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Abstract. This paper was written to postgraduate students of Physics. It is       

shown didactically how to calculate rigorously the wrinkling wavelengths 

observed when rigid thin films are deposited on soft elastic substrates. Our 

predictions are compared with DLC films deposited on PDMS substrates.                                                                          
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(I) Introduction.                                                                                                   
 In basic courses of Physics and Engineering we learned that it is not 

enough only know the forces applied on a structure.
[1] 

It is also necessary to 

know the tensions and the deformations that they produce. All real 

substances are deformed under the influence of a forces and tensions. The 

part of Physics that studies these changes is usually known as "Theory of 

Elasticity."
[2,3] 

As this theme has been extensively studied in many books 

and papers we will make a brief review only of basic concepts adopted in 

the theory of elasticity.
 
The mechanics of solid bodies, regarded as 

continuous media, forms the content of the Theory of Elasticity.
 [1,2,3]                                                                           

    

 So, let us consider a bar of length ℓo with  cross section area A 

submitted to a force F applied perpendicularly over the area A. We define 

stress σ = F/A (force / area). If, under the action of force, the bar undergoes 

a longitudinal strain εℓ (strain) (compression or distension) given by          

εℓ = |Δℓ| /ℓo = |ℓ - ℓo|/ℓo we define modulus of elasticity or Young 

modulus by 

                                         E = σ/(Δℓ/ℓo) = σ/εℓ                                    (I.1). 

 If the bar undergoes a longitudinal strain εℓ = Δℓ/ℓo and a transverse 

strain εt = Δe/eo the relationship between the two deformations is defined as 

"Poisson's coefficient" (ν):
[4]

 

                                   ν = - (Δe/eo) / (Δℓ/ℓo) = - εt /εℓ                           (I.2). 
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  If a body is deformed from an angle φ due to a shear stress σ we 

define shear strain by εφ = Δx/ℓo. The shear modulus of the material due 

to the strain εφ is defined by G = μ:  

                                      G = μ = σ/(Δx/ℓo) = σ/εφ                                 (I.3).  

The shear modulus is also known as Stiffness modulus or torsion 

modulus.                                                                                                          

 A body with volume Vo submitted to a hydrostatic pressure P suffers 

a volumetric strain εV = ΔV/Vo = (V-Vo)/Vo . The volumetric  modulus 

K or bulk modulus (B) is defined by 

                                      K = B = - P/(ΔV/Vo) = - P/εV                        ( I.4). 

The inverse of the  bulk modulus (K = B) is called compressibility k : 

                                               k = 1/B = 1/K                                           (I.5).   

One can show
[4] 

the following Lamé relations between B, G, E and ν:  

                                                 K = B = E/3(1-2ν)                                  (I.6). 

and        

                                                  μ = G = E/2(1+ν)                                (I.7).                                                       

In reference 
[4] 

are seen Lamé relations between all elasticity coefficients.  

 

 (1) Element of Volume Submitted to an External Force Ғ.    

 Under the action of applied forces, the solid bodies exhibit 

deformation to some extent, i.e. they change in  shape and volume. The 

deformation of a body is described mathematically as follows. The position 

of any point P in the body is defined by its position vector r ≡ (x1, x2, x3) in 

some coordinate system. When the body is deformed, every point  is in 

general displayed. The position of P after the deformation will be r´(with 

coordinates x´i ). The displacement of this point P due to the deformation is 

given by the vector u = r´- r, called displacement vector which is a given 

function of xi, that is, u = u(xi). This means that the coordinates x´i of the 

displaced point P are functions of the coordinates xi.
[3]                                                                          

 
When a body is deformed the distances between its points change. 

