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Abstract. We present to graduate and postgraduate students of Physics and 

engineering the basic ideas necessary to understand  instabilities in fluid 

jets. To do this we study the particular case of instabilities in water jets 

accelerated under the influence of gravity.                                                  

Key words: fluid jets; hydrodynamic equations; surface tension; flow instabilities. 

 

(I)Introduction.                                                                             

 Our intention is to present to graduate and postgraduate students of 

Physics the fundamental ideas necessary to understand the instabilities that 

appear in fluid jets. To do this we study the particular case of instabilities 

that occur in "water threads" accelerated under the influence of gravity. 

First, let us begin reanalyzing  these water jets seen in basic hydrodynamic 

courses.
[1]

 So, let us assume that water is ejected in the air with a flux Q by 

a pipette or a tap with circular orifice of radius a (see Figure1). In general 

case the flow is governed by the Navier-Stokes equation
[2]

 

                 ∂v/∂t  + (v.grad)v = - grad(p)/ρ - grad(φ)/ρ + ν lapl(v)      (I.1),                                             

where φ is an external potential, ν = η/ρ is the cinematic viscosity and ρ the 

fluid density. For a gravitational field grad(φ)/ρ = g k. Let us consider that 

water is incompressible ρ = constant or div(v) = 0, that the jet Reynolds 

number Re = Q/(aη) is sufficiently high that the influence of viscosity is 

negligible and that nonlinear effects are negligible putting (v.grad)v = 0. 

Furthermore, in a first approach the superficial tension effects (pressure 

effects)
[3] 

between water and air will not be taken into account. In this way 

the pressure changes inside the column of water along the flow would be 

very small and we can put grad(p) = 0. So, Eq.(I.1) can be written as 

                                             ∂v/∂t = - g k                                              (I.2). 

mailto:mcattani@if.usp.br
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that integrated, show that water moves in a free fall along the z-axis, that is, 

v(t) = gt k (neglecting the initial speed) or v(z) = (2gz)
1/2

 (see Bernouilli 

theorem).
[1,2,3] 

If water is ejected by a circular orifice of radius a the flow 

will have a cylindrical symmetry. As water is incompressible the flux of 

mass Φ = v(z)A(z)  = constant along the flow, where A(z) is the cross 

section area of the flow tube. Putting A(z) = πr(z)
2
 where r(z) is the radius 

of the circular cross section. If Q is the initial flow rate we verify that r(z) is 

given by
[1]

  

                                         r(z) = {Q/π√2gz}
1/2

                                         (I.3), 

that is, the radius of the flux tube decreases as z increases.  In Figure1 is 

shown the ideal water thread flow under the influence of gravity with r(z) 

described by Eq.(I.3). 
[4]

                                       

 

Figure 1. Jet flow of an ideal fluid extruded from an orifice of radius a accelerated  under the 

influence of gravity. Its shape is influenced both by the gravitational acceleration and by the 

surface tension γ.  

 In Figure 2 is shown a typical real water flow under the influence of 

gravity showing instabilities and formation of droplets.
[4]

  To explain the 

observed  jets of real fluids is necessary to estimate the water flow solving 

the Navier-Stokes differential equation with boundary conditions where are 

taken into account forces acting on the air-fluid interface due to surface 

tension, atmospheric pressure and viscosity
[5,6]

 (see Appendix A). It will be 

seen that the surface tension and the curvature ratios of the interface air-

fluid play the crucial role in drops formation. As the curvature ratio r(z) 

decreases the surface tension increases breaking the stream into drops. 
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Figure 2. Observed instabilities of the falling water thread with formation of droplets.  

 

(1)Boundary Conditions.                                                                              

 Let us write the basic equations involving superficial tension, viscous 

forces and difference of pressure in the interface of two fluids which are in 

relative motion; the interface between the fluids will be indicated by the 

tridimensional surface Ω = Ω(x) = Ω(x,y,z). According to the Theory of 

Superficial Phenomenon
[5]

 as seen in Appendix A, the interface force 

between two viscous fluids,1 and 2, in relative motion, can be estimated 

using the following tensor equation for x ϵ Ω : 

