundamental aspects of the electric conductivity in solid metals. 

The classical Drude´s model and the Bloch quantum theory of bands are briefly analyzed. 

We see that the measured resistivity ρ(T) can be satisfactorily explained only using quantum 

mechanics and taking into account the electron - phonon interaction. The resistivity ρ(T) is 

calculated using the Schrödinger equation and the Second Quantization approach.  

Key words: electrical resistivity in metals; phonons; electron-phonon interaction. 

 

 

 

 

 

(I) Introduction. 
 This paper was written to graduate and postgraduate students of Physics and 

Engineering analyzing and clarifying fundamental aspects of the electric conductivity in 

metallic solids. Basic ideas are found in many textbooks of physics. 
[1-4]

 We study here the 

phenomenon in simple metallic conductors 
[5,6]

 like copper, silver, gold, sodium, 

magnesium, zinc, nickel, aluminum, tin and lead, at ambient temperatures and at low 

temperatures, respectively. In Section 1 is briefly show how the resistivity is calculated in 

basic courses  using a classical model and that there is satisfactory agreement between 

theory and experiment.  In next Sections we show that it is necessary to use Quantum 

Mechanics to explain satisfactorily the electrical conductivity at ambient and at low 

temperatures.  In Section 2 we see that due to the interactions with the atoms the electrons 

energies are distributed in energy bands (valence and conduction bands); electrons that 

occupy the conduction bands (named “nearly free” electrons) are responsible for the 

electrical conductivity.  In Section 3 is presented the illuminating Bloch quantum approach 

that is also unable to describe the resistivity process. Since the electronic motion is a non-

equilibrium process in Section 4 are given the main features of the theoretical approach 

known as “Boltzmann Transport Equation” (BTE). In Section 5 are remembered the main 

features of the elastic vibrations in solids or “phonons”. In Section 6 using the BTE and 

taking into account the electron-phonon interaction we verify that it is possible explain 

satisfactorily the resistivity phenomena. The resistivity estimations have been performed 

using the Schrödinger equation in Section 6 and the Second Quantization approach in 

Appendix C.   
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(1) Classical Model for the Electric Conductivity in Metals.  
 According to the classical model or Drude´s model for the electric conduction seen in 

basic physics courses
[1-4]

 the “conductor” is a metallic solid where are present “free 

electrons”  named “conduction electrons”. This theory is incorrect in many respects, despite 

the fact that it gives several rather convincing results.
[5,6] 

This solid with volume V can be 

amorphous or composed by a regular lattice of N stationary atoms. The free electrons are as 

numerous as the number N of atoms of the solid and are considered as an “ideal gas” (“ideal 

electron gas”) obeying the Maxwell-Boltzmann distribution at a temperature T. These 

electrons confined in a volume V are chaotically colliding with the atoms of the solid.  If 

there is no external electric field E the average velocity < v > of the electrons is equal to 

zero and the there is no net electric current in the conductor. However, when an electric field 

E is applied besides the thermal chaotic motion the electrons suffer a slow drift in the 

opposite direction of E with a “drift velocity” vd given by vd = (eE/m)τ , where e and m are 

charge and mass of  the electron, respectively, and τ is mean free time between two 

successive collisions.  In these conditions the density of current J is given by J = nevd = 

(ne
2
τ/m)E,  where n = N/V is the electronic density. According to Ohm´s law J = σ E we 

verify that the electrical conductivity σ is given by σ = ne
2
τ/m and that the electrical 

resistivity ρ is equal to ρ = 1/σ = m/ne
2
τ.  Since 

[1-4]
 τ = λ/v, where λ is the mean free path 

between two collisions and v = (8kBT/πm)
1/2

 is the average velocity and kB the Boltzmann 

constant, the classical resistivity would be given by ρ(T) =  (m/ne
2 

)(v/λ).  As λ = 1/naπd
2
, 

where na is the density of atoms and d is atomic radius, we verify that the classical resistivity 

ρ(T) would be given by, assuming that na = n = (N/V), 

 

             ρ(T) =  (m/ne
2 

)(v/λ) = (mv/ne
2
)naπd

2 
= 

 
(mv/e

2
)πd

2 
 = √8πmkB (d/e)

2
 √T          (1.1).   

 

 High temperature  experiments 
[7,8]

 show that  ρ(T) is proportional to T, for  low 

temperatures it is proportional to T
5
 and that for very low temperatures, that is, for T 

approaching the absolute zero it tends to a finite non-zero value. This non-zero residual 

resistivity is due essentially to collisions between electrons and impurities or imperfections 

of the metal (see Section 4). Conductors that obey the condition ρ(T) → 0 when T → 
o
O K 

are called superconductors.
 [7,8]

   

 Drude´s model is consistent with Ohm´s law, explains qualitatively the phenomenon 

of electrical resistivity and gives good values for the conductivity.
[1-8]  

However, it has 

severe limitations like, for instance, to explain the observed ρ(T) temperature dependence. In 

next Sections we show that to get a satisfactory description of the ρ(T) temperature 

dependence resistivity it is necessary to adopt a quantum mechanical approach. 
 

 

 

 

(2) Quantum Mechanical Approach. 
 As pointed out above, despite the successes of Drude´s model there are many 

features of the electrical conductivity of solids that cannot be explained by this model.
[5-8] 

To 

satisfactorily explain the experimental results the electrical conductivity phenomenon must 

be analyzed within the framework of the quantum mechanics. In this Section is shown that 

the energies of the electrons in a solid conductor, due to the interaction between the N atoms 

of the solid, are confined in energy bands. In particular, we show that the “free electrons” 

of Section 1 taken as responsible for the electrical conductivity are localized in particular 

bands named conduction bands. 
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Electronic Energy Bands 
 The electronic energy bands are created by the many body interaction among the N 

atoms in a solid metal.  As is known,
[1-8]

 electrons of a single isolated atom occupy a discrete 

set of energy levels. Measuring the energies of electrons in an isolated atom, we do not find 

a continuous distribution of energies, but a set of quantized energies. This discrete energy 

levels model can also be applied to simple compound molecules as can easily verified 

analyzing the emission and absorption spectra of gases. These levels are indicated by 1s, 2p, 

3s,…Figure 1
[6

]shows the energy levels 1s, 2s and 3s of one electron bounded in an isolated 

atom. Note that the electrons are localized about the single atom. 

 

 
 

Figure 1. The curved blue lines represent the attractive interaction potential well and the 

horizontal red lines represent the energy levels 1s, 2s and 3p of a bounded electron. 

 

          When 2 atoms, initially isolated, are brought close their energy levels become 

degenerate creating 2 separate energy levels. The division of the original energy level 

increases when the number atoms put together increases. When this procedure is repeated N 

times (that is, N ~ 10
23

) each energy level will split into N levels, effectively forming a 

continuous band of allowed energy states. In Figure 2 is shown what occurs, for example, 

with the level 3s.
[3]

 Note that when the distance between the atoms decreases the energy of 

the new levels increases.                                                     

 
 

Figure 2. Division of the level 3s when N atoms are put together as a function of the 

distance r between them:(a) N = 2, (b) N = 6 and (c) N >> 1. 