Let us consider two points very close together. If before the deformation 
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we have distances dxi these distances after the deformation would be given 

by dx´i = dxi + dui. The original distance between the points dℓ = √dxi
2
 after 

the deformation would be given by dℓ
´
 = √dx´i

2
. Since dx´i =  dxi + dui  and 

that dui = (∂ui/∂xk)dxk we get 

                                     dℓ´
2
 = dℓ

2
 + 2uik dxi dxk                                                       (1.1), 

where  uik is a symmetric tensor named strain tensor given by 

              uik  = (1/2)[ (∂ui/∂xk) + (∂uk/∂xi) + (∂uℓ/∂xi)(∂uℓ/∂xk)]              (1.2). 

  Let us consider a cubic element of volume ΔV = Δx Δy Δz  of a 

body. When submitted to an external force it creates stresses σij along the 

cube surfaces seen in Figure 1 generating tensor strains uik  given by (1.2). 

 

Figure 1. The strain tensor on the cube surfaces. The resulting moment of the shear 

forces must vanish
.[2]

   

 When  u = u(x,y,z) are very small deformations products like 

(∂ui/∂xk)(∂uk/∂xi ) can be neglected and (1.2) can be written as   

                             uik  = (1/2) {∂ui/∂xk) + (∂uk/∂xi)}                        (1.3). 

 Any deformation can be represented as the sum of a pure shear and a 

hydrostatic compression. To do so we need only to use the identity
[3]

  

                            uik  = [uik  -  (1/3)δik uℓℓ ] + (1/3) δik uℓℓ                 (1.4). 

The  first term on the right is evidently a pure shear, since the sum of its 

diagonal terms is zero (δii = 0). The second is a hydrostatic compression.                    
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(2) Force  Ғ on the Body.                                                                          

 Thus, for any portion of the body, each of the three force  

components  ∫Ғi dV of the resultant of all the internal stresses can be 

transformed into an integral over the surface. As is known from vector 

analysis, the integral of a scalar over an arbitrary volume can be 

transformed into an integral over the surface if the scalar is a divergent  of a 

vector. In our present case we have integral of a vector, and not of a scalar. 

Hence, the vector Ғi must be the divergent of a tensor of rank 2, that is
[3,5]

   

                                               Ғi = ∂σik/∂xk
                          

                      (2.1). 

So, the force on any volume of the body can be written as an integral over a 

closed surface bounding that volume: 
[3]

 

                          ∫v Ғi dV =  ∫v (∂σik/∂xk
 
)dV  =  ∫S σik dak                      (2.2), 

where σik dak is the i
th
 component of the force on the surface element da. 

 

(3) Free Energy of the Thermodynamic Deformation.

 Assuming valid Hooke´s law, a general expression according to 

Thermodynamics of the free energy F per unit of volume of a deformed 

isotropic body is obtained summing two independent squared scalars of 

two components:
[3]

 one due to pure shear and another due  to pure 

hydrostatic compression shown in (1.4): 

                            F = μ [uik  -  (1/3)δik uℓℓ ]
2
  + (1/2) K uℓℓ

2
                (3.1).   

It can be also shown that,
[3]

   

                                                     σik = dF/duik                                   (3.2), 

 from which one can determine the stress tensor σik: 

                             σik = 2μ [uik  -  (1/3)δik uℓℓ]  + K uℓℓ δik                           (3.3). 

This expression determines the stress tensor σik in terms of the strain 

tensor uik for an isotropic body. 

(3.1) Homogeneous Deformations.                                                            

 This is a simple case where the strain tensor is constant throughout 

the volume of the body. In this case  using (4.3) and the Lamé relations 
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(1.6) and (1.7) we verify that the free energy per unit of volume F defined 

(3.1) becomes written as 

                              F = [E/2(1+ν)] { uik
2
 + [ν/(1-2ν)] uℓℓ

2
 }                  (3.4), 

                              σik = [E/(1+ν)] { uik  +  [ν/(1-2ν)]  uℓℓ δik  }                     (3.5)              

and, conversely,    

                                     uik =  [(1+ν) σik - ν σℓℓδik ]/ E                            (3.6). 

The total energy Ftotal
 
 is obtained integrating (3.4) over volume V of the  

body,                                                                                                                       

         Ftotal = ∫V F dV                                       (3.7). 

