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Abstract. This article was written to graduate students of Physics and Engineering.  

In general, Chaos may refer to any state of confusion or disorder and it may also refer 

to, for instance, mythology, philosophy and religion. In science and mathematics it is 

sometimes understood as irregular behavior.In this article we analyze the Deterministic 

Chaos Theory, which is a branch of mathematics and physics that deals with dynamical 

systems (nonlinear differential equations or mappings) with very peculiar properties. 

Fundamental concepts of the deterministic chaos theory are briefly analyzed. We 

studied in details only the chaotic motion of a damped and driven pendulum around.  

Some illustrative examples of conservative and dissipative chaotic motions are 

mentioned. Relations between chaotic, stochastic and turbulent phenomena are also 

commented.    
Key words: chaos theory; differential equations; Poincaré sections; mapping; Lyapunov 

exponent. 

 

 

 

(I) Introduction. 
 This paper was written for graduate students of Physics and Engineering. Are 

briefly analyzed essential aspects of the growing field of mathematics and physics that 

is been applied to study a large number of phenomena generically named “chaotic”. 

These are present in many areas in science and engineering,
[1-3]

 including astronomy, 

plasma physics, statistical physics, astronomy, hydrodynamics and biology. As in Greek 

the word “chaos” (χάος) means “confusion”,  random, stochastic and turbulent ptocesses 

are interpreted as “chaotic”. However, rigorously they are different in the framework of 

Physics and Mathematics, as will be shown. This article written for graduate students 

analyzes only the basic points of chaos theory, as exactly as possible from the 

mathematical point of view, avoiding sometimes a rigorous approach.  In Section 1 we 

define “chaos” also known as “deterministic chaos theory” as a consequence of 

peculiar properties of deterministic nonlinear ordinary differential equations (NLODE). 

These equations that describe dynamic systems have a time evolution strongly 

dependent on initial conditions. Chaotic motion occurs depending of initial conditions 

and parameters values of the nonlinear equations. In Section 2 is seen the difference 

between chaotic and stochastic (or random) processes. In Section 3 to give a general 

idea about the chaos we study in details the dissipative motion of a damped and driven 

pendulum introducing the Poincaré technique. In Section 4 we show that it is possible to 

mailto:mcattani@if.usp.br
http://en.wikipedia.org/wiki/Chaos#Mythology.2C_philosophy.2C_and_religion
http://en.wikipedia.org/wiki/Chaos#Science_and_mathematics
http://en.wikipedia.org/wiki/Chaos_theory
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get a good description of the chaotic process using an iterative algebraic model named 

mapping. With this model we study the logistic equation and logistic map. In Section 5 

is presented the method created by Lyapunov, known as Lyapunov characteristic 

exponent, that is used to quantify the sensitive dependence on initial conditions for 

chaotic behavior.  Finally, in Section 6 is briefly analyzed the open problem: “is 

turbulence a chaotic process”? 

 

 

 

(1) Definition of Deterministic Systems and Chaos.  
 Usually in physics basics courses 

[1,3-6]
 we learn that all physical laws are 

described by differential equations. So, integrating, that is, solving analytically or 

numerically, these equations knowing the initial and boundary conditions(see Section 3) 

we would know the future of a physical system for all times. This is the deterministic 

view of nature. In other words, physics systems are deterministic because they obey 

deterministic differential equations. They can be conservative or dissipative. Remark 

that the deterministic development refers to the way as a system develops from one 

moment to the next, where the present system depends on the one just past in a well-

determined way through physical laws.
[1,3-6]  

If the initial states of deterministic systems 

were exactly known, future states could be theoretically predicted.  

  The deterministic theory survived till the 19.
th

 beginning to be questioned after 

the famous visionary works of Henri Poincaré on celestial mechanics [7] performed  at 

the end of the 19.
th

  These works begin in 1880 when he found that can exist non-

periodic orbits in the “three-body problem”. 

 According to Poincaré 
[7,8]

 :  “If we knew exactly the law of nature and the 

situation of the universe at the initial moment, we could predict exactly the situation of 

that same universe at a succeeding moment.  But even if it were the case that the natural 

laws had no longer any secret for us, we could still only know the initial situation 

approximately. If it enabled us to predict the succeeding situation with the same 

approximation, that is all we require, and we should say that the phenomenon had been 

predicted, that it is governed by laws. But it is not always so: it may happen that small 

differences in the initial conditions produce very great ones in the final 

phenomena. A small error in the former will produce an enormous error in the latter. 

Prediction becomes impossible, and we have the fortuitous phenomenon.” 

  In practice, as observed for many systems, knowledge about the future state is 

limited by the precision with which the initial state can be measured.  That is, knowing 

the laws of nature is not enough to predict the future. There are deterministic systems 

whose time evolution has a very strong dependence on initial conditions. That is, the 

differential equations that govern the evolution of the system are very sensitive to initial 

conditions. Usually we say that “even a tiny effect, such as a butterfly flying nearby, 

may be enough to vary the conditions such that the future is entirely different than what 

it might have been, not just a tiny bit different”.
[1-3,9]

 In this way, measurements made 

on the state of a system at a given time may not allow us to predict the future situation 

even moderately far ahead, despite the fact that the governing equations are exactly 

known. By definition, these equations are named “chaotic” and that they predict a 

“deterministic chaos”.  