 

 The energy of the more tightly bound electrons changes very little and these 

electrons remain localized about a single atom. The bands of localized electrons are called 

valence bands. The less tightly bound electrons do not remain localized forming 

delocalized bands with allowed values of energy usually higher than the initial isolated 
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atomic states nℓ. In Figure 3
[6] 

is illustrated a simple case with 3 bands, one valence band 

(bellow) and two delocalized bands (above).  

 

Figure 3.  Energy bands: 1 valence band (bellow) and 2 delocalized bands (above). 

 

 There may be an infinite number of bands in the band structure of a given material. 

The bands are separated by gaps. Electrons cannot have energies that would fall into the 

gaps.  Gaps are also called forbidden bands. Note that in a band nℓ there are at most 

2(ℓ+1) electrons. The electrons of a valence band are localized close to the atoms and the 

electrons of the delocalized bands are uniformly distributed in the volume V.  The valence 

bands are completely filled with electrons and the delocalized bands can be completely or 

partially filled with electrons or completely empty. To illustrate our analysis let us consider 

the solid sodium usually taken as an example of metallic conductor.  Figure 4 shows some 

bands of the solid sodium with N atoms. Let us remember 
[1-4]

 that the electronic 

configuration of the Na atom is 1s
2
2s

2
2p

6
3s

1
. 

 

 
 

Figure 4. Some energy bands of the solid sodium with N atoms.
[3] 

Between two bands are 

seen the gaps.  
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 The bands 1s, 2s and 2p are completely filled, respectively, with 2N, 2N and 6N 

electrons, according to the capacity relation 2(ℓ+1)N. Since the sodium has only one 3s 

valence electron the 3s band is only partially filled with only N electrons instead of 2N. 

The 3p, 4p,… bands are completely empty. The partially filled and completely empty bands 

are named conduction bands. The electrons of a partially filled band form an ideal Fermi-

Dirac gas. The energies of these electrons at T = 0 K go from 0 up to the maximum value 

given by the Fermi energy 
[1-4]

 EF = (h
2
/2m)(3n/8π)

2/3
, where m is the electron mass and  

n = N/V.
(*)

 All energy levels below the EF are occupied and the energy levels above are 

empty. When an electrical field E is applied the electrons close to the Fermi energy only 

need a very small additional quantity of energy to attain the neighbor energy states and 

empties creating an electric flux J = σE. If all states in a band are occupied, no net 

movement of electrons can occur and the band cannot contribute to the conduction current. 

For T > O K some electrons that due to the thermal excitation also occupy the empty levels 

contribute to increase J.  

________________________________________________________________________ 

(*)The determination of the Fermi energy for Au, for instance, is more difficult because the states 

arising up to 5p levels of the atom will be completely filled. Only 5d and 6s levels of the atom are 

expected to form the conduction band. Hence while finding the Fermi energy we take into account 

only the ten d electrons and one s electron per atom. 
[19] 

_________________________________________________________________________ 

 

 

(3) Bloch Quantum Approach. 

 The first person to tackle the problem of the energy bands was F. Bloch in 1925 

studying the motion of electrons in solids with periodic perfect lattices.  He developed a 

quantum model known as Bloch´s model
[7-9] 

to explain the energy bands. To explain the 

valence bands he combined electronic atomic orbitals, each localized on a particular atom, 

to represent a state running throughout the crystal. Indicating by ϕa(r - ℓ) the atomic orbital 

for a free atom with center at ℓ he assumed that electron submitted to a periodic crystal V(r) 

= V(r+a), where a is the lattice periodicity, is represented by a wavefunction  

 

                                                 ϕk(r) = Σℓ exp[ik•ℓ] ϕa(r - ℓ).                                       (3.1). 

 

 This function looks like a series of strongly localized atomic orbitals multiplied by 

wave phase factors exp[ik•ℓ]. Within each atom the local orbital predominates and outside 

the atom the wave behavior predominates.  With this good ansatz and using the Schrödinger 

equation with the periodic potential V(r) one can evaluate the valence bands.
[7,8]

 This 

approach known as tight-binding model will not be analyzed here. We will study only the 

conduction bands using the nearly-free electron approach. 

 In Section (2) we learned that the conductivity is due to a flux of “free electrons” in 

the conduction band due the application of an electrical field on the conductor. It is 

assumed that the number of free electrons in the conduction band is small so that the electric 

interactions and exchange effect 
[9-11]

 between them can be neglected. These electrons, 

however, are not “free” because they move inside a solid.  To study the motion of these 

electrons in a perfect lattice crystal Bloch developed the nearly-free electron approach. In 

this approach the electrons with energy E = ћk
2
/2m move in the crystal submitted to a weak 

attractive periodic potential V(r) created by static ions. We analyze here only the simplest 

case of a one-dimensional lattice. In Figure 5 is illustrated a one-dimensional periodic 

potential V(x) with rectangular sections with height Vo and period length a.  
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  Figure 5. One-dimensional potential V(x) with rectangular sections with period length a. 

 

 In this case the electron ψk(x) obeys the Schrödinger equation  

 

                                    d
2
ψk(x)/dx

2 
 + (2m/ћ

2
)[ ε(k) -V(x)]ψk = 0                                  (3.1), 

 

where ε(k) = ћk
2
/2m  > Vo and V(x) = V(x + a). If V(x) = 0 the electron is represented by 

plane waves ψk(x) = exp(ikx)/√L, where L = Na is the 1-dimensional crystal length.  

 If V(x) is weak, using the perturbation theory,
[9-11]

 the new wavefunctions Ψk(x) and 

energies E(k) are given, respectively, by 

  

                              Ψk  =  ψk    +   Σk´(≠k) Vk´k ψk´/[ε(k) - ε(k´)]            and                       (3.2a)                                                                                                                           

                              E(k) = ε(k) + Vkk + Σk´(≠k) |Vk´k |
2
/[ε(k) - ε(k´)]                                 (3.2b), 

 

where Vk´k = < k´|V(x)|k > and  Vkk = 0 using a convenient normalization of the  

potential.  Due to the V(x) periodicity the matrix elements Vk´k vanish always except when  

 

                                           k – k` =  g  = (2π/a)m        ,     m = ± 1, ± 2,...                       (3.3). 

 

Thus, in order to simultaneously satisfy (3.2a) and (3.3) we must have ε(k) = ε(k´= k-g). 

That is, the energy spectrum is 2-fold degenerate. So, to solve the problem
[9-11] 

we write in 

the zeroth order approximation Ψk
(0)

 as a linear combinations of the degenerate states 
 

 

                                                   Ψk
(0)

 = A ψk  + B ψk –g                                                                            (3.4). 