                            nk {σik(2) - σik(1)} = γ (1/Rα + 1/Rβ) ni                     (2.1), 

where  nα (α = i,j,k) are 3 orthonormal basis ("Darboux frame", see 

Appendix B) defined on Ω ; only ni is normal to the interface, the 

remaining ones are tangent to the interface and σik  is the hydrodynamic 

stress tensor given by 
[5]

 

                  σik = - pδik  + η{(∂vi/∂xk) + (∂vk/∂xi)} = - pδik  + σ´ik          (2.2), 

γ the surface tension, Rα an Rβ the main curvature rays 
[5]

 of the interface, p 

the external pressure applied on the interface, η the viscosity coefficient 

between the fluids and v is the relative velocity between the fluids. For two 

fluids in contact using Eqs.(1) and (2) we have explicitly,  

             (p1 - p2) ni = η{σ´ik(1) + σ´ik(2) }nk + γ (1/Rα + 1/Rβ) ni            (2.3), 
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where p1 and p2 are the normal external pressures applied (at the interface) 

on  the fluids 1 and 2, respectively; σ´ik(1) and σ´ik(2) are the hydrodynamic 

tensors of the fluids 1 and 2, respectively. Note that p = p(x,t), ni = ni(x,t),              

v = v(x,t) and R = R(x,t), where x ϵ Ω. In addition, we can also have, for 

instance, η = η(x,t,T) and  γ = γ(x,t,T)
[5]

 where T is the temperature.  The 

interface velocities considered in (2.3) are obtained calculating the bulk 

flow of fluids 1 and 2 using the Navier-Stokes hydrodynamic equation 

             ∂v/∂t  + (v.grad)v = - grad(p)/ρ - grad(φ)/ρ + ν lapl(v)             (2.4), 

for incompressible fluids, where φ is an external potential, ν = η/ρ is the 

cinematic viscosity and ρ  (= constant)  the density of the fluids.                                                                          

 Eq.(2.4) is solved using (2.3) assuming the following boundary 

condition: the interface pressure forces are balanced by viscous and 

capillarity forces and no-slipping of the two fluids in motion.  

 

(3)Water Threads in Atmospheric Air.                                     

 Let us return to the water jet under the influence of the gravity  in a 

steady atmospheric air seen in the Introduction.  Air is stationary and water 

is in motion with velocity v. Neglecting viscous and nonlinear effects that 

is, (v.grad)v = η = 0, as in the Introduction, water moves as an ideal fluid 

obeying the Euler equation.
[2]

 So, for two points A and B along the water 

flow lines we have according to Bernouilli theorem
[2]

 

                           ρvA
2
/2 + ρgzA + pA = ρvB

2
/2 + ρgzB + pB                     (3.1). 

  Taking water as fluid (1) and air as fluid (2) the boundary condition 

governed by (2.3) will specified indicating by P = p(2) = atmospheric or 

ambient pressure and by  p(1) = p(x,t) the internal water pressure. In these 

conditions using Eq.(2.3) one can shown that, for x ϵ Ω, 

          (p  - P) ni = η{(∂vi/∂xk) + (∂vk/∂xi)} nk + (γ/R) ni  =  (γ/R) ni        (3.2), 

since η = 0 and putting (1/Rα + 1/Rβ) ≈ 1/R , where R(x,t) is the average 

curvature radius of the interface Ω at point x and time t.                           

 Due to fluid incompressibility, to the cylindrical symmetry of the 

water flow and to gk the fluid speed v(z) = U(z) depends only of the 

distance z measured from the top O of the liquid column(see Figure1). 
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Thus, according to (3.2), since R = r(z) we get  p(z) ≈ P + γ/r(z).
[4] 

                             

  Putting Uo = U(0) and po = p(0) into (3.1)  we have 
 

                            ρUo
2
/2 + po  = ρU(z)

2
/2  - ρgz + p(z)                          (3.3). 

From (3.2),  po = p(0) ≈ P + γ/a  and p(z) ≈ P + γ/r(z). Thus, (3.3) becomes  

                    U(z)/Uo = {1 + (2/Fr)(z/a) +(2/We)(1 - a/r(z))}
1/2

               (3.4), 

where   Fr = Froude Number = Uo
2
/ga = inertia/gravity and  We = Weber 

Number  = ρaUo
2
/γ = inertia/curvature.                                                    

 Now flux conservation requires that 

                   Q = 2π ∫ U(z) r(z) dr = πa
2
Uo = πr(z)

2
U(z)                         (3.5), 

from which one obtains using (3.4), 

       r(z)/a = (Uo/U(z))
1/2

 = {1 + (2/Fr)(z/a) +(2/We)(1 - a/r(z))}
-1/4

         (3.6). 