 Only in recent years, with advent of computers that was allowed chaos to be 

studied because now it is possible to perform calculations of the time evolution of the 

properties of systems that include these tiny variations in the initial conditions. We 

begin to understand the existence of chaos when computers were readily available to 



3 
 

calculate the long-time histories required to explain the behavior. It did not happen until 

the 1970s. After almost one century of investigations we learned that chaotic systems 

can only be solved numerically, and there are no simple, general ways to predict when a 

system will exhibit chaos.
[1-3,9]

 We have also learned that deterministic chaos is always 

associated with nonlinear systems; nonlinearity is a necessary condition for chaos 

but not a sufficient one.  
 

 

 

 

(2) Random or Stochastic Process.  
 According to Section 1 the deterministic model will always produce the same 

output from a given starting condition or initial state. On the other hand, a random 

process, sometimes called stochastic process, is a collection of random variables, 

representing the evolution of some system of random values over time.
[10] 

Instead of 

describing a process which can only evolve in one way (as, for example, the solutions of 

an ordinary differential equation), in a stochastic process there is some indeterminacy: 

even if the initial condition is known, there are several (often infinitely many) directions 

in which the process may evolve. There is a probabilistic evolution of the initial states.   

 As an example, let us consider the Langevin 
[10,11] 

stochastic process. He 

proposed in 1908 the following stochastic differential equation to describe the 

Brownian (random) motion of a particle immersed in a fluid
:[10,11] 

 

 

The degree of freedom of interest here is the position x of the particle, m denotes the 

particle's mass. The force acting on the particle is written as a sum of a viscous force 

proportional to the particle's velocity (Stokes' law), and a noise term η(t) (the name 

given in physical contexts to terms in stochastic differential equations which are 

stochastic processes)  representing the effect of the collisions with the molecules of the 

fluid. The force η(t) has a Gaussian probability distribution with correlation function 

 

where kB is Boltzmann's constant and T is the temperature. The δ-function form of the 

correlations in time means that the force at a time t is assumed to be completely 

uncorrelated with it at any other time. This is an approximation; the actual random force 

has a nonzero correlation time corresponding to the collision time of the molecules. 

However, Langevin´s equation is used to describe the motion of a "macroscopic" 

particle at a much longer time scale, and in this limit the δ-correlation and the Langevin 

equation become exact.                                                                                                   

 It can be difficult to tell from data whether a physical or other observed process 

is random or chaotic.
[10,12].

 In reference [3] one can see some procedures proposed to 

distinguish between deterministic chaos and stochastic behavior.                                           

 Finally, in Quantum Mechanics, the Schrödinger equation, which describes the 

continuous time evolution of a system's wave function, is deterministic.
[13] 

However, 

the relationship between a system's wave function and the observable properties of the 

system appears to be non-deterministic.  

http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Stokes%27_law
http://en.wikipedia.org/wiki/Wiener_process
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Boltzmann_constant
http://en.wikipedia.org/wiki/Dirac_delta
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Time_evolution
http://en.wikipedia.org/wiki/Wave_function
http://en.wikipedia.org/wiki/Observable
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(3) Deterministic Chaos.  
 According to Section 1, after ~130 years of investigations, it was verified that 

chaotic phenomenon is well explained when dynamic systems obey nonlinear ordinary 

differential equations or simply NLODE (see Appendix A).  However, many papers 

have been published 
[14-16]

 investigating the existence of chaos for processes governed 

by partial differential equations [PDE](see Appendix B). Since this is an article is 

written to graduate students we avoid complex mathematical analysis required to 

elucidate this question we take for granted that chaos is only generated by NLODE. In 

this way, let us recall the definitions of NLODE. An ordinary differential equation is an 

equation containing a function of one independent variable and its derivatives
.[17-19]

 The 

term ordinary is used in contrast with the term partial differential equation  which may 

be with respect to more than one independent variable. Let x be an independent 

variable, y = y(x) a function of x and y
(n)

 = d
n
y/dx

n
 the derivative of order n of the 

function y(x).  An ordinary differential equation of order n can be generally written as 

F(x,y,y´,…,y
(n)

) = 0. If x, y(x) and y
(n)

 are linear functions  and F is a linear function of 

these functions we say that F is an ordinary linear differential equation (ODE).  When 

nonlinear terms are present, F is a nonlinear ordinary differential equation or NLODE. 

In Appendix B we show that ODE cannot explain the chaotic behavior. 

 In the N-dimensional case it is assumed that the time evolution of the dynamic 

of a system is described by continuous and continuous flux created by ordinary 

nonlinear differential equations   

                                       

                                          x(t)/dt = fα[x(t)]     with       x(0) = xo                         (3.1), 

 

x, fα (flow equation) are N-vectors ϵ R
m

, m is the number of degrees of liberty of the 

system, fα is explicitly independent of time and α is a control parameter. Usually it is 

assumed that any NLODE can be integrated in the sense that they are resolved 

analytically or numerically and that the solutions obtained are unique. Note that 

rigorously in Mathematics, differential equations can be integrated 
[20,21]

 when are 

manifested the following features: (a) existence of many conserved quantities; 

(b) existence of an algebraic geometry and (c) ability to give explicit solutions. The 

existence and uniqueness of solutions of NLODE and PDE are commented in 

Appendix A and B.  