 

Using the 2-fold degenerate approach
[9-11] 

it can be shown that the two normalized resulting 

zero-order wavefunctions are given by the standing waves
[7,8] 

 

                                            Ψk
-
(x) = √2 cos(gx/2)   = √2 cos(πmx/a)     

and                                                                                                                                    (3.5), 

                                            Ψk
+
(x)

 
= √2i sin(gx/2)   = √2i sin(πmx/a) 

 

with energies E±(k)  given by 

                                                    E±(k) =  ε(k) ± √|Vg|
2
                                                     (3.6).                                   

where    

                                            Vg  = <k|V(x)|k-g> = ∫ V(x)exp(igx)dx
+∞

−∞
 

 

The functions |Ψk
+
(x)|

2 
, |Ψk

-
(x)|

2
 and the periodic potential V(x) are shown in Fig.6.

[8]
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Figure 6. The periodic potential V(x) and the functions |Ψ
+
(x)|

2 
and |Ψ

-
(x)|

2
. In the state   

Ψ
-
(x)

 
the electron is more concentrated on the atoms than in the states Ψ

+
(x). 

 

 

Note that Vg
 
≠ 0 only for g = (2π/a)m 

 
(m = ± 1, ± 2,... ).  For these particular values there   

are energy gaps ∆ given by  

                                                       ∆  = EI – EII = 2 | Vg |. 

 

The energies E(k) as a function of k = πm/a  in Figure 7 shown how the parabolic free  

 electron energies ε(k) = ћ
2
k

2
/2m are modified by the periodic lattice. At the points k = πm/a   

(m =  ± 1, ± 2,... ) are located the energy gaps ∆ in the conduction band. 

 
 

                Figure 7.  Electron energies E(k) in one–dimensional lattice showing the allowed  energy 

bands and the forbidden energy bands or, simply,  gaps (dashed regions).
[9]

 

   

   So, we verify that in a perfect crystal lattice electron move, without being deflected 

at all, with energies ε(k) = ћ
2
k

2
/2m that are only inside the allowed energy bands. They 

cannot move with energies outside the allowed bands, that is, energies that are inside the 

forbidden bands or gaps. Since the resistivity is due only to the scattering of electrons by 

the atoms (ions) perfect lattices offer no resistance to an electrical current. In this way it is 

necessary to find a new alternative model. Probably the flaw in our reasoning is that it was 

assumed that the crystal is perfect. Imperfections in the crystal will cause the electrons 

deflections so the mean free path in an imperfect crystal is not infinite and, consequently, the 

material has a non-zero resistance. Essentially three different types of imperfections can 

produce electron scattering:
[5-9] 

 

         (a) Ions are not stationary but in a state of continual thermal vibration about their 

equilibrium positions. At any instant of time they are not occupying the positions of a 

perfect lattice, electrons are scattered due to these vibrations giving rise to a resistance. 

                  (b) Scattering produced by the presence impurities. This is particularly significant if 

the impurity is much larger or smaller than the host ions or if it has a different valence. For 
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example, in brass, which is a copper-zinc alloy, the zinc ions are about 9% larger in diameter 

than the copper ions and have a charge of +2e compared with +1e on the copper ions. 

                  (c) Scattering caused by imperfections in the crystal structure that disrupt the lattice.  

 

 (3.a)Conclusions. 

  Bloch´s model of nearly-free electron does not explain the electric resistance in 

metals. Thus, it would be necessary to take into account the scattering of electrons by 

processes like (a), (b) and (c), pointed above. In Section 4 are proposed mechanisms where 

electron scattering is produced by impurities or due to the vibrations of atoms occupying the 

positions of a perfect lattice.  

 

 

 (4) Electrical Resistivity: a Non-Equilibrium Phenomenon. 
  Let us assume that the electronic motion in a conductor is only produced by an 

applied electric field E. Since the motion of conducting electrons is a non-equilibrium 

phenomenon the Boltzmann Transport Equation (BTE) theory will be adopted to estimate 

the electrical resistivity.  So, it can be shown 
[1-7,8,12]

 that the resistivity ρ is given by 

 

                            ρ = (m*/ne
2
) (1/τ ) = (m*/ne

2
) (vF/Λ) = (m*vF /ne

2
)(1/Λ)                     (4.1), 

 

                where n the density of electrons at the conduction  band, m* the effective electron mass (see 

Appendix A), τ is mean free time between two successive collisions, vF is the velocity of  the 

electrons at Fermi level and Λ = vFτ is the electron mean free path between two collisions. 

  According to the BTE approach 1/τ is proportional to the total electronic scattering 

transition probability per unit of time 
[7,8,12]

 Pk´k = P(k → k´) = P(k´→ k). For instance, for 

very thin metallic films when the bulk resistivity is negligible ρ is due only to the scattering 

produced by the surface roughness of the films.
[12]

  In this paper will be assumed that the 

bulk resistivity is dominant. So, ρ is generated by (a) impurities or (b) atoms and phonons. 

In these cases 1/Λ can be written as
[12]

 

  

                                                  1/Λ = (2πN*/J) ∫ (dП𝐤𝐤´(ε, θ)/dΩ)(1 −  cosθ) sinθ dθ
𝟐𝝅

𝟎
              (4.2), 

  

 where N* is the density of scattering centers, |J|= J the flux of incident electrons, 

dПkk´(ε,θ)/dΩ  is the scattering probability per unit of time due to: (a) only atoms (ions); 

 (b) atoms and phonons, ε = (ћk)
2
/m* is the energy of the incident electron (ε = εF), θ is the 

scattering angle between k and k´ and dΩ is the element of solid angle.  

  

 (4.1) Resistivity due to Impurities. 

   If Ni is the density of atomic (or ionic) impurities in the crystalline array the 

transition probabilities k → k´per unit of time (dПk´k/dΩ) is given by
 
(see Appendix B): 

  
                                                            

(dПk´k/dΩ)
 
= (dPk´k/dΩ) =  v (dσ(ε,θ)/dΩ)                              (4.3), 

  

 where v = ћk/m*(= vF) , ε = (ћk)
2
/2m* (= εF) , dσ(ε,θ)/dΩ  is the scattering cross section due 

to an impurity and dΩ = sinθ dθdφ is the element of solid angle. In what follows, to simplify 

the notation, we put dσ(ε,θ)/dΩ ≡ σ(θ).  Taking into account (4.2) and Appendix B the mean 

free Λi is given by
[12]

 

 

                                                    1/Λi = 2πNi  ∫ σ(θ) (1 –  cosθ) sinθ dθ
𝟐𝝅

𝟎
                                    (4.4). 
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  Supposing that the potential of a charged impurity in a metal is screened 
[7-11]

 its 

interaction with the conducting electron is given by  

  

                                                                 U(r) = (Ze
2
/r) exp(-λr)                                                      (4.5), 

  

 where Z is the charge of the impurity and λ is range of the interaction potential.
[7-11] 

Taking 

into account U(r) defined by (4.5) one can show that the (elastic) differential collision cross 

section σ(θ) is given by
[8-11]

 

  

                                     σ(θ) = (2m*Ze
2
/ћ

2
)
2 

/(K
2
 + λ

2
)
2
                                          (4.6), 

  

 where K = 2kFsin(θ/2) is momentum change in the collision  and kF = m*vF/ћ. From (4.3), 

(4.4) and (4.6) the resistivity ρi due to impurities is given by 

  

                                        ρi = (m*vF/n e
2
) 2π Ni  ∫ σ(θ) (1 –  cosθ) sinθ dθ

𝟐𝝅

𝟎
                 (4.7). 