This equation may be solved algebraically to yield the thread shape r(z)/a 

and into (3.4) to obtain the velocity profile  U(z)/Uo. In the limit of We →∞ 

one obtains 

           r(z)/a = (1+2gz/Uo
2
)

-1/4
       and       U(z)/Uo = (1+2gz/Uo

2
)

1/2
    (3.7), 

showing  that as z increases the fluid speed increases and the radius r(z) 

decreases. Thus, we would have r(z) → 0 and v(z) →∞ as z → ∞. 

 However, actually we observe 
[4]

 that a stream of water emerging 

from a tap will break up into droplets, no matter how smoothly the stream 

is emitted from the tap (see Figure 2).This is due to a phenomenon called 

the Rayleigh- Plateau instability,
[4,7]

 which is entirely a consequence of 

surface tension effects. The explanation of this instability begins with the 

existence of tiny perturbations in the stream. These are always present, no 

matter how smooth the stream is. If the perturbations are resolved into 

sinusoidal components (see Figure 3), we find that some components grow 

with time while others decay with time. Among those that grow with time, 

some grow at faster rates than others. Whether a component decays or 

grows, and how fast it grows is entirely a function of its wave number k       

(a measure of how many peaks and troughs per centimeter) and the radii of 

the original cylindrical stream.   

https://en.wikipedia.org/wiki/Plateau%E2%80%93Rayleigh_instability
https://en.wikipedia.org/wiki/Sine_wave
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Figure 3. The breakup of streams into drops. Intermediate stage of a jet breaking into drops.  

Radii of curvature in the axial direction are shown. Equation for the radius of the stream is        

R(z) = Ro + Ak cos(kz),where Ro is the  radius of the unperturbed stream, Ak is  the amplitude of 

the perturbation and k is the wave number.
[6] 

 

  In next section we explain the reason why the circular jet geometry is 

rendered unstable by capillarity, as well as the characteristic time and 

length scales associated with this transition from cylinder to drops. This is 

achieved using the powerful tool of linear stability analysis, pioneered by 

Rayleigh. 
[4,7]

 As we will show in the next subsection, any perturbation of 

sufficiently long wavelength will result in a gain in surface energy, so the 

perturbation grows. Rayleigh 
[7]

 was the first to point out the crucial 

significance of the most unstable wavelength, which is only found by 

studying the dynamics, as we will do throughout this section. 

 

(4) The Rayleigh-Plateau Instabilities.                                        
  

 We briefly show how estimate the Rayleigh-Plateau instabilities of 

the falling cylindrical water jets.
[4,7]

 First let us assume that steady state 

consists of an infinite long quiescent cylindrical inviscid fluid column of 

radius Ro, density ρ and surface tension γ as seen in Figure 5(I). The 

influence of gravity is neglected. The pressure p is constant inside the 

column and may be calculated balancing the normal stresses with the 

surface tension at the boundary. Assuming zero external pressure (P = 0) 

yield 

                                                  po = γ/Ro                                         (4.1). 
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Figure 5. (I)A cylindrical column of initial radius Ro of an inviscid fluid with density ρ and 

surface tension γ; n = r is normal to surface.  (II)Perturbed state of the fluid when Ro → Ro + ϵ. 

 Now we assume (see Figure 5(II)) that the initial interface radius Ro 

is deformed by infinitesimal perturbations ϵ which create varicose on the 

cylindrical surface, enabling  us to linearize the governing equations. That 

is, we put 

                                        R* = Ro + ϵ exp[ωt + ikz]                            (4.2), 

where Ro >> ϵ, ω is the growth rate of the instability and k the wave 

number of the disturbance in the z-direction. The corresponding 

wavelength λ of the varicose perturbations is necessarily  λ = 2π/k.     

 Putting   p(r,z) = po + p*(r,z,t)   and   v(r,z,t)  = vo + v*(r,z,t),      

where  v*(r,z,t)  =  vr(r,z,t)r  +  vz(r,z,t)k  we get,  using equation (2.4),                   

∂v/∂t = - grad(p)/ρ , that is: 

         ∂vr
*
/∂t  = - (1/ρ)(∂p*/∂r)    and     ∂vz

*
/∂t  = - (1/ρ)(∂p*/∂z)        (4.3). 

