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Abstract. This  article was written to graduate and postgraduate students 

of physics. We intend to be didactical using a mathematical approach in 

Riemannian spaces as rigorous as possible. Brief comments are done on 

topics of  General Relativity (GR) and Special Relativity (SR).                                   
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(I) Introduction.                                                                                                  

 Are essentially shown mathematical aspects on Special Relativity, 

Riemannian Geometry and General Relativity. Comparison with 

experimental results can be seen in references mentioned in the text. In 

Section 1 we see Manifolds: coordinate transformations, metric and affine 

spaces. In Section 2 are given examples of metric spaces and their 

geometries. In Section 3 we define Geodesics. In Section4  are analyzed 

local Cartesian or  local inertial coordinate-systems. In Section 5 are 

shown effects due to the Earth gravitational field (Schwarzschild Metric). 

In Section 6 we see the Equivalence and the Geodesic Principles. In 

Section 7 we consider accelerated coordinate-systems in SR. In Section 8 

we calculate spatial distances and time intervals in GR.                                                                         
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(1) Manifolds.                                                                                                       

 In elementary analytical geometry
[1-3]

 the fundamental notion is that 

geometrical points are defined by means of its coordinates. Thus, in the 

geometry of the Euclidean plane, for instance, a point is specified by 

giving its two Cartesian coordinates (X,Y) or its polar coordinates (r,θ). 

All points which together constitute the plane are said to form a 2-

dimensional manifold or 2-dimensional space of points, the number of 

dimensions of the manifold being equal to the number  of independent 

coordinates required to specify a point in it.  Generalizing this idea, an n-

dimensional manifold or n-dimensional space of points is one for which n 

independent real numbers (x
1
,x

2
,...,x

n
) are required to specify every point 

completely. These n numbers are denoted collectively by {x
i
}i=1,.., n and are 

called the coordinates of the point. For the moment the manifolds are 

assumed to have no structure except that it is continuous in the sense that, 

in the neighborhood of every point (x) there are other points whose 

coordinates differ infinitesimally from those of (x). Such neighboring point 

has coordinates (x + dx), the small quantities (dx
1
, dx

2
,...,dx

n
) being called 

the differentials of the coordinates (x). Being these coordinates 

independent  we have ∂x
ν
/∂x

μ
 = δμ

ν
.  

(1.1)Coordinate transformations.                                                                                        

 Let us consider two manifolds  X ={x
i
}i=1...n and X´={x´

j
}j=1...m .To 

perform the coordinates transformation  X → X´ it is necessary that the 

manifolds have the same dimensions, that is, n = m.  The operation by 

which the coordinates (x) of every point in the manifold are altered to (x´) 

is called coordinate transformation. The coordinate transformation X → X´ 

are defined by n equations  x´
λ
 = f 

λ
(x

1
, x

2
,,...,x

n
) where λ = 1,2,3,...,n and 

the functions f 
λ
 are soluble in such a way that would be possible to obtain 

the inverse transformation, X´→ X, that is, x
λ
 = g 

λ
(x´

1
, x´

2
,,...,x´

n
).

[1-3] 

Differentiating partially the x´
λ
(∂x

ν
) we obtain the transformation law for 

the differentials                                                                                                                                                          

              dx´
λ
 = (∂f 

λ
/∂xν)dx

ν
 = (∂x´

λ
/∂xν)dx

ν
                   (1.1.1).        

Mathematical conditions that this transformation be (theoretically) possible 

is that the determinant of the coefficients (Jacobian) must not vanish 
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                                           det||∂x´
λ
/∂xν|| ≠ 0                                  (1.1.2) 

at all points, or nearly all points. If this inequality does not hold, then the 

equations X´={x´
j
}j=1...m do not a legitimate this set of coordinates.

[4]
  

(1.2) Space Affine: Covariant and Contravariant Tensors and Scalars.            

 Any aggregate of n quantities U
μ
 which transform from S to S´ like 

                                          U´
ν
 = (∂x´

ν
/∂xμ) U

μ                                                    
(1.2.3) 

is called a contravariant vector (1st order tensor). Quantities Vμ which 

transform like  

                                           V´ν = (∂x
μ
/∂x´ν) Uν      

                                                
(1.2.4)

                                                                                                      
 

are called covariant vector. Although covariant and contravariant vectors 

have nothing to do with each other their inner product defined as Vμ U
μ
 is 

an invariant, that is, it is independent of the coordinate system. Indeed, 

     V´μ U´
μ  

= (∂x
α
/∂x´

μ
) (∂x´

μ
/∂x

β
)Vα U

β 
= 

 
(∂x

α
/∂x

β
)

 
Vα U

β
 = δβ

δ
 Vα U

β
, 

that is,                                                                                                                                              

            V´μ U´
μ  

= Vα U
α
 = Invariant                        (1.2.5), 

showing that their inner product is a scalar.                                                                                          

 Consider a function F(x
μ
) = F(x´

ν
). Since dF(x

μ
) = dF(x´

ν
) the 

differential dF is an invariant, that is, it is a scalar.                                               

 A space in which covariant and contravariant vectors exist separately 

is called affine. In other words, in an affine space a vector does not exist; 

but covariant and contravariant vectors exist independently of each other 

Such spaces are very general and have been extensively studied by 

mathematicians.
[5]

 The scalar is 0th order tensor and Uν or U
ν 
 are first 

order tensors. More details about definitions and properties of covariant 

and contravariant tensors of any order can be seen elsewhere.
[1-5]

 For                  

instance, a quantity Uμν behaves like a 2.
nd

 order covariant tensor if it 

transforms as                                                                                                                           

   U´μν = (∂x
α
/∂x´

μ
) (∂x

β
/∂x´

ν
) Uαβ                         (1.2.6). 

 Higher order tensor can be seen, for instance, in references 1-5. In 

GR there are two important tensor, one of rank four R
σ

λνμ called Riemann-
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Christoffel tensor and one of rank two R λμ named Ricci tensor. These are 

shown explicitly in Appendix A. 

(1.3) Metric Spaces.                

 For the moment the manifolds were assumed to have no structure 

except that it is continuous in the sense that, in the neighborhood of every 

point (x) there are other points whose coordinates differ infinitesimally 

from those of (x). In particular no definition of distance ds between pair of 

points has been given. In arriving at such a definition is introduced a metric 

that contains within itself the essentials of the geometry of the space.          