       

                 Eq. (4.7) will be estimated taking 1/λ ~ a where a  is the “radius” of the ion (radius of the 

electron cloud that screens the ion) and assuming that kF/λ ~ kF a >>1. In this case we get
[8]

  

 

                                    ρi ≈ (m*vF/n e
2
) Ni {4πm*

2
Z

2
e

2
a

2
/ћ

4
 kF

2
}                                      (4.8). 

 

Taking, according to the Thomas-Fermi statistical atomic theory
[8]

, a ~ ћ
2
/me

2
Z

1/3
we obtain 

 

                                            ρi ≈ (m*vF/n e
2
) Ni 4π Z

4/3
/kF

2
                                                (4.9). 

 

 Using Drude´s model (see Eq.(1.1)) we see that the charged impurity behaves like a 

geometrical obstacle of radius R ~ (2Z
2/3

/kF). A more precise estimation of this radius could 

be obtained assuming that the screening parameter is given by
[13]

 λ
2
 = 4πe

2
N(EF) , where 

N(EF) is the density of states for the electrons at the Fermi level. However, the main point to 

notice is that, in both cases, the predicted impurity resistivity is independent of the 

temperature and that it increases linearly with the impurity density Ni in agreement with 

experimental results. The experiments show that resistivity of metals obey the relation 
[5-8]

 

  

                                                              ρ = ρo [1 + β x]                                                   (4.10), 

 

where ρo is the ideal resistivity of a perfect lattice material with 0% of impurities and with 

no imperfections (see Sections 5 and 6), β is a constant and x is the % of impurities.
[5-8]

 The 

ideal resistivity  ρo  due to electronic interactions with phonons and lattice atoms will be 

estimated in Section 6.                  

 

 

 (5) Lattice Vibrations.  
  In what follows it is assumed that there is only one atom in the unit cell.  In this way 

only acoustic vibrational modes will be considered. As is seen in basic textbooks there are 

normal modes of elastic vibrations 
[7,8,16,17]

 in crystal lattices. The lowest frequencies are in 

the sonic region, corresponding to wavelengths a half or a third or a tenth of the crystal 

dimensions. Taking into account that the total number of coordinates (degrees of freedom) 

of the N atoms is 3N-6 ≈ 3N there are only ~3N different standing waves. Some of them are 

compressional waves and some are shear waves. The highest frequencies are in the infrared 
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and correspond to wavelengths of the size of the interatomic distances. The lowest 

frequencies are sonic with wavelengths of the size of the crystal dimensions. To simplify the 

calculations let us suppose that the crystal is a very large cube with side L and that the unit 

cells are also cubic with side with only one atom. In this way the periodic atomic potential is 

equal to V(r) = V(r + a). To obtain the standing waves satisfying periodic conditions (Bloch 

conditions
[7,8]

) we define a wavevector q ≡ (qx,qy,qz) given by qx(n)= 2π/λn, qy(m)= 2π/λm 

and qz(k)= 2π/λk, where λp = L/p  (p = n,m, k = 1,2,…) are the discrete  wavelengths along 

the axis x, y and z, respectively. The atom in the unit cell moves along 3 axis (x,y,z) and can 

vibrate assuming all possible 3N standing waves.  

  In a quantum approach these standing waves are called phonons that, like photons, 

obey the Bose-Einstein (BE) statistics 
[15,16] 

with a chemical potential μ = 0 (since the 

number of photons or phonons is not constant). Indicating by εq= ћωq the phonon energy the 

average number < nq > of phonons in the qth mode at the temperature T is given by 

 

                                                                      < nq > =  1/[exp(ћωq/kBT) -1]                                   (5.1), 

 that contribute with an energy  

                                                                      < ϵq > = (< nq > +1/2) ћωq                                        (5.2). 

 

 Thus the total average energy of the system is given by 

 

                                                                < E >  = Σq ћωq/[exp(ћωq/kBT) -1]                                  (5.3), 

 

 where the summation is over all modes of the crystal (i.e. over all polarizations, as well 

different wavevectors).  To obtain a crude estimate
 [8] 

of (5.1)-(5.3) let us consider only 

acoustic modes, that all them have the same constant sound velocity c and that
[8,14,15]

 

 

                                                                                   ωq  = c q                                                          (5.4), 

 

 where q = 2π/λq is the wavenumber of the qth mode. Eq.(5.4) connects the energy ћωq of the 

qth mode with the wavelength of the qth standing mode. For photons with wavenumber k 

there is a similar relation ω = ck, where c is the light velocity.  

  Note that the q summation in (5.3) is over discrete numbers associated with the 

discrete wavelengths of the standing modes. Assuming that the volume V is sufficiently 

large we can pass in the usual way from a discrete to a continuous distribution of 

frequencies.
 [7,8,17]

  In this way the total number dNq of qth mode phonons in the interval 

dqxdqydqz is given by dNq = [V/(2π)
3
]q

2
 dq dΩ = [V/(2π)

3
]d

3
q.  Consequently (5.3) can be 

written as 

                                                      < E >  = [V/(2π)
3
]∫∫∫ d3

q ћωq/[exp(ћωq/kBT) -1]                       (5.5).  

 

 Taking into account that q = ωq/c, that there are 3N qmodes and that there is only one atom 

per unit cell (5.5) becomes 

                                          < E > = 3N(Vћ/π
2
c

3
)∫ ω

3
 dω/[exp(ћω/kBT) -1]                      (5.6).   

 

  Considering that there is a minimum wavelength λmin = 2a for the lattice waves the 

maximum value for ωm is given by ωm ~ cqmin ~ πc/a. This maximum value ωm can also be 

estimated as follows remembering that the maximum number of quantum modes is 3N: 

 

      3N =  ∫ dNq
𝝎𝒎

𝟎
 = V ωm

3
/2π

2
c

3
                                      (5.7), 
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 putting dNq =  4π[V/(2π)
3
]q

2
 dq = (V/2π

2
c

3
) ω

2
dω. From (5.7) we see that ωm, called Debye 

frequency ωD, is given by 

                                                                      ωm = ωD = (6π
2
Nc

3
/V)

1/3
                                           (5.8). 