Taking into account that  div(j)  = ρ div(vo + v*) = 0 we obtain 

                                   ∂vr*/∂r  + vr*/r +  ∂vz
*
/∂z  =  0                           (4.4). 

 Assuming that disturbances in velocity and pressure have the form as 

the surface disturbance (4.2) we write 

vr*(r,z) = α(r) exp[ωt + ikz] , 

                                vz*(r,z) = β(r) exp[ωt + ikz]                          (4.5) 

p*(r,z) = π(r) exp[ωt + ikz] 
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 Substituting (4.5) into (4.3) and (4.4) yields the linearized equations 

governing the perturbation fields 

                                       ωα = -(1/ρ)dπ/dr                                   (4.6) 

                                        ωβ = -(ik/ρ)π                                        (4.7) 

                                              dα/dr  + α/r +ikβ = 0                                (4.8). 

Eliminating β(r) and π(r) results the following differential equation for α(r): 

                                 r
2
(d

2
α/dr

2
) +r (dα/dr) - [1+(kr)

2
] α  =  0                 (4.9). 

This corresponds to the modified Bessel Equation of order 1
[8]

 whose 

solutions may be written in terms of the modified Bessel functions I1(kr) 

and K1(kr). The last function will not be considered because K1(kr) → ∞ as 

r →0. Therefore,   

                                                α(r) = C I1(kr)                                        (4.10),  

where the constant C will be determined by boundary conditions.         

 From (4.6) and (4.10), considering that Io´(x) = I1(x)
[8]

 we obtain π(r):   

                                           π(r)  = - (ωρC/k) Io(r)                                 (4.11). 

 Now let us consider the boundary conditions. The first one is the 

kinematic condition on the free surface at r = Ro: 

 ∂R*/∂t = ϵω exp[ωt +ikz] = v*(r,z) .n = v r* = α(r) exp[ωt + ikz]     (4.12). 

From (4.10) and (4.12) we get  α(Ro) = C I1(kRo) = ϵ ω , that is,  

                                                 C = ϵω/I1(kRo)                                      (4.13). 

 The second condition is the normal stress balance on the free surface, 

                                        po + p* =  γ(1/R1 + 1/R2)                               (4.14), 

where R1 is the radial curvature, that is, perpendicular to z-axis  

1/R1 = 1/Ro{ 1+ ϵ/Ro exp[ωt + ikz]}
-1

 ≈  1/Ro - (ϵ/Ro
2
) exp[ωt + ikz]   (4.15). 

As R2 is the axial curvature (along the z-axis) we can show that
[4] 

       

                                           1/R2  ≈ ϵk
2
 exp[ωt + ikz]                            (4.16). 

Substituting (4.15) and  (4.16) into (4.14) yields 
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                         po + p* =  γ/Ro - (γϵ/Ro
2
)(1 - k

2
Ro

2
) exp[ωt + ikz]       (4.17). 

With (4.1) the above equation gives 

                           p* = - (γϵ/Ro
2
)(1 - k

2
Ro

2
) exp[ωt + ikz]                      (4.18). 

Combining (4.18) with (4.11) and (4.13) yields the dispersion relation that 

gives the dependence of the growth rate ω on the wave number k: 

                         ω
2
 =(γ/ρRo

2
){I1(kRo)/Io(kRo)}(1 - k

2
Ro

2
)                      (4.19) 

 showing that unstable modes occur, that is, ω
2 
> 0  only for  

                                             kRo = 2πRo/λ  < 1                                     (4.20), 

that is, only to disturbances whose wavelengths exceed the circumference 

of the cylinder. The plot ω(kRo) x kRo is shown in Figure 6(a).
[4]     

   Figure 

6(b) shows (4.19) successfully compared with experimental results
[7]

 

measuring the wavelengths λ (high accurate measurements of linear jets 

stability are surprisingly difficult, even by modern standards). 

         
Figures 6(a) and (b). Plot of the frequency ω as a function of kRo.