 In fundamental physical theories we deal with objects or quantities 

which are independent of the particular choice of the mode of description. 

In physics it is desirable to deal with a space in which the concept of 

distance and tensors exist as an objective physical reality. Such spaces are 

called metric. Before to define rigorously metric spaces let us remember 

that in physics the basic observable geometric quantity is the distance ds 

between two points. For instance, the most familiar metric space is 3-

dimensional Euclidean space. In fact, a "metric" is the generalization of the 

Euclidean metric arising from the four long-known properties of the 

Euclidean distance. In a 3-dim Euclidean space, in Cartesian coordinates, 

(x
1
, x

2
, x

3
) = (x, y, z) the infinitesimal distance ds between two points is 

defined by the invariant ds
2
= dxμdx

μ
, that is         

         ds
2
 = dx

2
 + dy

2
 + dz

2 
= (dx

1
)

2
 + (dx

2
)

2
 + (dx

3
)

2 
 =  gij dx

i
dx

j
,        (1.3.1) 

where g
ij
 = δij is called "metric tensor". The distance ds between the same 

points must equal to that given by (1.3.1) independently of the coordinate 

system adopted. For instance, in spherical coordinates x´
1
 = r ,   x´

2
 = θ and  

x´
3 
= φ  we must have 

[1-5]
 

                     ds
2
 = ds´

2
 = r

2
 + r

2
dθ

2 
+ r

2
sin

2
θ dφ

2
  = g´ij dx´

i
dx´

j
          (1.3.2),                                      

where now the metric tensor is given by g´ij = (1, r
2
, r

2
sin

2
θ).                                                                         

 Note that to get the above results the transformation X → X´ is given 

by
[1-5]

  x
1
 = r sinθ cosφ,  x

2
 = r sinθ sinφ,  x

3
 = r cosθ. The distance ds 

between two points must be independent of the coordinates system. 

Similarly, vectors like velocity V, force F, distance r, ...must be 

independent of the coordinates used to represent them. Let us see how 

these ideas can be generalized involving n-dimensional manifolds. Before 

https://en.wikipedia.org/wiki/3-dimensional_Euclidean_space
https://en.wikipedia.org/wiki/3-dimensional_Euclidean_space
https://en.wikipedia.org/wiki/Euclidean_metric
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to do this note that ds
2
 in the 4-dim in the SR pseudo- Euclidean 

Minkowski space x
λ
 = (x

1
,x

2
,x

3
,x

4 
= x

o
= ct)  is written in different ways in 

text books  and papers.
 
 That is, we have  ds

2
 = (x

1
)+(x

2
)

2
+(x

3
)

2
- c

2
dt

2
 

where g11 = g22 = g33 = 1, gik = 0 (i≠k) and goo = -1 or  - ds
2
 and, sometimes,                   

ds
2
 = c

2
 dt

2 
-{(x

1
)+(x

2
)

2
+(x

3
)

2
} with  g11 = g22 = g33 = -1 gik = 0 (i≠k) and    

goo = 1. Since ds
2
 is invariant this equation is valid in all reference system. 

An interesting case is a clock at rest in a reference So
 
.Since it is at rest its 

displacements vanish, dxo = dyo = dzo = 0. Let us denote the time measured 

by this clock by dt = dτ, where the time τ measured in So is called proper 

time, so ds
2
= - c

2
 dτ

2
.  Now, let us consider a system S which moves with 

constant velocity v relatively to So . An observer in S will observe that this 

clock in a time interval dt suffer displacements dx, dy and dz in S. So, we 

can put ds
2
= - c

2
 dτ

2
 = dx

2
 + dy

2
 + dz

2
 - c

2
 dt

2
 . In this way, taking into 

account that v
2
 = (dx

2
 + dy

2
 + dz

2
)/dt

2
, we obtain dτ = [1 - (v/c)

2
]

1/2
 dt, as 

seen in basic SR courses.
[6]

                                                                       

 There are spaces in which covariant and contravariant vectors do not 

exist independently but they can be converted into each other. These have 

a further property that the index of a contravariant vector U
μ
 can be 

lowered to become Uμ by the operation  

                                                     Uμ
 
=

 
 gμν

 
U

ν
                                     (1.3.3). 

The reverse transformation is would be given by 

                                                      U
ν
=

 
 g

νμ 
Uμ                                      (1.3.4),  

thus,   Uμ
 
=

 
 gμν

 
U

ν
 =

 
 gμν

 
g

να 
Uα  which means that gμν

 
g

να 
 = δμ

α
. In other 

words, gμν  is the inverse of g
μν

, and vice-versa, that is, g
μν

 = M
μν

/|g|, where 

|g| is the determinant of  gμν and M
μν

 is the minor of the element gμν. In a 

metric space a vector is represented by U and has an objective meaning, 

independently of the adopted mathematical representation. Identical 

properties are obeyed for higher order tensors,covariant or contravariant
[1-5]

  

The square of a vector U
2
 is an invariant defined by the inner product 

                                     U
2
 = Uμ

 
U

μ
  = gμν

 
U

μ
U

ν
 = g

αβ 
UαUβ               (1.3.5). 

Similarly, we define the square ds
2
 = ds

2
 of the differential dx

μ
  by: 

                                             ds
2 
= ds

2
 = gμν

 
dx

μ
dx

ν
                               (1.3.6). 
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The quantity ds (1.3.6) is called the line element of the metric space. It  

expresses the invariance of ds
2
, also named fundamental quadratic form of 

metric spaces. An important assumption which is not explicitly expressed 

in usual textbooks, is that the basic observable of the metric geometry is the 

distance ds.
[4]

 Among other things, we can deduce from (1.3.5) that gμν
  
is a 

symmetric tensor, that is, gμν
 
= gνμ

 
. For instance, Riemannian spaces used 

in General Relativity (GR) are metric. In most of the applications of these 

Riemannian spaces, special types of spaces (said to be diagonal) are 

considered in which gμν
 
= 0 if μ ≠ ν.                                                           

 It can be proved that the functions gμν
 
are components of a covariant 

tensor of rank two. Indeed if in the coordinate transformation X → X´:  

                                 ds
2
 = g´λμ

 
dx´

λ
dx´

μ
 = g λμ

 
dx

λ
dx

μ
 , 

using (1.2.6), that is, taking dx´
λ
 = (∂x´

λ
/∂xμ)dx

μ
  we get      

                                 g´αβ
 
(x´) = gλμ

 
(x´)(∂x

λ
/∂x´

α
)(∂x

μ
/∂x´

β
),             (1.3.7), 

where x
i
 = x

i
 ({x´

j
}) showing that gμν

 
 transforms as a 2.

nd
 order covariant 

tensor according to (1.2.6). Vice-versa we must have when X´→ X : 

                                  gαβ  =  gμν({x
j
}) (∂x´

μ
/∂xα) (∂x´

ν
/∂xβ)             (1.3.8). 