  

  The Debye temperature Θ and Debye wavenumber qD are defined, respectively, by 

 

                                                      Θ = ћωD/kB
                      

 and
   
          qD = kBΘ/ћv                        (5.9). 

 

 

 (6) Electron Scattering by Lattice Vibrations and Atoms.  

  Now using the Schrödinger quantum mechanics ρ is obtained calculating the 

electronic scattering generated simultaneously by the lattice atoms and by the thermal 

vibrations (phonons). The scattering will be estimated with the perturbation theory in a first 

order Born approximation.  

  So, let us assume that the interaction potential V(r) between the free electron and 

atoms is not necessarily periodic and that it is the result of the superposition of individual 

atomic potentials Va(r) : 

                                                                         V(r) = Σℓ Va(r - Rℓ)                                                (6.1), 

 

 where Rℓ is the position of the atom (or ion) at the lattice site ℓ.  Assuming that the incident 

and scattered electron is represented, respectively by the plane waves |Ψk > = exp(ik•r) and  

|Ψk´ > = exp(ik´• r) where k and k´are, respectively, the electron wavenumbers before and 

after the collision, the matrix element Ϻk´k for transition  k → k´ is given by  

 

                                            Ϻk´k = ∫ exp(-ik´•r) { Σℓ Va(r - Rℓ) }exp(ik•r) d
3
r 

 

            = Σℓ exp[i(k-k´)•r] Va(r - Rℓ) d
3
r 

 

                 = Σℓ exp[i(k-k´)• Rℓ]∫ exp[i(k - k´)•(r - Rℓ)]Va(r - Rℓ) d
3
r       (6.2). 

 

 Defining the scattering vector as K = k´- k (6.2) becomes written as 

 

                                                                Ϻk´k = Va(K) F(K)                                                            (6.3), 

 

 where Va(K) is an atomic factor given by the Fourier transform of the atomic potential Va(r)  

 

             Va(K) =  ∫Va(r) exp(-iK• r) d
3
r                                            (6.4), 

 

   and S(K) is a structure factor given by  

 

                                                F(K) = (1/N) Σℓ exp[-iK• Rℓ]                             (6.5) 

 

  Suppose now that the lattice modes of our crystal are excited and that each atom is 

displaced from its ideal lattice site Rℓ by a very small dislocation uℓ(t) becoming,
[8]

 

 

                                         Rℓ(t)= ℓ + uℓ(t) = ℓ + Σq> [ Uq(t)exp(iq•ℓ) + Uq
*
(t)exp(-iq•ℓ)]              (6.5), 
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 where Uq(t) = Uq exp(iωqt) is the vector amplitude of the mode of wavenumber q (or  

phonon wavenumber – see Appendix C). The summation is only over positive q to make the 

displacements uℓ real since Uq
*
= U-q. As uℓ(t) are very small it can be shown that

[8]
 the 

transition probability |Ϻk´k|
2
 can be written as 

 

                                                      |Ϻk´k|
2
 = |Va(K)|

2
 |F(K)|

2
 = |Va(K)|

2
 S(K)                                   (6.6), 

 

 where |Va(K)|
2
 takes into account the atomic scattering  and that S(K) defined by                              

 

                                                                 S(K) ≈ N{Σq  |K•Uq|
2}                                  (6.7) 

 

 gives essentially the phonons contribution to the scattering. From (6.7) we note that the 

transition probability   k → k´ is given by the product of two factors, |Va(K)|
2
 and S(K). To 

obtain the total transition probability per unit of time (see Appendix B) it is necessary to 

multiply  |Va(K)|
2
 by (2π/ћ) , by the density of final states of the electrons  ρ(Ef) = dNf/dεf = 

[1/(2πћ)
3
]mpfdΩ = [1/(2πћ)

3
]m

2
vfdΩ , remembering that pf = ћk´, εf = (ћk´)

2
/2m*, multiply 

by S(K) which takes into account the sum over all possible final states of the phonons and, 

finally, perform the integration over Ω. In this way, according to (4.2), the mean free path 

Λo becomes given by  

                                  1/Λo  = 2πNa  ∫ |Ϻ𝐤𝐤´|
2 (1 − cosθ) sinθ dθ

𝟐𝝅

𝟎
   

 

                                                           = 2πNa ∫ |Va(𝐊)|2 S(𝐊) (1 − cosθ) sinθ dθ
𝟐𝝅

𝟎
 

 

                                                           ≈ 2πNa  ∫ σa(θ) S(𝐊) (1 − cosθ) sinθ dθ
𝟐𝝅

𝟎
          (6.8),          

 

 where Na = N/V and σa(θ) is the differential scattering cross-section of a “free-atom” given, 

according to (B.5), by 

                                 σa(θ) = dσ/dΩ =  |Va(K)|
2
 [m/(2πћ

2
)]

2
 (k´/k ).                           

   

 This last approximation may be justified by an appeal to the “adiabatic principle”.
[8] 

Physically this means that the electrons interact with single atoms and simultaneously with 

collective vibrations (phonons).  In what follows we assume that the electron-atom and 

electron-phonon collision are elastic, that is, k = k´= kF and |K| = K = 2kF sin(θ/2) where θ is 

the scattering angle. In truth the lattice is in constant motion and, consequently, the 

electronic diffraction is inelastic. That is, there is an exchange of momentum between the 

electron and lattice given by ћk´= ћk + ћq. In Fig.8 are represented using Feynman´s 

diagrams the scattering processes when one phonon is absorbed or emitted (see Appendix C) 

exchanging energy ћωq with the crystal. This is the argument that justifies the name phonon, 

as a quantized acoustic excitation with “particle-like” properties, by analogy with photon. 

Note that in the scattering process the electron can gain, or lose, an extra momentum ћg in 

addition to the momentum of the phonon ћq. We call such process Umklapp process or U-

process. 
[8] 

The momentum ћg is transferred to the crystal as a whole. When ћg = 0 the 

scattering is named Normal process or N-process.
[8]  
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Figure 8. Electron scattering process: (a) phonon absorption; (b) phonon emission
.[8]

 

 

 (6.a) High Temperatures.  

  To evaluate (6.7) we need to obtain the amplitude Uq of the qth lattice mode which is 

a function of the temperature. For high temperatures this can be done using a semi-classical 

approach. Classically, we know that the average energy of each simple-harmonic oscillator 

mode is the sum of its kinetic and potential energies and that they are equal. Thus, the total 

average energy < E > of a system with N particles with mass M   

     

  < E > =  Σℓ M |duℓ(t)/dt|
2
 = Σq NM |dUq(t)/dt|

2
 = N Σq Mωq

2
|Uq|

2
 = N Σq < ϵq >  (6.8), 

 

 which implies putting < ϵq > = (< nq > + 1/2) ћωq that: 

 

                   |Uq|
2
 = < ϵq >/NMωq

2
 = (< nq > +1/2) ћ/NMωq                       (6.9).   