 To give a general idea about the chaos theory we study in details in Section (3.a) 

only the dissipative motion of a damped and driven pendulum. There are, however 

many illustrative examples of chaotic processes. We suggest the lecture of two 

conservative processes 
[22] 

solved with the Hamiltonian formalism. One is the motion of 

a particle of mass m in a double quartic non-harmonic potential (Duffing potential) 

governed by the Duffing Hamiltonian, 

 

       H(p,x,t) = p
2
/2m – kx

2
 + x

4
 + εxcos(ωot), 

 

where the oscillating term εxcos(ωot) is a perturbative potential. A didactical approach 

of this case was done, for instance, by Bassalo and Cattani.
[23]

 The second case is the 

conservative motion of a double pendulum seen, for instance, in reference [24] where 

are found animation pictures of the chaotic motion.  
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 Another illustrative case is the motion of a particle with mass m submitted to a 

Duffing potential and to a dissipative force β(dx/dt). That is, the motion is governed by 

the NLODE (Duffing equation):
[2,3]

         

 

                                   md
2
x/dt

2 
 = kx  + 4x

3
 - β(dx/dt) + εcos(ωot). 

 

 Classical example is the chaos in the solar system (see, for instance, pag.99 of 

reference [3]).    

 

 

 

 

                         

(3.a) Chaos in damped and driven pendulum. 

 In Chapters (4.1- 6), Marion 
[1]

 studies one-dimensional nonlinear motions to 

help the students to understand chaos. Following this author 
[1]

 we study in details the 

motion, found to be chaotic, of a damped and driven pendulum around its pivot point 

shown in Fig.1.                                                  

 
Figure 1. Damped and Driven pendulum with length ℓ. 

 

 

 The torque τ around the pivot point can be written as  

 

                            τ = I d2
θ/dt

2
 = - b dθ/dt - mgℓ sinθ + Nd cos(ωdt)                  (3.2), 

 

where I is the moment of inertia, b the damping coefficient  and Nd
 
 is the driving force 

of angular frequency ωd. Dividing (3.2) by I = mℓ
2
 results the nonlinear equation 

 

                      d
2
θ/dt

2
 = - (b/mℓ

2
) (dθ/dt) - (g/ℓ) sinθ + (Nd /mℓ

2
) cos(ωdt)             (3.3). 

 

If we want to deal with equation (3.3) with a computer it is more convenient to use 

dimensionless parameters. So, let us divide (3.3)  by  ωo
2
 = g/ℓ and define the 

dimensions less parameters : time  t´= t/to with to = 1/ωo and driving frequency  

ω´= ωd /ωo. The new dimensionless variables and parameters are 
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x = θ                                          oscillating angle  

 

c = (b/mℓ
2
ωo)                            damping coefficient 

 

F = (Nd/mℓ
2
ωo) = (Nd/mgℓ)      driving force strength                                               (3.4) 

 

t´= t/to = t √g/ℓ                           dimensionless time 

 

ω = ωd/ωo
 
 = ωd√ℓ/g                   driving angular frequency     

 

Using the variables and parameters defined by (3.4) we verify that (3.3) becomes, 

 

                                         d
2
x/dt´

2
 = - c(dx/dt´) - sin(x) + F cos(ωt´)                         (3.5). 

 

 Defining y = dx/dt´ and z = ωt´, the second-order non-linear differential equation 

(3.5) is substituted by a system of two first order-differential equations:  

           

           y = dx/dt´ (angular velocity)     and    dy/dt´ = - cy - sin(x) + F cos(z)           (3.6). 

                      

 The NLODE (3.5) can only be solved for x using numerical methods, given the 

parameters c, F and ω. This was done with a computer using a commercial software 

program. 
[1] 

He assumed that c = 0.05 and ω = 0.7 and vary only the driving strength F 

in steps of 0.1 from 0.4 to 1.0.  The motion in the phase space associated with (3.6) can 

be efficiently studied using the technique invented by Poincaré, named  Poincaré 

sections  illustrated in Figures 2 and 3. First is constructed  a 3-dim phase space with 

orthogonal axis (x,y,z), where x = θ, y = dx/dt´ and  z = ωt´ and second, are taken 

parallel planes (y,x) orthogonal to the axis z distant one of the other by a given interval 

Δz (see Fig.(2b)). These planes, or Poincaré sections, are used to drawn a stroboscopic 

map of the flux. This name is given because such map consists in observe the system in 

discrete times tk = 2πk/ω  (k =1,2,…,n). Taking for t = 0 the initial values x(0) = xo and 

y(0) = yo we integrate numerically (3.5) up to the instant t1 determining the point A1 = 

[x(t1),y(t1)] of the path. These values are now taken as new initial values to calculate the 

next point A2 = [x(t2),y(t2)] for t2 and so on.. Note that the calculated path is a 

continuous curve. The calculated path of the pendulum in the phase space (x,y,z) pierces 

the planes (stroboscopic sections) as a function of angular speed (y = dθ/dt), time (z = 

ωt´) and the phase angle (x = θ), according to Fig.(2a). The points on the intersections 

are labelled as A1, A2 and A3, etc. This set of points Ai forms a pattern (stroboscopic 

map) when projected on the plane (y,x)(see Figs. (2.b) and 3).  Poincaré realized that 

the simple curves represent motion with possibly analytic solutions, but the many 

complicated, apparently irregular, curves represent chaos. 
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Figure 2. Technique invented by Poincaré to represent the phase space diagrams. The parallel 

planes are “stroboscopic sections” of the motion. The path pierces these planes at the points A1, 

A2, A3,…[Fig.(2a)]. In Fig.(2b) are shown these points projected on the plane (x,y). 