 Remembering that the space-time metric is defined by the line 

invariants
[1-3]

 ds
2 
= gμν dx

μ
 dx

ν
,  gμν e x

λ
 are, respectively, the metric tensor 

and the coordinates of the referential system.                                                  

 Note that in all general "real" space-times the determinant |g| of the 

gik  must be |g| < 0.
[1,3]

 The gravitational field is named constant when all 

components of the tensor gαβ do not depend of the temporal coordinate xo. 

When the components goβ = 0 the champ is said to be static. It is stationary 

when the components goβ ≠ 0.   

(2) Examples of Metric Spaces and Geometries.                                      

 Fundamental aspects that are very important to be mentioned are 

those given by relations between the line elements ds. By coordinate 

transformations different geometries be generated.
[2,3]

    

(2.1) Two and Three-dim Euclidean spaces.
[3]

                                                   

 In a 2-dim Cartesian orthogonal coordinates (X = x
1
,Y= x

2
) the 

metric ds is given by,       ds
2
 = dX

2
 + dY

2
                                (2.1.1).                                                                                                                                                                                                                                                            
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This formula, where g
11

 = g
22

 = 1, that expresses the metric of the space 

defined by the variables (X,Y) contains  the essentials of the Plane 

Euclidean Geometry: straight line is the shortest distance between two 

points, parallel lines are of infinite length and do not intersect in any finite 

part of the plane, and so on... These properties that are due to the use of 

Cartesian coordinates disappear if other types of coordinate-systems are 

employed. For example, if we transform from the Cartesian coordinates     

X = x
1
 and Y= x

2
 to polar coordinates r = x´

1
, θ = x´

2
 by the equations      

x
1
= x´

1
 cos x´

2
  and x

2 
= x´

1
 sin x´

2 
 the metric  (2.1.1) becomes  

                                             ds
2
 = dr

2
 + r

2
dθ

2
                                 (2.1.2), 

with  g
11

 = 1 e  g
22

 = r
2
. It does not describe a Plane Geometry.                      

 In 3-dim Euclidean space, when Cartesian coordinates (X,Y,Z) are 

used, the metric has the form  

                                           ds
2
 = dX

2
 + dY

2
 + dZ

2
                             (2.1.3), 

which is again the statement of Pythagora´s theorem. If these coordinates 

are changed as (x
1
= X, x

2
 = Y, x

3 
= Z) → (x´

1
= r, x´

2
 = θ, x´

3 
= φ) according 

to  x
1
 = x´

1
 sin x´

2
 cos x´

3
,   x

2
 = x´

2
 sin x´

2
 sin x´

3
 and  x

3
 = x´

1
 cos x´

2
 we 

see that (2.1,3) becomes written as 

                                      ds
2
 = dr

2
 + r

2
dθ

2
 + r

2 
sin

2
θ dφ

2  
                    (2.1.4). 

Taking  r = constant = a the metric becomes (with g11 = a
2
 and g22 = a

2
sin

2
θ) 

                                          ds
2
 = a

2
(dθ

2
 + sin

2
θ dφ

2
)

  
                           (2.1.5), 

that describes the geometry of a 2-dim surface of a sphere with radius r = a  

which is intrinsically different from that of the 2-dim Euclidean plane: 

straight lines are replaced by great circles with finite length, and 

necessarily intersect, with no parallels in the Euclidean sense, and so on... 

 Note that these two sets of equations in 2 and 3 dimensions have the 

property of being soluble for the (x´) in terms of the (x); for example, 2-

dim case the equations we have the relations 

                        x´
1
 = {(x

1
)

2
 + (x

2
)

2
}

1/2
     and       x´

2
 = tan

-1
 (x

2
/x

1
).  

 In the 3-dim case we have similar relations, but more complicated. 

 



8 

 

 (2.2) 2-dim Coordinate-System (u,v) where X = uv and Y = (u
2
+v

2
)/2.        

 In this case ds
2
 = dX

2 
+ dY

2
 becomes written as  

                      ds
2
 = (u

2 
+ v

2
)du

2
 + 4uvdudv + (u

2
+v

2
)dv

2
,                    (2.2.1), 

with g11 = u
2 
+ v

2
, g12 = g21 = 4u and g22 = g11= u

2 
+ v

2
, respectively, where 

the orthogonality property is masked in the new coordinate-system. What 

kind of geometry does this (u,v) coordinates describe? This question is very 

difficult to be answered in a general case. 

 (2.3) 3-dim manifold (X,Y,Z) with the metric   

                                       ds
2
 = dX

2
 + dY

2
 - dZ

2
                                    (2.3.1),  

(g11 = g22 = 1 and g33 = -1) is a 3-dim Minkowski space different from the 

Euclidean one. If the coordinates are transformed to (r1,θ,φ ) like 

            X = r1 sinhθ cosφ ,  Y = r1 sinhθ sinφ    e     Z = r1 coshθ    

we verify that (2.3.1) becomes 

                             ds
2
 = - dr1

2
 + r1

2
 dθ

2
 + r1

2
 sinh

2
θ dφ

2  
                      (2.3.2). 

Taking r = a = constant we obtain ds
2
 = a

2
 (dθ

2
 + r1

2
 sinh

2
θ dφ

2 
). With a 

new coordinate transformation
 
 θ → r, defined by sinhθ = r/(1- r

2
/4) we get   

                                 ds
2
 = a

2
 (dr

2
 + r

2
dφ

2 
)/(1- r

2
/4)

2
  

 
                         (2.3.3). 