(4) Energy of Deformed Thin Plate.                                                     

 By a  thin plate we mean that its thickness along z, normal to the 

plane (x,y), is small compared with its dimensions in the other two (x,y). 

The deformations themselves are supposed small, as before. In the present 

case the deformation is small if the displacements of points in the plate are 

small compared with its thickness.                                                              

 Let us suppose that the displacement vector u for points in neutral 

surface (middle of the plate) is given by 

                  ux  =   uy  =   0               and                uz = ζ(x,y)               (4.1). 

If there are only internal forces, that is, Ғexternal = 0 from (1.4)  we have 

∂σik/∂xk
 
= 0

 
and the boundary condition 

  
nk

 
σik

  
= 0, where n is unit vector 

outward normal to the film surface.
[3]

 Since the plate is only slightly 

deformed we can take the normal vector n along the z-axis.
  
Thus, in both 

surfaces of the plate 
   
σxz  = 

 
σyz  = σzz = 0. As the plate is thin and they are 

zero on each surface these tensor components must also be zero 

everywhere in the plate. We can therefore equate them to zero and use this 

condition to determine the components of the strain tensor. Thus, from the 

general formulae (3.5) we have 

                            σzx = [E/(1+ν)] uzx ,      σzy = [E/(1+ν)] uzy    

and 

                     σzz = [E/(1+ν)(1-2ν)] { (1-ν)uzz  + ν(uxx +  uyy)   }                    (4.2). 
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Equating  these expressions to zero,
[3] 

we obtain ∂ux/∂z = - ∂uz/∂x,                

∂uy/∂z = - ∂uz/∂y, uzz = -ν(uxx + uyy)/(1-ν). In the first two of these equations 

the component uz  can, with good accuracy, be replaced by ζ(x,y):     

                    ∂ux/∂z = - ∂ζ/∂x,        ∂uy/∂z = - ∂ζ/∂y,   whence 

                            ux = -z(∂ζ/∂x)        and    uy = -z(∂ζ/∂y)                      (4.3). 

If the function ζ = ζ(x,y) is known integrating (4.3) using the boundary 

conditions   ux  =  uy  =  0  for  z = 0 we can determine ux(x,y) and uy(x,y). 

In the next step, knowing  ux(x,y) and uy(x,y) we can calculate all 

components of the
 
strain tensor uik taking into account that   

        uxx = -z(∂
2
ζ/∂x

2
)    ,    uyy = -z(∂

2
ζ/∂y

2
)  ,         uxy = - z(∂

2
ζ/∂x∂y), 

         uxz  = uyz = 0       and       uzz = z [ν/(1-ν)] (∂
2
ζ/∂x

2
  + ∂

2
ζ/∂y

2
)     (4.4).   

 Now we can calculate the free energy per unit of volume of the plate 

using the general formula (3.4). A simple calculation gives 

F = z
2
[E/(1+ν)]{(∂

2
ζ/∂x

2
  + ∂

2
ζ/∂y

2
)
2
 + [1/2(1-ν)][(∂

2
ζ/∂x∂y)

2
- (∂

2
ζ/∂x

2
)( ∂

2
ζ/∂y

2
)]} (4.5)    

The total free energy of the plate Fplate is obtained by integrating over the 

volume of the plate. The integration over z is from -t/2  to  +t/2, where t is 

the plate thickness, and (x,y) over the surface of the plate. So, the total 

energy Fplate = ∫F dV= ∫Fdxdydz  of the deformed plate is, with dA = dx dy, 

Fplate =                                                                                                                    

[Et
3
/24(1-ν

2
)]∫∫[(∂

2
ζ/∂x

2
+ ∂

2
ζ/∂y

2
)
2
 + 2(1-ν){(∂

2
ζ/∂x∂y)

2
- (∂

2
ζ/∂x

2
)( ∂

2
ζ/∂y

2
)}]dA (4.5).  