 

  According to Figure 6(a) the maximum value for the disturbance 

frequency ωmax= 0.34 (γ/ρRo
3
)

1/2
 occurs for kRo = 0.697, i.e. when the 

disturbance wavelength of the is λmax = 9.02 Ro . By inverting the maximum 

growth rate ωmax we get the characteristic break up time  

                                tbreakup =  2π/ωmax  ≈ 2.91 (ρRo
3
/γ)

1/2
                       (4.21). 

With (4.21) one can estimate how much time is necessary to occur  the 

filament break up. According to (4.21) a water jet of Ro = 1 cm would have  

tbreakup ≈ 1/8 s , which is consistent with casual observations of jet break up 

in a kitchen sink.         
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APPENDIX  A - Surface  Physics.                                                            
 As seen in basic physics courses,

[1,3,6]
 a paperclip, an insect or a 

needle can float on water. Drops of mercury or water do not spread on a 

surface. When the clean glass with a small diameter are immersed in water, 

the water rises in the tube, however, when the liquid is mercury, mercury 

falls into the tube. This phenomenon is known as capillarity. Bubbles of 

water with soap can created and float freely in the air. Thin liquid films of 

water with soap can be created  in wire frames. To  stretch these films is 

necessary to apply a force F. In this stretching if the film area is modified 

by dA is realized a work dW defined by dW = γ dA, where γ is named 

surface tension coefficient or, simply, surface tension of the film. It has the 

dimension of energy per unit of area [J/m
2
] or force per unit of length 

[N/m]. The thin film behaves as an elastic membrane.                                    

 In materials science, surface tension is used for either surface stress 

or surface free energy and, usually, instead of "force" F we take into 

account "tension" T which is "force per unit of length".                        

 These phenomena and many others are observed in interfaces of 

fluids in contact. A clear understanding of the interface physics can be only 

obtained taking into account the molecular structure of the fluids and their 

mutual interactions.
[6]

                                                                               

 Usually, in undergraduate physics courses
[1,3]

 are studied only liquid-

air interfaces since in this case is easier to understand basic effects derived 

from surface tension. At liquid-air interfaces, surface tension results from 

the greater attraction of liquid molecules to each other (due to cohesion) 

than to the molecules in the air. Thus, the surface becomes under tension 

from the imbalanced forces. The net effect is an inward force at its surface 

that causes the liquid to behave as if its surface were covered with a 

stretched elastic membrane.
[1,3] 

Surface tension is the elastic tendency of a 

fluid surface which makes it acquire the least surface area possible. An 

illustrative example is the water droplet free in the air:  the liquid assumes a 

spherical shape which is the least surface area possible, that is, an area with 

a minimum of elastic energy. 

(A.1)Surface curvature and pressure.                                                                

 If no force acts normal  to a tensioned surface ( interface between 

two fluids) Ω = Ω(x,y,z) the surface remains flat. But if the pressure on one 

side of the surface differs from pressure on the other side, the pressure 

difference times surface area results in a normal force. In order for the 

https://en.wikipedia.org/wiki/Materials_science
https://en.wikipedia.org/wiki/Surface_stress
https://en.wikipedia.org/wiki/Surface_energy
https://en.wikipedia.org/wiki/Cohesion_%28chemistry%29
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Surface_area
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surface tension forces to cancel the force due to pressure, the surface must 

be curved. Let us suppose that every point on the surface undergoes an 

infinitesimal displacement δξ normal to the surface. So, the elements of 

volume dV between the fluids is dV = δξ dA, where dA is the element of 

area. If p1 and p2 are the pressures into the first and second fluid the work 

δWp done due to volume variation dV over all surface Ω is given by  

                                     δWp = ∫Ω (-p1 +p2) δξ dA                                (A.1). 

Taking into account the surface tension the total work δW performed 

during the surface deformation is given by  

                 δW = - δWp
  
+ γ ∆A = - ∫Ω (-p1 +p2) δξ dA + γ ∆A              (A.2), 

where ∆A is total variation of the area due to the interface deformation. 

The equilibrium condition is obtained when δW = 0.                           