From (2.3.3), r = 0 when θ = 0 and r = 2 when θ → ∞. Again, it is difficult 

to determine what kind of geometry is defined by (2.3.1)...  

 

(3)Geodesics. 
[3]

                                                                                           

 In preceding sections have been performed changes of tensors when 

the coordinates of the points of a Riemannian space are transformed. Now 

we consider changes of a different kind that arise when the coordinate -

system being kept fixed and the value of the tensor at one point is 

compared with its value at another point. Such changes may be usefully 

regarded as due to the "motion" of the tensor from one point to the other 

and it is therefore necessary to define some kind of path through the 

Riemannian space along which the tensor may be "imagined" to travel.
 

These fundamental paths are called geodesics of the space and they have 
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properties analogous to those of straight lines in Euclidean space. The 

geodesics are particular kinds of curves in the space defined by n equations   

                                         x
λ
 = F

λ
(u),   ( λ =1,2,3,...,n)                        (3.1), 

where u is parameter varying from point to point of the curve. Substituting  

equations (3.1) into (1.3.6) ds
2
 = gλν dx

λ
dx

ν
 and then integrating with 

respect to u, it is possible to express the interval s measured along the curve 

in terms of u, that is, 

     

S = {gln (x)(dxl /du)(dxn /du)}1/2  du
0

1

ò
                             (3.2), 

where uo and u1 are the values of μ at the points Po and P1, respectively. The 

geodesic joining the two points Po and P1 is then defined to be a curve for 

which the interval s between Po and P1 has a stationary value 
[4]

("stationary 

interval") that is, a 4-dimensional "length". Stationary here is used in the 

sense in which that term is used in the calculus of variations, namely, that 

the interval s measured varies minimally along any other neighboring curve 

joining the two points. Any other curve joining Po and P1 , and always lying 

close to the geodesics, will have equations of the form  

 

                                    x*
λ
 = x

λ 
+ εω

λ
 = F

λ
(u) + εω

λ
(u)                        (3.3), 

 

where ω
λ
 = 0 at u = uo and u = u1, and ε is a small quantity whose square 

and higher powers may be neglected. The new interval s* calculated along 

the neighboring curve joining Po and P1 would be given by 

 

                       

S* = {gln (x*)(dx*l /du)(dx*n /du)}1/2  du
0

1

ò
                      (3.4).          

Calculating the difference s*- s neglecting all powers of ε above the first 

order one can verify that
[3]

 to this interval to have a stationary value for the 

geodesic compared with the neighboring curves, s*- s must be zero for any 

choice of the functions ω
λ
. In this condition one can prove

[3]
 that the 

following condition must be satisfied: 

                      d
2
x

τ
/ds

2
 + Γλν

τ
 (dx

λ
/ds) (dx

ν
/ds) = 0    (τ = 1,2,3,...,n)       (3.5), 

https://en.wikipedia.org/wiki/Calculus_of_variations
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where    Γλν
τ
 ≡ (λμ,ν) = (μλ,ν) = (1/2){ ∂gλν/∂x

μ  
+ ∂gνμ/∂x

λ  
- ∂gλμ/∂x

ν 
} 

are the Christoffel symbols
[3,5]

. Equations (3.5) are the standard forms of 

the geodesics equations of the Riemannian space, excluding, however, 

those geodesics for which s = 0 along the curve.   As the manifold has n 

dimension, the geodesic equations are a system of ordinary differential 

equations for the coordinate variables. If  dx
μ
 correspond to an infinitesimal 

displacement along the geodesic for a change ds of interval, the vector  n
μ
 = 

dx
μ
/ds is called the unit tangent vector to the geodesic.                                     

 By dividing (1.3.6) by ds
2
 it follows that   

                                        gμν (dx
μ
/ds)(dx

ν
/ds) = 1                                    (3.6), 

 

which shows that n
μ
 is a unit vector (vector of unit length). Another 

important conclusion
[3]

 is that (3.6) is an integral of the n equations of the 

geodesic (3.5)(see also Appendix B).                                                                                                          

 According to Appendix C a vector q
λ
 is timelike, null or spacelike:    

timelike  when  gλν(x) q
λ 
q

ν 
 > 0, 

                                          null  when  gλν(x) q
λ 
q

ν 
 = 0,                           (3.7)        

spacelike  when  gλν(x) q
λ 
q

ν 
 < 0.   

                                                                                                                                                                                                                                           

(3.1)Timelike geodesics.                                                                            
 The equation of motion of a particle with mass in GR is written as  

Dp
μ
/ds  = f

μ
 , where D is the covariant derivative (see Appendix C), 

 p
μ
 = mv

μ
 , v

μ
 = dx

μ
/ds, ds

2
 = gμν

 
dx

μ
dx

ν
  and  f

μ
 is the force acting on the 

particle, that is,  

                               d
2
x

μ
/ds

2
 + Γλν

μ
 (dx

λ
/ds) (dx

ν
/ds) = f

μ
                     (3.1.1). 

 

In the case of free particle for which f
μ
 = 0 , Eq.(3.1.1) reduces to 

 

                               d
2
x

μ
/ds

2
 + Γλν

μ
 (dx

λ
/ds) (dx

ν
/ds) = 0                     (3.1.2), 

  

which reinforces that the path of a free massive particle is a geodesic 

according to Eq.(3.5) in the spacetime. This result is often stated as a 

explicit postulate of GR, known as geodesic postulate, but emerges here as 

a natural consequence of the way in which we generalize SR concepts.
[8]    

The path of a free massive particle in flat spacetime of the SR is a straight 

https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
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line and this generalizes to a geodesic in curved spacetime of the GR.                                                                                                                              

 If, besides (3.1.2), is obeyed the condition gμν (dx
μ
/ds)(dx

ν
/ds) = 1 we 

say that the geodesics is timelike. At any point on the path of a massive 

particle its world velocity is a tangent vector (n
μ
) to the path; Eq.(1.3.6) tell 

us that this tangent vector is timelike. So, this particle follows a timelike 

path through the spacetime, and in particular a free particle follows a 

timelike geodesic.  