 

 

 

 
 

Figure 3. Illustration of the stroboscopic technique where are shown the intersections of the 

path with the Poincare´section. 

 

 Now let us analyze results seen in Figure 4. The left side displays y = dx/dt´ 

(angular velocity) versus time t´ when transient effects have died out. The value F = 0.4 

shows a simple periodic harmonic motion (only one vibrational frequency), but the 

results for F = 0.5, 0.8 and 0.9, although periodic, are not so simple (few vibrational 

frequencies). This is also seen in the middle column of Fig.4 observing the phase-space 

plot versus the angle x.
[6] 

These results indicate the beautiful and surprising behavior 

obtained from nonlinear dynamics: the motions are periodic for F = 0.4, 0.5, 0.8 and 0.9 

but chaotic for F = 0.6, 07 and 1.0. The “black regions” are created by a very large 

density of different x values of the position occupied by the pendulum during the 

chaotic displacements.   



8 
 

 
 

Figure 4.  The damped and driven pendulum for various force values of the driving force F. 

The angular velocity y = (dx/dt´) versus time t´ is shown on the left. The phase diagrams y 

versus x are in the center.  Poincaré sections are shown on the right. Note that motion is 

chaotic for driving force values 0.6, 0.7 and 1.0. The F = 0.4 shows simple harmonic motion. 

The results for F = 0.5, 0.8 and 0.9 although periodic, are hardly simple.  

  

 In the right column are displayed stroboscopic maps. For F = 0.4 and 0.8 the 

Poincaré sections shows only one point. There is a simple harmonic motion: the system 

always comes back to the same position (x,y) after z goes through 2π. For F = 0.5 and  

F = 0.9 there are 3 and 2 points, respectively, indicating more complex motions. The 

number of isolated points n shows that a new period T = ton/m where m is an integer  

(m = 2 for the F = 0.5 plot and m = 1 for the F = 0.9 plot). The chaotic motions for  

F = 0.6, 0.7 and 1.0 present complicated variations of points expected for the chaotic 

motion with a period T → ∞.  In these cases we have aperiodic motions which is a 

characteristic of the deterministic chaos. Finally, we remark that only for dissipative 

systems there are set of points (attractors) or a point on which the motion converges. In 

chaotic motion, nearby trajectories in phase space are continually diverging from one 
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another but must eventually return to the attractor. Due to these attractors, named 

strange or chaotic attractors, the motions in the phase space are necessarily bounded. 

The paths are continually diverging from one another but must eventually return to the 

attractor. The attractors create intricate patterns, folding and stretching the trajectories 

must occur because no trajectory intersects in the phase space, which is ruled out by 

deterministic dynamical motion. 
[6]

 The figures reveal a complex folded, layered 

structure of the attractors. Amplifying the figure we would note that the “lines” are 

really composed by a set of sublines. Amplifying a subline we would see another set of 

sublines and so on…verifying that the strange attractors usually are fractals.
[3,25,26]

 

 

 

 

(4) Mapping. 
  In some cases it is very difficult to study the evolution of a nonlinear system 

integrating their differential equations. Sometimes it is also difficult to construct an 

exact nonlinear mathematical model to study physical system. In these cases it is 

possible to get a good description of the chaotic process using an iterative algebraic 

model named mapping. To understand the origin of this model let us assume that the 

motion of a system is described by nonlinear first-order differential equations of the 

form 
[9] 

                                                              dx/dt = V(x)                                             (4.1), 

 

where x and V(x) are explicitly independent of time and that the motion is represented 

in Poincaré section ΣR in Figure (5). 

 

 
 
Figure 5. Trajectory of the motion piercing Poincaré section ΣR. The right figure shows only the 

points xn, xn+1 e xn+2 on ΣR. 

 

 The Poincaré map is found by choosing a point xn on ΣR and integrating (4.1) to 

find the next intersection xn+1 of the orbit with ΣR. In this way we construct the map 

xn+1 = f(xn), where the function f(x) is “invented” guided by V(x).                                                      

 In a few words, denoting by n the time sequence of a system and by x the 

physical observable of this system we can describe the progression of a nonlinear 

system at a particular moment by investigating how the (n+1).
th

 state depends on the n.
th

 

state. The evolution n → n + 1 can be written as a difference equation using a function 

f(α,xn) as follows 

                                                         xn+1 = fα(xn)                                               (4.2), 
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where α is a model-dependent control parameter, α and x are real numbers. The 

function fα(xn) generates the value xn+1 from xn and the collection of points generated is 

said to be a  map of the function itself.  The difference equation (4.1), which is an 

evolution equation in the Poincaré section is considered a milestone in the field of 

nonlinear phenomena. Note that n must be iterated from n = 1 up to N >> 1.  

 

(4.a) Logistic Equation and Logistic Map. 

 There are innumerous chaotic systems studied with the mapping approach. 

Famous examples are the map models for Ecological and Economic interactions: 

Symbiosis, Predator-Prey and Competition. 
[27,28]

 Malthus, for instance, claimed that the 

human population p grows obeying the law. 
[27]

 

 

                                                            dp/dt = kp                                                    (4.3). 