 

  For any polarization we have on the average < | K•Uq |
2
> = (1/3)K

2
|Uq|

2
 however 

assuming that there are three different polarizations we have < | K•Uq |
2
> = K

2
|Uq|

2
. 

  Thus, using (6.5), (6.7) and taking ωq = cq for acoustic modes we have, 

 

                                                S(K)  ≈ N {Σq  |K•Uq|
2} ≈  NK

2{Σq |Uq|
2}                           (6.10), 

 that is, 

                                          S(K) =  (1/16π
3
)( ћ

2
 K

2
/M)∫∫∫ (< nq > +1/2)d

3
q/ωq 

 

                                  = (3ћ
2
K

2
T

2
/2MkBΘ

3
)∫o

Θ/T
{z/{[exp(z)-1] + ½} dz                 (6.11) 

 

 with z = ћω/kBT.  For high temperatures the upper limit of the integral (6.12) is small, that 

is, Θ/T << 1. In these conditions the integrand can be expanded in powers of z, that is, we 

can write z/{[exp(z)-1] ≈ 1 – z/2 + z
2
/12 – x

4
/720 +...Thus, we verify that 

 

                                                                    S(K)  ≈ (3/2)(ћ
2
K

2
T/MkBΘ

2
)                                        (6.12). 

 

  From (6.8) the mean free path Λo due to electron-phonon interaction, using (6.10) 

and (6.13), is given by 
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                            1/Λo = 2πNa  ∫ σa(θ) S(𝐊)(1 − cosθ) sinθ dθ
𝟐𝝅

𝟎
 

 

                                                    ≈  2πNa (3/2)(ћ
2
K

2
T/MkBΘ

2
) ∫ σa(θ) (1 − cosθ) sinθ dθ

𝟐𝝅

𝟎
 

 

               ≈ Na <σa> (3πћ
2
K

2
T/MkBΘ

2
) ≈ Na <σa> ћ

2 
qD

2
kBT/MkB

2
Θ

2
       (6.14) 

                                                       

 assuming that K is independent of θ and that  

 

                                                              <σa>  =2π∫ σa(θ) (1 − cosθ) sinθ dθ
𝟐𝝅

𝟎
                           (6.15) 

 

 is the total scattering cross-section of an isolated atom. Using (4.1) we see that the ideal 

resistivity ρo = m*vF/(Λon e
2
) for high temperatures is given by 

 

                                     ρo = Na<σa> (m*vF/n e
2
) (ћ

2 
qD

2
kB/MkB

2
Θ

2
) T                             (6.16), 

 

 that is, ρo increases linearly with T in good agreement with  experimental results. 
[7]

   

 

  (6.b) Low and High Temperatures. 

  For any temperature, low and high, S(K)
 
cannot be calculated assuming  the classical 

statistics as done in (6.a). So, |Uq|
2
 given by (6.9) is now taken as, putting ωq = cq and K ≈ k: 

 

                |Uq|
2
 = < ϵq >/NMωq

2
 = < nq > ћωq/NMωq

2
 ≈ (1/NMv

2
k

2
) {ћωq/[exp(ћωq/kBT) – 1]}  (6.17). 

 

 From (6.8), (6.10) and (6.17) we can calculate more or less exactly Λo if we suppose that 

σ(θ) is not strongly dependent varying function of θ. In this way we obtain:  

 

                              1/Λo = Na <σa> (ћ
2
qD

2
kBT/MkB

2
Θ

2
) (T/Θ)

4
  ∫ 4z4dz/[exp(z)  − 1]

Θ/T

𝟎
           (6.18), 

 

 where z = (ћωq/kBT) = (q/qD)(Θ/T). It is important to note that at high temperatures, when 

Θ/T << 1 the above integral tends to (Θ/T)
4
 . So, (6.18) gives 

  

                                                                1/Λo ≈ Na <σa> (ћ
2
qD

2
kBT/MkB

2
Θ

2
)                                 (6.19), 

 

 and we are back at (6.14). On the other side, at low temperatures since Θ/T >> 1 the (6.18) 

integral tends to a constant value (~100) showing a resistivity proportional to T
5
: 

 

                                      ρo  ≈ Na<σa> (m*vF/n e
2
) (ћ

2 
qD

2
kB /MkB

2
Θ)(T/Θ)

5
                     (6.20). 

 

 This strong T
5
 dependence of the ideal resistivity ρo at low temperatures is a characteristic 

quantum effect,
 [8]

 comparable with the Debye T
3
-specific heat law. 

  In the high temperature region the calculated resistivity is proportional to T, and in 

the low temperature region it is proportional to T
5
. The agreement of the calculated 

temperature dependence with experiment is quite good, as is shown in Fig.9, although T
5
 is 

seldom actually obtained.
[7,8]

 In Fig.9 is shown the temperature variation calculated with the 

semi-empirical Grüneisen formula
[8, 18]

 and the experimental values for various metals. 
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            Figure 9. Theoretical (Grüneisen) temperature variation of the electrical resistance 

compared with experimental values for various metals.
[7]

 

 

  It was found by Grüneisen that the observed temperatures dependence of the 

resistivity is quite well described at all temperatures by the semi-empirical formula  

 

                1/Λo = Na <σa> (ћ
2
qD

2
kBT/MkB

2
Θ

2
) (T/Θ)

4
∫ 4z5dz/{[exp(z) − 1][1 − exp(−z)]}

Θ/T

𝟎
 (6.21),    

 

 which has the same asymptotic behavior as (6.16) at high temperatures, that is,  ~ T and as  

(6.20) at low temperatures, that is,  ~ T
5
.    

  In Appendix C the resistivity ρo(T) is calculated using the Second Quantization 

Theory. 

                                                            

                       

 Appendix A. Effective Electron Mass. 

   Let us suppose that an electron submitted to an electric field E move in an allowed 

band with state vectors very close to ko. Being ϵ(k) = ћω(k) the electron energy as function 

of the momentum k its group velocity at ko is given by 
[13]

 

                                                     vg(ko) = (dω(k)/dk)o = (dϵ(k)/dk)o/ћ                                              (A.1). 

 If the electron wave packet is accelerated in an electric field E the work δW done on the 

electron in a time interval δt is written as
[7]

  

                                 δW = eEvg δt =  (dϵ/dk)δk = ћvg δk,     that is,    

                                  δk = (eE/ћ) δt   or   dk/dt  =  (eE/ћ).   

  We have further,  

                                                    dvg/dt = (dk/dt)(d
2
ϵ/dk

2
)/ ћ,       that is,   

               dvg/dt = (eE/ћ
2
)(d

2
ϵ/dk

2
),                                                              (A.2). 

 Comparing (A.2) with the classical equation for free electrons, dv/dt = (eE/m) we verify that 

an electron in a periodic potential, accelerated by an electric field, has an effective mass m* 

given by 
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                                                                       m* = ћ
2
 [d

2
ϵ(k)/dk

2
]

-1
                                              (A.3).                                              

 Experimental and theoretical values of effective mass ratios m*/m for some metals are given 

in reference 7 (Table 13.1, pag.258).  