                                                                                                                                                                 

(3.2) Null Geodesics.                                                                                     

 A null geodesic, is obtained by assuming that the interval ds = 0 

between any two points on the curve.  For instance, from (3.4) we obtain  

                                     gλν(x)(dx
λ
/du)(dx

ν
/du)  =  0                           (3.2.1). 

This equation in SR  generalizes the relation ηλν(x)(dx
λ
/dt)(dx

ν
/dt)  =  0 , 

where ηλν = diag[-1,1,1,1] and the velocity v
λ 
= (dx

λ
/dt). This is equivalent 

to c
2
dt

2
 - dx

2
 - dy

2
- dz

2
 = 0. Trajectories of light signals in 3-dim Euclidean 

space are described by null geodesics that are straight lines.  In this space 

ds
2
 = dX

2
 + dY

2
 + dZ

2 
= (dx

1
)

2
 + (dx

2
)

2
 + (dx

3
)

2 
 = gij dx

i
dx

j
, where the 

"metric tensor" g
ij
 = δij. As g

ij
 are constants from (3.5) we have d

2
x

τ
/ds

2
 = 0, 

that is, d
2
X/ds

2
 = d

2
Y/ds

2
 = d

2
Z/ds

2
 = 0 which are immediately integrable to 

give the equations of the straight line, passing by the point (Xo,Yo, Zo): 

                                ( X-Xo)/ℓ = (Y-Yo)/m = (Z-Zo)/n = s,               (3.2.2) 

where the direction-cosines dx
μ
/ds = cosθμ (the unit tangent vectors) of the 

line are (cosθx = ℓ, cosθy = m, cosθz = n) which satisfy the condition, 

following (3.6),  

                                              ℓ
2
 + m

2
 + n

2
 = 1.                                   (3.2.3). 

 In Riemannian space null geodesics, instead of (3.5), are given by  

                                         gλν(x)(dx
λ
/du)(dx

ν
/du)  =  0                         (3.2.4) 

  and                                                                                                                                                                 

              d
2
x

τ
/du

2
 + Γλν

τ
 (dx

λ
/du) (dx

ν
/du) = 0    (τ = 1,2,3,...,n)     (3.2.5). 

For a photon that follows a null geodesic Eq.(3.2.4) tell us that the tangent 

vectors to its path are null. In this case it is more adequate to write (3.2.5) 

using the fact that the direction of the light propagation in geometric optics 

is given by the wave quadri-vector k
τ
 = dx

τ
/du tangent to the light ray. 

Thus, (3.2.5) becomes 

                                dk
τ
/du + Γλν

τ
 k

λ
 k

ν
 = 0    (τ = 1,2,3,...,n)               (3.2.6). 
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(3.3)Spacelike Geodesics.                                                                                                

 Spacelike paths and spacelike geodesics may also be defined 

following the procedure adopted above, but these have no physical 

significance unless one believes in tachyons.
[8]

 

Another Examples of Geodesics 

(1) Null geodesics  in a 3-dim Minkowski space (X,Y,Z) with the metric   

ds
2
 = dX

2
 + dY

2
 - dZ

2
                                                                                                                   

 In this case as g11 = g22 = 1 and g33 = -1, following the procedure 

adopted in Section (3.2) we obtain  

                               ℓ
2
 + m

2
 - n

2
 = 0, instead of (3.2.3).                                                                                                                         

(2) Great Circles on the Surface of a Sphere.                                             

 In a sphere ds
2
 is given by (2.1.4): ds

2
 = dr

2
 + r

2
dθ

2
 + r

2 
sin

2
θ dφ

2
.   

Curves with φ = constant are the great circles ("meridians"); curves with       

θ = constant are the small circles of latitude; only the θ = π/2 is a great 

circle. If in the geodesic equations d
2
x

τ
/ds

2
 + Γλν

τ
(d

2
x

λ
/ds)(d

2
x

ν
/ds) = 0  we 

put x
1
 = θ, x

2 
= φ  and r = a = constant these equations reduce to the pair  

d[a
2
(dθ/ds)]/ds -a

2
sinθcosθ(dφ/dθ)

2 
= 0     and        d[a

2
sin

2
θ(dφ/ds)]/ds = 0. 

Particular solutions of these equations are obviously:                                            

(a) φ =  constant  and  aθ = s, corresponding to the "meridians".                                                                  

(b) θ = π/2  and  aφ = s, corresponding to the "equator".                             

 Note that circle of latitude on which θ = constant ≠ π/2 does not 

satisfy the geodesic equations. This implies that great circles are geodesics 

and small circles are not geodesics. 

 

 (3.4)Lagrangian formalism and Geodesics.                                                         

 Defining the Lagragian function
[8]

  L = L(ӿ
α
, x

α
), with x

α
 = x

α
(u),   

                        L(ӿ
α
, x

α
) ≡ (1/2)gμν(x

α
) (dx

μ
/ds) (dx

ν
/ds)                 (3.4.1),  

where ӿ
α
 = (dx

α
/ds) , the Euler-Lagrange equations are given by                                                                                  

                               d(∂L/∂ӿ
μ
)/du - ∂L/∂ӿ

μ
 = 0                                 (3.4.2).  

From (3.4.1) and (3.4.2) one can deduce the geodesic equations  (3.1.2),  

                                d
2
x

μ
/ds

2
 + Γλν

μ
 (dx

λ
/ds) (dx

ν
/ds) = 0 . 