  

 Verhulst 
[28]

 argued that the population grow has inhibitory term ap
2
 so that (4.3) 

is actually given by a nonlinear equation, called logistic function 

 

                                                           dp/dt = kp – ap
2
                                            (4.4), 

 

which shows that the population tends asymptotically to the constant k/a. 

 One century later, indicating the population by x the differential equation (4.4) 

was substituted by the logistic equation 
[1,27,28] 

 

                                                            xn+1 = α xn (1 - xn)                                         (4.5), 

 

where 0 < α < 4 in order to assure that 0 < xn < 1. Note that the (4.5) must be calculated 

(iterated) from n = 1 up to the cycle n >> 1.  An n cycle is an orbit that returns to its 

original position after n iterations.  In reference
 [1] 

are presented logistic maps of xn+1 as 

a function of xn showing that x assume one stable value and only two discrete values 

for α values in the interval 2.8 - 3.1, characterizing a periodic motion. 

   

 
Figure 6.  Bifurcation diagram xn as function of α for logistic equation map (2.8 < α < 4.0). 

 

 A more general view of the evolution can be obtained plotting a bifurcation 

diagram
[1,27,28]

(see Figure 6) where the xn is calculated numerically after many 

interactions to avoid initial effects is plotted as a function of the parameter α.
 [1]

 

Analyzing this figure we verify that for 2.80 < α < 3.00 there is a stable population with 
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x = 0.655 (the period is one cycle; xn+1 = xn). At α = 3.1 we see a bifurcation (because of 

obvious shape of the diagram) where there is a period doubling effect (xn+2 = xn): x 

begins to oscillate periodically between 0.558 and 0.765. At α = 3.45 there are two 

different points of bifurcation: now there appear four possible periodic oscillations.   

The bifurcation and period doubling continues up to an infinite number of cycles near 

3.57. Chaos (black regions) occurs for many of α values between 3.57 and 4.0, but there 

are still windows of periodic motions (“white regions”). Detailed description of these 

regions can be seen, for instance, in references [29,30], where is also shown a cobweb 

diagram of the logistic map showing chaotic behavior for most values of α > 3.57. The 

special case of r = 4 can in fact be solved exactly,
[9]

 as can the case with α = 2; however 

the general case can only be calculated numerically. For α = 4 is xn = sin
2
(2

n 
θπ) where 

the initial condition parameter θ is given by θ = (1/π) arcsin(xo
1/2

).  For rational θ after a 

finite number of iterations xn maps into a periodic sequence. But almost all θ are 

irrational, and, for irrational θ, xn never repeats itself - it is non-periodic. This solution 

equation clearly demonstrates the two key features of chaos – stretching and folding: the 

factor 2
n
 shows the exponential growth of stretching, which results in sensitive 

dependence on initial conditions, while the squared sine function xn keeps folded within 

the range {0,1}.  

 

(5) Lyapunov Exponents.  
 The nonlinear terms of the differential equations amplify exponentially small 

differences in the initial conditions. In this way the deterministic evolution laws can 

create chaotic behavior, even in the absence of noise or external fluctuations. In the 

chaotic regime it is not possible to predict exactly the evolution of the system state 

during a time arbitrarily long. This is the unpredictability characteristic of the chaos. 

The temporal evolution is governed by a continuous spectrum of frequencies 

responsible for an aperiodic behavior (see, for instance, Fig.4). The motions present 

stationary patterns, that is, patterns that are repeated only non-periodically.
.[2,3] 

 Lyapunov created a method 
[1-3,25]

 known as Lyapunov characteristic exponent 

to quantify the sensitive dependence on initial conditions for chaotic behavior. It gives 

valuable information about the stability of dynamic systems. With this method it is 

possible to determine the minimum requirements of differential equations that are 

necessary  to create chaos (see Appendix B). To each variable of the system is 

associated a Lyapunov exponent. Let us study the case of systems with only one 

variable
[1]

 that assume two initial states  xo and xo + ε, differing by a small amount ε. 

We want to investigate the possible values of xn after n iterations from the two initial 

values. The difference dn between the two xn values after n iterations (omitting for 

simplicity the subscript α) is given approximately by 

 

                                             dn = f(xn+ ε)  - f(xn) = ε exp(nλ)                                    (5.1), 

 

where λ is the Lyapunov exponent that represents the coefficient of the average 

exponential growth per unit of time between the two states. From (5.1) we see that if  

 λ is negative, the two orbits will eventually converge, but if positive, the nearby 

trajectories diverge resulting chaos.  The difference d1 between the two initial states is 

written as 

                                         d1= f(xo + ε) - f(xo) ≈ ε (df/dx)xo                                   (5.2). 

 

http://en.wikipedia.org/wiki/Sensitive_dependence_on_initial_conditions
http://en.wikipedia.org/wiki/Sensitive_dependence_on_initial_conditions
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 Now, in order to avoid confusion that sometimes is found in the chaotic 

literature, we remember that 

 

                      xn+1 = f(xn) = f(f(x n-1)) = f(f(f(x n-2))) =....= f(f(f(...f(xo)...)))           (5.2) 

that also is written as  

                                                xn+1= f(xn) = f
n
(xo)                                                 (5.3), 

   

where the superscript  n indicates the n.
th

 iterate of the map. 