 

 (5) One Dimensional Thin Film Wrinkling.                                                                   

 In Fig.2 a rigid film (f) is deposited on a soft elastic substrate(s). 

This rigid film attached to a soft elastic medium creates a large number of 

waves, wrinkles, on the system film & substrate. This wrinkling is a result 

of a compression of the film(see Fig.2).   
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Figura 2. Strain release of a film (f) connected to the soft substratum(s): in the upper 

side we see the film before the release. In lower side is seen after the release when the 

wrinkled state emerges with wavelength λ and an amplitude ζo. 

(5.1) Elastic Energy of the Deformed Film.                                                

 To estimate the elastic free energy Ff of the wrinkled rigid film with 

thickness t we suppose that the film deformation ζ(r) = u(x,y), in the           

z-direction is given by   

                                        ζ(r)  = ζo cos(kx)                                        (5.1), 

where k = 2π/λ, are pure cosine deformation in the x-direction and where   

ζo << t. In this way (4.5) becomes written as    

                                Ff =[Eft
3
/24(1-νf

2
)] ∫ d2

r |lapl(ζ(r))|
2
                   (5.2), 

where Ef  and νf  are, the Young modulus Ef  and Poisson ratio of the film, 

respectively.
[3,6]

 The integral is done over the (x,y) plane of the film;  the 

deformation is such that no stretching of the film is required.
[3,6]

  The 

amplitude of the deformation ζo is also assumed to be much smaller that the 

wavelength λ, that is, λ >> ζo. Inserting (5.1) in (5.2) and performing the 

integration over the (x,y) plane we get   

                                  Ff/A = [Eft
3
/48(1- νf

2
)] ζo 

2 
k

4
                              (5.3), 

where A is film area. In Fig.2 is shown the film attached to a substrate (s) 

deformed by the wrinkle of the film (f).        

(5.2) Elastic Energy of the Deformed Substrate.                                                

 The elastic energy Fs of the deformed substrate in terms of the 

deformations  u(x,y,z) is given by (3.7): 
[3,6]
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                   Fs = ∫v  d
3
r [μs (uik - δik uℓℓ/3)

2
  +  Ks uℓℓ

2
/2]               (5.4), 

where the integration is done in the substrate volume V. Of interest is the 

case of low shear modulus μs = Gs compared to bulk modulus Ks = Es, that 

is,  Ks  >> μs or, equivalently a Poisson ratio ν ~ 1/2 typical of elastomers.  

In this case using (3.5) we have σik  = Ksuℓℓ δik showing that only diagonal 

terms  σik contribute, that is, σii  = 3Ksuii. As there is no external forces 

from (3.3) we have  σxx =  σyy = σzz = 0, resulting  uℓℓ = 0, that is, 

                                                div(u) = 0                                           (5.5). 

This equation must be solved with respect to the boundary conditions          

u(x, z = 0) = [0 , 0,  ζo cos(kx)], i.e. the surface of the medium must match 

the wrinkle of the plane given by (5.1). Very far from the film the 

deformation must be zero: u(x, z →∞ ) = 0. Solving (5.5) submitted to the 

above boundary conditions we have 

             u(x,y,z) = [ kzsin(kx) , 0 , (1+kz)cos(kx)] ζo exp(-kz)               (5.6). 

Inserting (5.6) in (5.4) we obtain
[6]

 

                 Fs/A = Gs k ζo
2
/2                                         (5.7). 

 The wrinkle has emerged in the film due to the interaction between 

the film and substrate. We add the plate energy given by (5.3) with film 

energy given by (5.7) to obtain the total energy Ftot of the system: 

            Ftot = Ff/A  +  Fs/A = [Ef t
3
/48(1- νf

2
)] ζo 

2 
k

4
  +  Gs k ζo

2
/2          (5.8). 