This implies the geodesics, timelike or null, can be directly obtained using 

(3.4.1) and (3.4.2). In Appendix D , using the Lagrangian formalism, we 

see how to calculate trajectories of particles and photons in the vicinity of 

spherical massive objects.   
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(4) Local Cartesian  or  Local Inertial Coordinate-System.                                                                  
 In a Riemannian space of n dimensions there are certain types of 

coordinate-systems (X) which are useful for describing the points lying in 

the neighborhood of a given point O.
[3]

 One example is the Local Cartesian 

Coordinate-System (LCCS) or Local Inertial Coordinate-System (LICS) 

which exists at any point of a Riemannian space of any type. We consider 

here only the case when the metric is orthogonal,  that is,  

                                           ds
2
 =  ελγλλ(x)(dx

λ
)

2                                                    
(4.1), 

where  gλλ = ελγλλ(x) and ελ are equal to either +1 or -1. Let the point O 

have coordinates xo and consider the coordinates  

 

                                  X
λ
 = [γλλ(xo)]

1/2
(x

λ
 - xo

λ
)     (λ = 1,2,3,...,n)         (4.2), 

 

where the summation convention being suspended. The differentials of 

these coordinates are dX
λ
 = [γλλ(xo)]

1/2
dx

λ
   and therefore the substitution 

into (4.1) gives the metric 

                                             ds
2
 =  ∑λ ελ(dX

λ
)

2                                                            
(4.3), 

which is identical with the metric of a flat space.
[3]   

The coordinates X
λ
    

are called local Cartesian and are valid for those points near enough to O      

for the differences   [γλλ(x)]
1/2

- [γλλ(xo)]
1/2

   to be of order not exceeding    

(x
λ
 - xo

λ
).  If the space were indeed flat, then it would be possible to 

integrate the differential equations dX
λ
/dx

λ
 = [γλλ(x)]

1/2
, a process that 

cannot be performed in a curved Riemannian space.                                            

 As is shown in reference
[1]

 in LICS the Christoffel symbols Γλν
τ 
 can 

be annulled, that is,
 
Γλν

τ
 = 0 and, consequently, the geodesic equations (3.5) 

become 
 
d

2
x

τ
/du

2  
= 0 (τ = 1,2,3,...,n). The LIC are also called locally 

geodesic coordinates. 

(4.1)Local  Inertial Coordinates in Schwarzschild Space-Time.                    

 The metric in the polar Schwarzschild Spacetime (SST) is given 

by,
[1-3,5]  

where χ = GM/c
2
,  

                ds
2
= (1-2χ/r)c

2
dt

2 
- dr

2
/(1-2χ/r) - r

2
dθ

2
- r

2
sin

2
θd

2
φ             (4.1.1).        

Putting  r = (1 + χ/2r*)r*, ct = x
4
, x

1
= r*sinθ, x

2
 = r*sinθsinφ, x

3 
= r*cosθ 

the metric ds
2
 given by (4.2), at the event (xo

4
,xo

1
, xo

2
,xo

3
) introducing the 

LIC defined by 

      X
4
 = [(1-χ/2ro*)/(1+χ/2ro*)](x

4
-xo

4
)    and   X

i
 = (1+χ/2ro*)

2
(x

i 
- xo

i
),    

becomes
[3]                                                                                                                                                                                   

     
ds

2 
= (dX

4
)

2
 - ∑i (dX

i
)

2
                                (4.1.2). 
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 In the case of the Minkowski Space -Time (MST) where the metric is 

given by  ds
2
 = (dx

4
)

2
 - ∑i (dx

i
)

2
 the velocity qi of the particle is defined by  

qi = c[∑i (dx
i
)

2
 ]

1/2
/dx

4
 .

[3]
 Hence at the event (xo), the local Cartesian 

velocity qo of the particle may be defined in  manner analogous by 

 

qo ={c[∑i (dX
i
)

2
]

1/2
/dX

4
}o = [(1+χ/2ro*)

3
/(1-χ/2ro*)]{∑ic(dx

i
)

2
/dx

4
}o  (4.1.3). 

 

LIC may be set up at any event and one may also work back to the polar 

system (t,r,θ,φ).  

                              

(5) Earth Gravitational Field (Schwartzschild Metric).                                        

 Let us assume that the Earth is a spherical body with mass M, radius 

R and with angular velocity Ω. Taking  the Earth center of mass as the 

origin of an inertial system Σ one can show that the gravitational field 

generated by the Earth in vacuum (disregarding the Earth's spin effect) is 

described by the Schwartzschild metric(SM)
[1-3,5]

 ds
2
 that in spherical polar 

coordinates (r, θ, φ) is given by 

                 ds
2
 = (1-2χ /r) c

2
dt

2
 - dr

2
/ (1-2χ/r) - r

2
dθ

2
 - r

2
sin

2
θd

2
φ          (5.1), 

where χ = GM/c
2
. It is always emphasized that in GR the variables t and r 

are coordinates, that is, they are not necessarily "physical quantities" such 

as time and distance in classical mechanics. In Appendix E we analyze the 

Length and Time in the SST. 

 (5.1) Gravitational Doppler Effect.                                                         

 Consider two clocks 1 and 2 at rest with respect to Earth with 

coordinates r1 and r2. As for both dr = dφ = dθ = 0 using (5.1) we obtain   

ds
2
 = c

2
dτ

2
 where we made t ≡ τ, defined as proper time

 [1-3,5] 
that is, the  

time measured in the reference frame in which the clock is at rest. Thus, for 

points 1 and 2,we get 

                         dτ1 = √goo (r1) dt = (1-2Gm/c
2
r1)

1/2
 dt 

                         dτ2 = √goo (r2) dt = (1-2Gm/c
2
r2)

1/2
 dt               (5.1.1) 

When r → ∞ the proper time τ becomes equal to the time coordinate t. 

Using (5.1) we can compare the time intervals that would be measured in 

reference frames 1 and 2. According to (5.1.1), if r2 > r1 the clock in 2 

moves faster than the clock in 2. Time measurements made with atomic 
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clocks of high precision have confirmed the predictions made by (5.1.1).
[7]

 

In these clocks the time measurements are based on the frequencies of 

vibrations ν of atomic transitions. Thus, in 1 and 2 we would have, 

respectively, the frequencies ν1=1/dτ1 and ν2=1/dτ2 given by, where ν =1/dt, 

                ν1 = ν/(1-2Gm/c
2
r1)

1/2
   and   ν2 = ν/(1-2Gm/c

2
r2)

1/2
                             

that is,                                           

                        ν1/ν2 = {(1-2Gm /c
2
r2) / (1-2Gm /c

2
r1)}

1/2                       
(5.1.2). 

 Equations (5.1.2) show the effect of the change of the 

electromagnetic frequencies generated by the gravitational field. It is the 

Gravitational Doppler Effect.  

(5.2) Gravitational & Transverse Kinematic Doppler Effect.                