 After a large number n of iterations the difference between the nearby states, 

using (5.1) and (5.3), will be given by 

  

                             dn = f(xn + ε) - f(xn) = f
n
(xo + ε) - f

n
(xo) = ε exp(nλ)                  (5.4) 

 

Dividing (5.3) by ε and taking the logarithm of both sides, results 

 

                                ln{[f
n
(xo + ε) - f

n
(xo)/ε] = ln[exp(nλ)] =  nλ                          (5.4). 

 

Taking into account that ε is small we obtain from (5.4), 

 

                                             λ(xo) =  (1/n) ln|df
n
(xo)/dxo|                                       (5.5). 

 

Since f
n
(xo) is obtained iterating  f(xo) n times we have f

n
(xo) = f(f(…(f(xo)…)), that is, 

f
n
(xo) = f(f

n-1
(xo))= f(f

n-1
(f

n-2
(xo))) =…, where xi = f

i
(xo) is the result of the i.

th
 iteration 

of the map f(x) from the initial condition xo. So, using the derivative chain rule we get 

 

                     df
n
(xo)/dxo =  {df(x n-1)/dxo} { df(x n-2)/dxo }… {df(xo)/dx o}                   (5.6).   

 

Thus, for ε → ∞ and n → ∞ we get, using (5.5) and (5.6), 

 

                                        λ(xo) = lim n→∞ (1/n)
 
ln |Πi = 0

n-1
df(xi)/dxo|  

 

                                                 = lim n→∞ (1/n)
 {Σi = 0

n-1 
ln|df(xi)/dxo|}          (5.7), 

 

where xi = f
i
(xo). In the lim n→∞ the Lyapunov exponent becomes independent of the 

initial condition xo. This occurs because when is done an infinite numbers of iterations. 

the attractor is entirely covered by x(t), and it does not matter the initial point xo. As in 

practice n are large, but finite numbers, we calculate λ for different initial conditions 

and take an average of these values.  

 From (5.1) we verify that if λ is negative, the two orbits will eventually 

converge; but if λ is positive, the nearby trajectories diverge resulting chaos. From (5.4) 

we see that at the bifurcation λ = 0 because |df/dx| = 1 (the solution becomes unstable). 

When df/dx = 0 we have λ = - ∞ (the solution becomes super stable). 

 The λ estimation using simply the flow equations,
[1-3]

 that is, without maps, are 

in general difficult because one has to deal with solutions of NLDE and analytic 

calculations. This kind of calculation for the damped and driven pendulum is seen, 

forinstance, in reference.
[1]

 Using maps these calculations become easier. This is shown 

in what follows for logistic map and triangular map.  
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 (5.a) Lyapunov exponents for logistic map. 

 According to (5.5) or (5.7) to obtain λ are used the iterated functions f
n
(xo). For 

the logistic map we have the logistic equation (4.5) that is, xn+1 = α xn (1 - xn) = f(xn). 

As an example, the “second order” iterated function f
2
(x) is given by 

 

          f
2
(x) = f(f(x)) = f(α x(1 - x)) = α(f(x)(1-f(x))) = α

2
x(1-x)[1- α x (1 - x)]. 

 

So, to get λ(xo) we can continue to iterate f(x) up to n >> 1 and use (5.5) or use (5.7) 

taking into account f(xi), with i = 1,2,…, n, remembering that f(xi) = f
i
(x).  

 In reference 
[29,30]

 are seen cobweb plots (web diagrams) or Verhulst diagrams 

that are graphs that can be used to visualize successive iterations of the function f(x). In 

particular , the segments of the diagram connect the points(x,f(x)), 

(f(x),f(f(x))),(f(f(x)),f(f(f(x)))),…The diagram is so-named because its straight lines 

segments “anchored” to the functions x and f(x) resemble a spider web. The cobweb 

plot is a visual tool used to investigate the qualitative behavior of one-dimensional 

iterated functions such as the logistic map. With this plot it is possible to infer the long 

term status of an initial condition under repeated application of a map. 

 In Fig. 7 
[25]

are shown the Lyapunov exponents λ calculated numerically as a 

function of the parameter α for the logistic map x seen in Fig.6.  

 

                                             
Figure 7. The Lyapunov exponents  λ as a function of α for the logistic map x. 

 

 

(5.b) Lyapunov exponents for triangular map. 

 In the particular case of a triangular map
[25,9]

 λ can be calculated analytically. 

This map, represented in Fig. 8, obey the following equations: 

 

                           xn+1 = 2βxn   ,          0 < x ≤ 1/2   

                                                                                                                                  (5.8) 

                            xn+1 = 2β(1- xn )  ,  1/2 < x < 1 ,   0 < β ≤ 1. 

 

Equations (5.8) can be rewritten as xn+1  = f(xn ), where the function f(x) is given by 

 

                                       f(x) = β[1 – 2 |1/2 – x| ]                                               (5.9), 
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shown in Fig. (8.a). 

 
 

Figure 8. (a) Triangular map. (b) The f
n
 application to f(x).  

 

 The n.
th

 application on 2βx of the first region 0 < x <1/2 give f
n
(x) = (2β)

n
x

n
.  

The maximum value of f
n
(x) is β

n
 at the point x = 2

-n
, shown in Fig.(8a). By symmetry 

the next point of minimum must be 2 2
-n

 and of maximum at 3 2
-n

 and so on…By 

similar arguments permit us to conclude that f
n
(x) for the region 1/2< x ≤1 must have 

the behavior shown in Fig.(8b). This implies that |f
n
(x)/dx| = (2β)

n
 for the two regions. 