 

Appendix B. Scattering Cross Section. 

 Let us remember how to obtain
[9,11]

  the scattering cross section dσ(ε,θ)/dΩ) for the  

i → f transition taking into account the transition probability per unit time dP(i → f) = dPfi 

due to a perturbation potential Hint.  

 In the first order Born approximation the probability per unit of time dPfi between 

these states is given by the Fermi golden rule 
[9,11]

  

 

                                             dPfi = (2π/ћ)|< f | Hint|i >|
2
 ρ(Ef)                                       (B.1), 

 

with the energy condition Ef = Ei and where ρ(Ef) is the number of final states per unit 

interval of energy Ef. 

 Let us assume that initial and final states |i > and |f > are described, respectively, by 

the plane waves |
 
i > = exp(iki∙r)/√V  and |

 
f > = exp(ikf∙r)/√V . In this case the number of 

final states dNk in the volume V with momentum within k and k+dk and within a solid angle 

dΩ is given by the expressions 
[9,11,16]

     

                                            

                                                     dNk = Vkf
2
dkf dΩ                                                         (B.2). 

 

For massive particles ε = p
2
/2m and p = ћk we get 

 

                                                dNp = [V/(2πћ)
3
]pf

2
dpf dΩ                                                 (B.3). 

and  

                               ρ(Ef) = dNp/dεf = [V/(2πћ)
3
]mpfdΩ = [V/(2πћ)

3
]m

2
vfdΩ    

 

 If Pfi is the total transition probability per unit of time, (N/V) = density of atoms of 

the crystal, |Ji| = ћki/(mV) = pi/(mV) = vi/V the flux density of the incoming particles and σ  

the total scattering cross section (“effective scattering area” ) we must have 

 

                         Pfi N = |Ji|Atotal  = (vi/V)Nσ       → →         σ = Pfi/(vi/V).      

 

Consequently, using (B.1): 

 

                              dσ = dPfi/(vi/V) = |< f |Hint| i >|
2
 [V

2
/(2πћ

2
)
2
]m

2
(vf /vi )                      (B.4). 

 

Putting| ѱ > = exp(ik∙r) = exp(ip∙r/ћ) (normalized by unit of volume) Eq.(B.4) is  written as 

 

                                  dσ/dΩ =  |<ѱf |Hint| ѱi >|
2
] [m/(2πћ

2
)]

2
 (vf /vi )                                 (B.5), 

 

With these | ѱ > functions the transition probability per unit time dPfi/dΩ becomes, using  

(B.4) and (B.5): 

                                                 dPfi(εi,θ)/dΩ =  vi (dσ(εi,θ)/dΩ)                                        (B.6), 

 

where εi and vi are the incident energy and velocity, respectively.                           .                          
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                 Appendix C. Second Quantization Approach for the Electron-Phonon Interaction. 

  In Section 6 we have seen that classically, when only acoustic modes of the crystal 

are excited each atom is displaced from its ideal lattice site Rℓ by a very small dislocation 

uℓ(t) given by (6.6)
[8]

 

 

                                         Rℓ(t) = ℓ + uℓ(t) = ℓ + Σq> [ Uq(t)exp(iq•ℓ) + Uq
*
(t)exp(-iq•ℓ)]              (C.1) 

 

 where Uq(t) = Uq exp(iωqt).  

  In order to use the second quantization formalism, putting generically ℓ = r, the 

dislocations uℓ(t) = ξ(t) are preliminarily written as
[9] 

 

                             uℓ(t) ≡ ξ(t) = (ћ/2MN)
1/2

 Σq Єq [ aq(t)exp(iq•r) + aq
*
(t)exp(-iq•r)]/√ωq            (C.2), 

 

 where  Єq = (e1,e2,e3)  are the three mutually perpendicular polarization unit vectors and 

aq(t) are the wave amplitudes  aq(t) = aq exp(iωqt). Each term in (B.2) describes a plane wave 

propagating in the direction of the wavevector q. It can be shown that 
[9]

 that classically the 

total energy Hcl of the atomic vibrations represented by (C.2) is given by 

 

                                                            Hcl  = (1/2)Σq ћωq [aq aq
*
 + aq

*
aq]                                       (C.3). 

 

              Replacing the complex amplitudes aq and aq
*
 by the creation and annihilation operators, Aq 

and Aq
+
 of phonons that satisfy the bosonic commutation relations  

 

                                             [Aq , Aq´]- = [Aq 
+
, Aq´

+
]-  = 0     and        [Aq , Aq´

+
]-  = δqq´                (C.4), 

 

 the Hamiltonian operator Hvib in the second quantization approach becomes written as 

 

                                               Hvib = Σq ћωq Aq
+
Aq + Eo ,                                                 (C.5), 

 

 where Eo = (1/2)Σq ћωq is the energy of the ground state or the vacuum state energy, usually 

taken equal to zero. If | 0 > is the vacuum state wavefunction, the energy wave functions  

 |1q > and |nq > are given, respectively, by |1q > = Aq
+ 

| 0 > and |nq > = (1/√nq!)(Aq
+
)
n
 | 0 >. 

These states represent phonons with energy nqћωq. 

  In the second quantization approach the displacements ξ are described by the 

formula
[9] 

                                                                   
ξ = (ћ/2MN)

1/2
 Σq Єq [ Aq exp(iq•r) + Aq

+ 
exp(-iq•r)]/√ωq              (C.6). 

 

  Now, let us obtain the interaction between the conduction electrons and the quantized 

phonons. When there is no vibration of the atoms about their equilibrium positions the 

potential energy of an electron in a crystal is a periodic function of the lattice periods,  

 Vo(r) = Σℓ Va(r - Rℓ) where Rℓ is the position of the atom (or ion) at the lattice site ℓ, 

according to (6.1). Due to the atoms vibrations, their positions are changed, Rℓ
 → 

Rℓ + ξℓ.  

For small deviations from the equilibrium positions we can write the potential interaction 

energy V(r), in a first order approximation,
[9] 

  

                                       V(r) = Vo(r) + Σℓ (
 
ξℓ ∙gradℓ )Va(r - Rℓ)                                    (C.7). 
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 Thus the total Hamiltonian HS of nearly free electrons + phonons can be written as 

 

                                                     HS = Hel + Hvib + Hint                                                     (C.8), 

 

 where Hel = Σi (ћ
2
ki

2
/2m*) + Vo(r) (i =1,2,...,N), Hvib is defined by (C.5) and Hint given by 

 

                           Hint = Σℓ (
 
ξℓ ∙gradℓ )Va(r - Rℓ) = ∫ (ξy(y)∙grady )Va(r - y)d

3
y                (C.9), 

 

 defining ξy(y) = Σℓ ξℓ δ(y – Rℓ) and transforming the summation over the discrete ℓ atomic 

positions in an integral over the crystal volume where now y are the atomic positions taken 

as a continuous variable.
[9]

 

  When there is no interaction between the electron and the lattice vibrations the state 

of the electron in the conduction band is described, in the general case, by the Bloch 

function 
[7,8,9]

  

                                                       |ψk(r)> = exp(ik∙r) uk(r)                                           (C.10). 