 Assume Rα and Rβ as the principal ratios of curvature of the surface 

Ω at a given point Pϵ Ω [see Appendix B]. They will be assumed positive if 

directed in the fluid 1. Let us define dlα and dlβ the arc elements along the 

circumferences of ratios Rα and Rβ, respectively. When the arc elements 

move by δξ along the normal n they are slightly increased becoming       

dlα= dlα (1+ δξ/Rα) and dlβ = dlβ (1+ δξ/Rβ), respectively. In this way, after 

the displacement δξ the element of area dA = dlα dlβ becomes 

          dA´ = dlα (1+ δξ/Rα) dlβ(1+ δξ/Rβ) ≈  dA (1+  δξ/Rα+ δξ/Rβ)   (A.3).  

Thus, the total area variation ∆A is given by  

                                  ∆A = ∫Ω (1/Rα+ 1/Rβ) δξ dA                                (A.4). 

Consequently, from (A.2) and (A.4) the equilibrium condition is written as 

                         ∫Ω {(p1 - p2) - γ(1/Rα+ 1/Rβ)} δξ dA   = 0                     (A.5). 

As this condition must be obeyed for any infinitesimal displacement δξ of 

the surface Ω the following identity is valid 

                                   (p1 - p2) = γ(1/Rα+ 1/Rβ)                                      (A.6), 

known as Laplace Formula. For a cylindrical interface Rα
 
= R where R is 

the radial curvature and the axial curvature Rβ = ∞, so (p1 - p2) = γ/R; for a 

spherical interface  Rα= Rβ = R, where R is the radius of the sphere, so         

(p1 - p2) = 2γ/R. 
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(A.2)Interface Viscosity Effects.                                                                   

 Ignoring the surface tension, when two viscous fluids 1 and 2 are in 

motion with speeds v1(x,t) and v2(x,t) at the interface Ω there are only 

viscous and pressure forces between them that are described by the tensor 

σik given by
[2,5]

 

               σik = - pδik  + η{(∂vi/∂xk) + (∂vk/∂xi)} = - pδik  + σ´ik             (A.7), 

where  p is external pressure and η is the viscosity coefficient. At the 

boundary Ω the following equilibrium condition must be obeyed   

                                               nk {σik(2) - σik(1)} = 0                             (A.8). 

depicting the equality of forces at the fluids interface. On the other hand, if 

surface tension effects are present instead of (A.8) we must now have  

                                                                                                                      

 (p1 - p2) ni = η{σ´ik(1) + σ´ik(2) }nk + γ (1/Rα + 1/Rβ) ni      (A.9)     

where p1 and p2 are the normal external pressures applied (at the interface) 

on  the fluids 1 and 2, respectively; σ´ik(1) and σ´ik(2) are the hydrodynamic 

tensors of the fluids 1 and 2, respectively.    

                                                       

APPENDIX B. Surface Curvatures.                                                      

 Exact calculations of general surface curvatures using the 

differential geometry is a very difficult task.
[5,10]

 This calculation gets easier 

when surfaces Ω = Ω(x,y,z) are approximately planes. In these conditions 

let us write the interface equation as z = ξ(x,y), where ξ represent a small 

normal displacement ( "deformation") of the interface at z = 0. Let us now 

consider an area A of the interface that is given by 
[5]

 

                            A = ∫Ω{1+(∂ξ/∂x)
2
 + (∂ξ/∂y)

2
}

1/2
 dxdy, 

that, for small ξ can be approximately written as 

                       A  ≈  ∫Ω [1+(1/2)(∂ξ/∂x)
2
 + (1/2)(∂ξ/∂y)

2
] dxdy             (B.1).  

With a small variation  δξ we have  

                     ∆A  ≈  ∫Ω{(∂ξ/∂x)(∂δξ/∂x) +(∂ξ/∂y)(∂δξ/∂y)}dxdy          (B.2), 
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that integrating by parts gives, since δξ → 0 outside the interface, 

                            ∆A  ≈ - ∫Ω{(∂
2
ξ/∂x

2
) +(∂

2
ξ/∂y

2
)} δξ dxdy                 (B.3). 

Comparing (A.4) with (B.3) we see, as dA = dxdy, that 

                              (1/Rα+ 1/Rβ) = -{(∂
2
ξ/∂x

2
) +(∂

2
ξ/∂y

2
)}                    (B.4), 

which is the general curvature formula for the sum of inverse curvature 

ratios of a weakly curved surface.  Figure 7 shows the principal curvature 

planes for a saddle surface and the Darboux frame.
 [10]

    

 

         Figure 7. Saddle surface with normal planes in directions of principal curvatures. 
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