Taking into account (5.5) we get  

                                           λ(xo) =  (1/n) ln|df
n
(xo)/dxo|  = ln(2β)                             (5.10).  

 

Consequently, there is chaos only for β > ½, since λ > 0.                                                                                                                                                                                                                                                                                         

                                     
               

 

(6) Turbulent Processes.  
 As seen in basic physics course

[4,31]
 turbulence originated from studies of fluid 

motion in classical mechanics. The general equation of motion for a viscous fluid is 

given by the Navier-Stokes nonlinear partial differential equation ( NLPDE), 

 

                         ∂v/∂t + (v.grad)v = - grad(P)/ρ - grad(Φ) + (η/ρ)lapl(v)                   (6.1), 

 

where v(r,t) is the velocity of the fluid at point r , P is the pressure, ρ the density of 

fluid, Φ(r) the gravitational potential and η the viscosity. This equation is a miracle of 

brevity, relating a fluid´s velocity, pressure, density and viscosity.
[32]

 Since (6.1) is 

NLPDE it is not submitted to any general method of solution (see Appendix B). 

 Laminar flux occurs for very small Reynolds number Re = vLρ/η << 1, 
[36,37]

 

where v is a typical fluid velocity  and L is some characteristic length in the flux. In 

these conditions (6.1) can be approximated by a linear partial differential equation 

(LPDE) and all elements of volume of the fluid describe well defined trajectories 

 r = r(t). Since there are an infinite number of elements of volume δV the resulting 

LPDE has an infinite number of degrees of freedom which is a characteristic of the 

PDE (see Appendix B). For Re >> 1 the nonlinear effects become dominant being 

responsible for the phenomenon called turbulence. In these conditions the flux 

becomes disordered: the trajectories of the fluid elements δV are irregular and develop 

eddies, ripples and whorls. In spite of this yet there is some sort of order found within 

the disorder or turbulence which could be described as self-similar or fractal
.[32]
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  An open problem is to find a mathematical formalism able to describe this 

disordered state.
[32-34]

 Turbulence in fluid dynamics is being understood in infinite 

dimensional phase space under the flow defined by the Navier-Stokes equation. We 

have seen that in the finite dimensional phase space physical systems can be described 

with very good precision by LODE and NLODE that can solved exactly or 

numerically. They can in principle reveal all detailed structures of the dynamical 

systems. Turbulence in fluid mechanics is generated by a NLPDE anchored in an 

infinite dimensional phase space. Is turbulence a chaotic process? Up to nowadays it is 

well-known that the theory of chaos in finite-dimensional dynamical systems has been 

well-developed. Such theory has produced important mathematical theorems and led to 

important applications in physics, chemistry, biology, engineering, etc. 
[33]

  

 Note that, in the contrary, theory of chaos in PDE has not been well-developed. 

In terms of applications, most of important natural phenomena are described by linear 

and nonlinear partial differential equations (wave equations, Yang-Mills equations, 

Navier-Stokes , General Relativity, Schrödinger equations, etc)(see Appendix B).  In 

spite of extensive investigations it was not possible to prove, in the general case, the 

existence of chaos in infinite-dimensional systems.
[9,32-34]

    

 Among the NLPDE there is a class of equations called soliton equations that are 

integrable Hamiltonian PDE and natural counterparts of finite-dimensional integrable 

Hamiltonian systems.
[9] 

Many works have also been developed investigating the 

existence of chaos in perturbed soliton equations.
[33,34]

    

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A. Ordinary Differential Equations. 
 In mathematics, an ordinary differential equation is an equation containing a 

function of one independent variable and its derivatives.
[17,18]

 The term “ordinary” is 

used in contrast with the term partial differential equation or PDE which may be with 

respect to more than one independent variable. 
 Let x be an independent variable and y = y(x) a linear and continuous function of 

x. Indicating by y
(n)

 = d
n
y/dx

n
 the derivative of order n of the function y(x) an implicit 

ordinary differential equation of order n can be generally written as 

 

                                                  F(x,y,y´,…,y
(n)

) = 0                                             (3.1), 

 

where F is a continuous linear function of x and of the continuous y(x) and of their 

derivatives y
(n)

(x).  I this case the equation is defined as linear differential equation or 

simply ordinary differential equation (ODE). 

 When nonlinear terms are present, F is an ordinary nonlinear differential 

equation or NLODE. 
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Existence and Uniqueness of Solutions of ODE.  

 It can be shown
[17,18,35,36] 

that there is one and only one solution of (3.1) in an 

interval (xo - Δ, xo + Δ), with Δ > 0, given by a continuous function (or trajectory) 

 

                                               y = y(x,co,c1,c2,,…, cn)                                           (3.2), 

 

where co= y(xo) and cn= y
(n)

(xo) ( n = 1,…, n) are arbitrary constants (initial conditions). 

Note that general solutions of ODEs involve the knowledge of arbitrary constants. The 

solution (2.2) can be obtained analytically or by graphical and numerical methods. The 

existence and uniqueness of the ODE solutions are established by several 

theorems
.[17,18,35,36]

  

 Now let us assume that at xo there are two different initial conditions: one given  

y(xo,co,c1,c2,,…, cn) and another  y(xo,Co,C1,C2,,…, Cn) when Cn = cn + δn, with δn << cn. 