It is clear that there is an optimum wavelength λ that minimizes the total 

Ftot free energy. Large wavelengths (low k) are not favorable due to the 

large deformations of the substrate, whereas the short  λ are too costly due 

to the bending of a rigid film.
[6]

  From minimization of (5.8) with respect to 

k it is found that the optimum (1-direction wavelength) λ1d is given by 

                                                 λ1d = 2πtη1d
1/3

                                      (5.9), 

where  

                                                 η1d = Ef/12Gs (1- νf
2
)                            (5.10). 
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Taking into account the Lame relation (1.7) G = E/2(1+ν) we get 

                                      η1d = [(1+ νs)/6 (1- νf
2
)] (Ef /Es )                     (5.11)                                                      

Thus, using (5.9) and (5.11) we verify that the 1-dimensional wrinkling 

wavelengths λ1d are given by    

                                          λ1d = 2πt Csf (Ef /Es )
1/3

                               (5.12),  

where the parameter Csf  = [(1+ νs)/6 (1- νf
2
)]

1/3
.                                          

 Let us take, for instance,  t = t* 10
-9

 m,  λ = λ* 10
-6

 m, Ef  = ef 10
9
  Pa  

and  Es = ϵs 10
6  

Pa  = ϵs 
 
MPa. In this way, defining  R = ( λ*/2πt*Csf) we 

get from (5.12) 

                                              ϵs = 10
-2

 ef / R
3
                                        (5.13).  

 A simple estimation of (5.13) can be done putting  νs ≈ νf  ≈ 0.3,        

t* ≈ 2 , λ* ≈ 5 getting R
3
 ~ 0.3 and, consequently,  ϵs ~ 3.33 10

-2
 ef . In this 

way, if Ef  ~ 80 GPa, that is, ef  = 80 we see that  ϵs ~ 2.6, which implies that 

Es ~ 2.4 MPa. This value is compatible with measured Young polyurethane 

elastic modulus.
[7]  

(6) Isotropic Thin Film Wrinkling.                                             

 Supposing that instead of a 1-dimensional wrinkling, analyzed 

above, there is an isotropic wrinkling, the parameter η1d would be replaced 

by ηiso:
[6]

   

                                    ηiso = {(3-4νs)/(1- νs)} η1d                                 (6.1), 

In this way instead of (5.9) we have now 

                                    λiso = 2πt Csf(iso) [Ef/Es]
1/3                                                

(6.2),  

where   Csf(iso) = [(3 - 4νs) (1+ νs)/6(1- νs)(1- νf
2
)]

1/3
 . 

 

(7) Experimental and Theoretical Results.  

 In this section our theoretical prediction are compared with the 

experimental results of Fernanda et al.
[8]

 shown in Fig.3.In this experiment 

the wrinkling wavelengths have been measured when DLC films are 

deposited on PDMS substrates previously exposed to oxygen plasma. 
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Figure 3. Wrinkling wavelengths measured in reference [8]. 

 The measured wavelengths λ
  
for  t = 19.5 nm with Ef = 75.8 GPa are, 

                             λ(t) = 2.200,  3.460,  5.870  and  11.680.  (nm)         (7.1) 

and  for t = 10.8 nm with Ef  = 192 GPa are 

                            λ(t) = 1.660,  2.600,  3.520  and  4.560.   (nm)           (7.2). 
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(7.1) One-dimensional Wrinkling.                                                                             

 For  t = 19.5 nm  we verify, using (5.12) and (5.13), that Es measured 

in MPa would be given, respectively, by 4.4, 1.1, 0.2 and 0.03. Showing a 

fair agreement between theory and experiment. For  t = 10.8 nm  we verify, 

using (5.12 and (5.13), that Es measured in MPa would be given, 

respectively, by 4.4, 1.1, 0.4 and 0.2. Showing a fair agreement between 

theory and experiment. 

(7.2) Isotropic Wrinkling.                                                                                

 Putting  νs ≈ νf  ≈ 0.3 we verify that Csf(iso) ~ 1.6 Csf(1d) implying 

that  λiso
 
~  1.6 λ1d .This shows that the wavelengths of isotropic wrinkles 

would  be about 2 times larger than the 1-dimensional ones. 
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