 To evaluate the change in frequency ν due to the gravitational field 

and to the speed of movement of the clocks let us assume that one clock is 

fixed on Earth and the other is rotating around the Earth. Take clock 1 fixed 

on the surface of the Earth. Thus, 1 has a rotational motion with angular 

velocity Ω relatively to the inertial system Σ. Let us assume that 2 is fixed 

on an airplane that carries out a circumnavigation movement around the 

Earth (for example, along the terrestrial equator) with a constant tangent 

velocity V. The fixed clock 1 on Earth (reference 1) putting Ω = dθ/dt  and 

dr/dt = 0, using (5.1) would measure a time interval dτ
1
 = dτ

T
 given by 

                           (dτ
T
)

2
 = {(1-2GM/c

2
R) - R

2
Ω

2
/c

2
}dt

2
                        (5.2.1). 

 It is important to note that in (5.2.1) besides the gravitational effect 

given by the term (1-2GM /c
2
R)

2
dt

2
 there is also a kinematic effect given 

by - (R
2
Ω

2
 /c

2
) dt

2
 which in SR is responsible for the Transverse Doppler 

Effect. For the fixed reference 2 in airplane we have r2 = R + h, where h is 

the height of the flight; as the airplane moves with velocity V relative to the 

ground its velocity U relative to the inertial frame Σ is given by the Lorentz 

Transformation: 
[1,2,5]

 

                             U = [(R + h) Ω + V] / [1+ Ω (R + h)V/c
2
]              (5.2.2).  

As in these flights c
2 
>> RΩV 

[2]
 the we have U ≈ (R + h)Ω + V; so the time 

interval dτ
2
 = dτA, measured by a fixed clock in the plane is given by 

                (dτA)
2
 = {[1-2GM/c

2
(R + h)] - [(R + h)Ω + V]

2
/c

2
} dt

2 
      (5.2.3), 
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where the velocity V ≈ 300 m/s has signals ± depending on the direction of 

movement of the airplane in relation to the ground. Measurements using 

high precision clocks have confirmed
[2,7] 

the predictions given by (5.2.1) 

and (5.2.3). We recall that in SR the transverse Doppler effect was 

introduced "ad hoc" to explain the kinematic effect because the reference 

system where clock 1 is fixed was non-inertial with an radial acceleration 

aR = Ω
2
R. From this we verified that this kinematic effect can only be 

explained rigorously within the context of the GR.  

(5.3) Gravitational & Longitudinal Kinematic Doppler Effect.                   

 Now let's consider that a light detector (clock) is fixed at a point Po 

and that a light emitter at a point P is moving directly away or approaching 

Po (see Figure 1). The radial Cartesian velocity  of  P defined by q = ds/dt, 

according to (5.1), would be given by
[3] 

    q = {(dr/dt)
2
/(1-2χ/r) + r

2
(dθ/dt)

2
 + r

2
sin

2
θ(dφ/dt)

2
}

1/2
/(1-2χ/r)

1/2 
 =  

 

        =  (1-2χ/r)
-1/2

 {(1-2χ/r)
-1

(dr/dt)
2
 + r

2
(dθ/dt)

2
 + r

2
sin

2
θ(dφ/dt)

2
}

1/2
  (5.3.1) 

  

 Defining the radial coordinate velocity by V = dr/dt  and assuming 

that  dθ = dφ = 0 we get from  (5.3.1):  

                                              q = (1-2χ/r)
-1/2

 V                                     (5.3.2), 

 showing that q → V when r →∞ or M → 0 in absence of matter. It can 

also be obtained
[3] 

the general γ relation, 

                                    γ
2 
= (1 - 2χ/r)/(1 - q

2
/c

2
)

                             
                 (5.3.3). 

We see that γ
 
= (1-V

2
/c

2
)

1/2  
= (1-β

2
)

1/2
, with β = V/c, when r →∞ or M →0. 

                      
                

 Let us suppose that the from the point P are  emitted two pulses of  

 

Figure 1.Light detector fixed at Po and light emitter in motion at P. 
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light with own frequency ν at the events E and E´ defined in the coordinate 

system Σ by E ≡ (t, r, θ, φ) and E´≡ (t + dt, r + dr, θ, φ). They are separated 

by the invariant proper-time interval  

                             ds
2
 =  (1-2χ/r)c

2
dt

2
 + dr

2
/(1-2χ/r)  

                                    =  (1-2χ/r)(1 - q
2
/c

2
)dt

2
                                    (5.3.4), 

where the radial velocity q is given by q = (dr/dt)/(1-2χ/r), according
 
(4.1.4) 

putting dφ/dt = dθ/dt = 0.  The reception of the first signal by (fixed) Po  is 

defined by the event Eo defined by Eo ≡ (to, ro,0,0). The reception of the 

second signal is defined by Eo' ≡ (to + dto, ro, 0, 0). These two events are 

separated by the interval dso given by 

                                          dso = (1-2χ/ro)
1/2

 cdto                                  (5.3.5), 

and therefore the frequency, νo + dνo, and the wavelength, λo + dλo, 

received by detector Po are given by 

                            νo + dνo = c/dso     and      λo + dλo= cdso                  (5.3.6). 

Since the events E & Eo and E' & Eo' are connected by light signals they 

can be taken as null geodesics through P and Po putting ds = dθ = dφ = 0 in 

(5.3.1), obtaining (1-2χ /r) c
2
dt

2
 + dr

2
 /(1-χ/r)  = 0 ,  that is, 

                                             dr/dt = c(1-2χ/r)                                      (5.3.7). 

So, for the pair E&Eo we have, integrating (5.3.7) with to → t and ro→ r : 

                                       

t - t0  = (1/c) dr/(1-2c /r)
r0

r

ò
                                               

          (5.3.8). 

Similarly, for  the pair E´& Eo´ integrating (5.3.4) with  to+dto → t+dt  and  

ro+dro → r+dr we get                                  

                               

t + dt - t0 + dt0  = (1/c) dr/(1-2c /r)
r0+dr0

r0

ò
                             

          (5.3.9). 
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Subtracting (5.3.8) and (5.3.9) results dto - dt = - (1/c) dr/(1-2χ/r) = -(q/c)dt, 

gives                                                                                                                                   

       dto = (1- q/c)dt

In this way, from (5.3.5) , (5.3.9) e (5.10) we obtain, 

            dso/ds = {(1- 2χ/ro)/(1- 2χ/r)
 
}

1/2 
{(1 - q/c)/(1 + q/c)}

1/2 
          (5.3.11) 

Since   ν = 1/ds   (5.3.11) can also be written as  

                     ν/νo =  {(1- 2χ/ro)/(1- 2χ/r)
 
}

1/2 
{(1 - q/c)/(1 + q/c)}

1/2 
  (5.3.12). 