At a point x ≠ xo we have the difference Δy  given by Δy  = y(x,co,c1,c2,,…, cn) - 

y(x,Co,C1,C2,…, Cn). Since y is as a continuous function of the variables x, cn and Cn, 

Δy can be expanded in a series in a first order approximation of the increments δn. In 

this way, for arbitrarily small increments δn the difference Δy becomes also arbitrarily 

small.   

Conclusion: “for arbitrarily small variations δn of the initial conditions the trajectories 

are practically the same”. Consequently, chaotic systems cannot be governed by ODE. 

 In absence of analytic solutions, graphical and numerical methods, applied by 

hand or by computer, may give approximate solutions of ODE and perhaps yield useful 

information.. 

  

Existence and Uniqueness of Solutions of NLODE. 

 There are a few methods of solving NLODE analytically; those that are known 

typically depend on equation having particular symmetries. There are no general 

techniques that work for all such equations, and usually each individual equation has to 

be studied as a separate problem. In absence of analytic solutions, graphical and 

numerical methods applied by hand or by computer, may give approximate solutions of 

ODE. One extremely popular is the Runge-Kutta 
[35]

method. NLODE can exhibit very 

complicated behavior over extended time intervals, characteristic of chaos. The 

questions of existence and uniqueness of solutions of NLODE and PDE are hard 

problems and their resolution are of fundamental importance to the mathematical 

theory.
[35] 

However, if the differential equation is a correctly formulated representation 

of a meaningful physical process, then one expects it to have a unique solution.
[37]

 

 Linear differential equations frequently appear as approximations to nonlinear 

equations. These approximations are only valid under restricted conditions. For 

example, the harmonic oscillator equation is an approximation to the nonlinear 

pendulum equation that is valid for small amplitude oscillations. 

 

APPENDIX B. Partial Differential Equations and Chaos. 
 The formulation of a physical problems in  mathematical terms often results in a 

partial differential equation (PDE) that contains unknown multivariable functions 

u(x1,x2,…,xn) and their partial derivatives 
[38,39]

 ∂u/∂x1,..., ∂u/∂xn , ∂
2
u/∂x1∂x1,..., 

∂
2
u/∂x1∂xn and so on… 

 A PDE for the function u(x1,x2,…,xn) can be written in an implicit form: 

 

         F(x1,x2,…,xn, u, ∂u/∂x1,..., ∂u/∂xn , ∂
2
u/∂x1∂x1,..., ∂

2
u/∂x1∂xn…) = 0        (A.1), 

 

http://en.wikipedia.org/wiki/Chaos_theory
http://en.wikipedia.org/wiki/Linearization
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which must generally satisfy additional conditions, which are dependent on the nature 

of the problem. This is the so-called boundary value problem. F can be a linear (LPDE) 

or nonlinear (NLPDE) function of u and its derivatives. 
[38,39]

 Common examples of 

PDE include sound and heat equations, fluid flow or Navier-Stokes equation, 

electrostatics, wave equation, electrodynamics, Laplace´s equation, quantum mechanics, 

Klein-Gordon and Poisson´s equations and gravitation. PDE as ODE often model 

multidimensional systems. 

 

Existence and Uniqueness of Solutions.  

  Although the issue of existence and uniqueness of solutions of ODE which has 

a very satisfactory answer, as seen in Section 1, that is not the case for PDE.  General 

solutions of ODE involve arbitrary constants. Solutions of PDE are much more 

complicate because they involve arbitrary functions. A solution of a PDE is generally 

not unique: it depends on additional conditions that must be specified on the boundary 

of region where the solution is defined. The Cauchy-Kowalevski theorem states that the 

Cauchy problem for any LPDE whose coefficients are analytic in the unknown function 

and its derivatives, has a locally unique analytic solution. Although this result might 

appear to settle the existence and uniqueness of solutions, there are examples of LPDE 

which have no solutions at all. 

 The NLPDE are more difficult to integrate analytically :
[38-40]

 there are almost 

no general techniques that work for all such equations, and usually each individual 

equation has to be studied as a separate problem. A fundamental problem for any PDE 

is the existence and uniqueness of a solution for given boundary conditions. For LPDE 

these questions are in general very hard. It is often possible to obtain analytic solutions 

as occurs, for instance, with solitons in hydrodynamics, electromagnetic waves and non-

linear quantum mechanics. Numerical solution on a computer is almost the only method 

that can be used for getting information about arbitrary PDE. A list of NLPDE is given 

in reference. 
[39]

 As said in Appendix A, if the differential equation is a correctly 

formulated representation of a meaningful physical process and if a solution can be 

found consistently with all the given boundary conditions, it is accepted without proof 

that this solution is unique.
[37].

  

 

Simplest Chaotic Partial Differential Equation 

 As commented before in spite of extensive investigations it was not possible to 

prove, in the general case, the existence of chaos in infinite-dimensional systems.
[9,32-34]

  

However,it was shown that very simple NLPDE permit chaos.
[41]

 These equations have 

the form 

                                                    ∂u(x,t)/∂t  = F(u(x,t)), 

 

where F(u(x,t)) can consist of derivatives in space but not in time, can contain a 

constant term, and must contain exactly one quadratic nonlinearity (e.g., u
2
 or 

u.∂
n
u(x,t)/∂x

n
, etc…). For instance, 

 

                                  ∂u/∂t  = - u.(∂u/∂x) - A (∂
2
u/∂x

2
) - (∂

4
u/∂x

4
). 
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