 

 For a nearly free electron uk(r) ≈ 1 (Section 3) and energy E(k) ≈ ћ
2
k

2
/2m* . The free 

vibrations of the lattice are determined by the wavefunction |…nq…> , that is, giving the 

number of phonons of different kinds in that state.
[9]

 

  Let us assume for instance that one phonon is created in the collision represented by  

Figure (8.b). So, initial state |i > is described by the state function 

 

                                                                    | i > = | nq > |ψk(r)>                                                     (C.11) 

 

 and the final state | f > by  

                                                                     | f > = | nq +1 > |ψk´(r)>                                               (C.12). 

  

  According to the perturbation theory the transition probability (see Appendix B)  

 dПk´k/dΩ, per unit time, for a transition  | k > →| k´> ( |ki > → | kf >) , involving the 

interactions of conduction electrons with the lattice atoms with emission (or absorption) of 

phonons, is given by 
[9,11]

 
 

                     dПfi/dΩ= (2π/ћ)| < f |Hint| i >|
2
 dρ(Ef)                                     (C.13), 

 

 where dρ(Ef) = kf
2
dkf/(2π)

3
  is the density of final states of the scattered electrons, the total 

energy Ef  = Ei, Ei = ћ
2
k

2
/2m* + nqћωq and  Ef = ћ

2
k´

2
/2m* + (nq+1)ћωq. Since  Ei – Ef  = 

ћ
2
(k

2 
- k´

2
)/2m* + ћωq we see that the collision is not elastic.  

  Since 

                                < f |Hint| i > = < nq +1| (
 
ξ(y) ∙grady )F(y)d

3
y |nq >                            (C.14), 

 

            where                     

                                         F(y) =  ∫ exp[(k – k´)∙r] Va(r - y)d
3
r                              

 and  

                                         ξ(y) ∙grady = –i(ћ/2NM)
1/2

 Σqℓ (q∙Єq) exp(-iq∙Rℓ)Aq
+
 δ(y-Rℓ)/√ωq. 

‘  

  Performing an average over the three polarizations we obtain: 
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 < f |Hint| i > =  –i(ћ/2NM)
1/2

 q < nq +1| Aq
+
 |nq >/√ωq  

  

                                        ∙ Σℓ  exp(-iq∙Rℓ)∫ exp[i(k - k´)∙r] uk´*(r)Va(r -Rℓ) uk´*(r)d
3
r      (C.15). 

 

 Putting r = Rℓ + ρ we can write the integral (C.15) as  

 

                                                              ∫(...) d3
r  = fa exp[i(k-k´)∙Rℓ]  

 

                 where fa = fa(θ) is a function of the scattering angle θ between k and k´ given by 

 

                                                   fa(θ) = ∫ uk´*(ρ)Va(ρ) exp[i(k - k´)∙ρ] uk(ρ)d
3
ρ. 

 

 In this way, (B.15) becomes taking < nq +1| Aq
+
 |nq >  = nq +1, 

 

                                  < f |Hint| i >  = –i{ћ (nq +1)/2NM)}
1/2

 q fa(θ) {(1/N) Σℓ exp[i(k - k´-q)∙Rℓ] }. 

 

 The sum {…} vanishes unless k - k´- q = 2πτ, where τ is a reciprocal lattice vector. For N-

processes (see Section 6) when τ = 0, k = k´+ q we have Σℓ exp[i(k - k´- q)∙Rℓ]= N. Giving, 

finally   

                     < f |Hint| i >  = –i{ћ (nq +1)/2NM)}
1/2

 q fa (θ) δ k, k´+ q                     (C.16). 

 

  Now, taking into account < f |Hint| i > defined by (C.16) and summing over all 

possible final |q > states of the emitted phonons with momentum q and energy ћωq, the total 

transition probability per unit time Пif for the electron scattering is given by 

 

                                            Пif   = (2π/ћ) ∫∫ |< f |Hint| i >|
2
 q

2
dqdΩ/(2π)

3
   

  

                                                   = [1/(2π)
2
] (ћ/2M) ∫∫{(nq +1)/ωq}|fa(θ)|

2
q

3
dqdΩ                           (C.17). 

  

               = (1/16π
3
)( ћ

2
/M)∫∫{(nq +1)/ωq} |fa(θ)|

2
q

3
dqdΩ   

  

 Assuming that there are only acoustic modes, that is, putting ωq = cq and writing ωq = ω,  

(C.17) becomes 

                                               Пif = (1/16π
3
)( ћ

2
/Mv

4
)∫∫ (n(ω) +1)|fa(θ)|

2
ω

2
dωdΩ                           (C.18). 

  

 Note that there is an entanglement between the two functions in (C.18) due to the energy 

conservation relation k
2
 = (k - q)

2
 + 2m*ω/ћ  and that |fa(θ)|

2
 is a function of K = k - k´ that 

depends on the scattering angle θ between k and k´. If in a first approximation we neglect 

this entanglement and put |k| ≈ |k´| ≈ kF, as was done in Section 6, (C.18) is written as 

  

                            П(θ) = (1/16π
3
)( ћ

2
/Mv

4
) < σa(θ)> ∫∫(n(ω) +1)ω

2
dω dΩ                    (C.19), 

 

 where < σa(θ) > = (m*V/2πћ
2
)
2
|fa(θ)|

2 
is  the scattering cross-section of an isolated atom.

[11] 

 
Thus, 

                                    1/Λo  = 2πNa ∫ П(θ) (1 −  cosθ) sinθ dθ 
𝟐𝝅

𝟎
≈  
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                                                    = 2πNa < σa> (1/16π
3
)( ћ

2
/Mc

4
) ∫∫(n(ω) +1)ω

2
dωdΩ                  (C.20), 

 

 where < σa> is the total scattering cross section of an isolated atom given by                     

    

                                                       < σa> = 2π ∫ σa(θ) (1 − cosθ) sinθ dθ  
𝟐𝝅

𝟎
. 

 

                Taking into account that < n(ω) > =  1/[exp(ћω/kBT) -1]  and following the calculations used 

to deduce (6.18) we finally obtain 

 

             1/Λo = Na <σa> (ћ
2
qD

2
kBT/MkB

2
Θ

2
) (T/Θ)

4
 ∫ 4z4dz/[exp(z)  − 1]

Θ/T

𝟎
            (C.21), 

 

 where z = ћω/kBT = (q/qD)(Θ/T), which is the same result given by (6.18).  
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