Note that νo is the frequency measured by a detector (Po) fixed at the Earth 

and ν is the proper frequency emitted by a system (P) in motion with the 

radial velocity q relatively to the Earth (Po).                                                                     

 From (5.3.12) we see that the gravitational and kinematic Doppler 

Effects are intertwined. (5.3.12) predicts only kinematic effects by making   

G = χ = 0 and only gravitational effects when q = 0. 

Emitter and receiver fixed at points E and R.
[8]

                                                                                                           

 In this particular case the two points E ≡ (tE,rE,θE,φE) and                  

R ≡ (tR,rR,θR,φR) are connected by a null geodesics defined by the equation 

                     (1-2χ /r)c
2
 t

+2 
- (1-2χ/r)

-1
 r

+2
 - r

2
θ

+2
 - r

2
sin

2
θ φ

+ 2
 = 0        (5.3.13), 

where, generically, f
+
 = df/du. From (5.3.13) we have obtain 

             dt/du = (1/c){(1-2χ /r)
-1

 gij (dx
i
/du)(dx

j
/du)}

1/2
,        where gij = - gij . 

Integrating this expression we get                                                                                               

  tR - tE = (1/c) ∫{(1-2χ /r)
-1

 gij (dx
i
/du)(dx

j
/du)}

1/2
 du. 

As this integral depends only on the path through space, so with a spatially 

fixed emitter and spatially fixed receiver, tR - tE
 
is the same for all signals, 

1and 2, sent. Thus, for two signals we have  tR
(1)

 - tE
(1)

 = tR
(2)

 - tE
(2)      

showing that time intervals measured in E are equal to that measured in R, 

that is,                                                                                                                                 

   ΔtR =  tR
(2)

 - tr
(1)

 = tE
(2)

 - tE
(1)  

=  ΔtE
  
               (5.3.14). 

That is, the coordinate time difference at the point of emission E equals the 

coordinate time difference at the point R of reception. However, the clocks 
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of an observer at R and of an emitter at E record proper times and not 

coordinate times. The record proper times ΔτR and ΔτE are given by 
[8]

 

                ΔτR = (1-2χ /rR)
1/2 

ΔtR    and  ΔτE = (1-2χ /rE)
1/2 

ΔtE          (5.3.15). 

Since  ΔtR =  ΔtE
 
 we have  

                                 ΔτR /ΔτE = [(1-2χ /rR)/(1-2χ /rE)]
1/2 

                   (5.3.16),           

 
that is a particular case of (5.3.12) when q = 0, remembering that Δν =1/Δτ. 

              

 (5.4) Particle Geodesics in Weak Gravitational Field Limit.                                

 Let us see recover the Newtonian equations of motion of a massive 

particle using as a starting point the geodesic equations in the limit of very 

weak gravitational field (Φ) and with velocities dx
i
/dt << c ( i =1,2,3). 

Suppose a system where the metric tensor is given by gλν = ηλν + hλν where 

ηλν = diag[-1,1,1,1] and hλν is very small but cannot be neglected. In these 

way one can show, after a somewhat long calculation, that
[8]

 

             md
2
x

i
/dt

2
 =  - mδ

ij
∂j(c

2
hoo/2)  + mcδ

ik
(∂jhok - ∂khoj)(dx

j
/dt)     (5.4.1). 

The first term on the right would be the gravitational force  -m grad(Φ) 

where Φ = c
2
hoo/2 + const and the second term would be a Coriolis force 

that is null in a nonrotating reference system. Taking const = 1 we see that 

goo in the Newtonian approximation would be given by goo = 1 + 2Φ/c
2
.  

Example 1.Newton´s Law of Universal Gravitation.                                                   

 Using (5.4.1) we recover Newton´s law remembering that goo in the 

SM  in the weak field limit (for large 1/χ ) in given by goo = (1-2χ /r) ≈ 1 - 

2GM/rc
2
 , that is, hoo = - 2GM/rc

2
. This would imply that V = - GM/r and 

consequently, using (5.4.1):  

                           F(r) = md
2
r/dt

2
 = -m grad(V) = - (GMm/r

2
) r                                                        

in agreement with the gravitational Newton´s law. 

(6) Principle of Equivalence and Geodesic Principle.          

 In many basic textbooks
[1-3,5]

 about the Theory of Relativity are 

found analysis on the Principle of Equivalence. This is proposed as an 

immediate consequence of  recent experimental measurements
[2]

 which 
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show that the  gravitational mass mg is equal to the inertial mass mi with an 

accuracy of one part in 10
9
. We suggest the lecture, for instance, of the 

analysis presented by Yilmaz 
[5]

 where is shown Figure 2: 

 

Figure 2. A system (a) which is stationary in a uniform gravitational field g is 

physically equivalent to a system which is in a gravitational-free space (b) but 

accelerated in the opposite direction with an acceleration γ = g. 

 The Principle of Equivalence can be written, for instance, as:              

(6.a) "It is impossible to tell whether a system (room ) is in a state of 

accelerated motion by experiments performed in that system alone. For the 

observer in the room can claim that this room is stationary but there is a 

gravitational field present in the room."  

(6.b)"A system which is stationary in a gravitational field of strength g is 

physically equivalent to a system which is in a gravitation-free space but 

accelerated in the opposite direction with an acceleration g."  

 (6.c) " In physical terms the effects of a gravitational field can be removed, 

locally at least, by employing an appropriately chosen accelerated 

coordinate system. This is a local coordinate system which is falling freely 

in the gravitational field of the distribution of matter".    

  According to Section 4 it is always possible to determine a Locally 

Inertial coordinate-system (LIC) at any point of a Riemannian space. The 

metric at the origin of this coordinate-system is of a flat space (Appendix A). 

This implies that the Riemann-Christoffel R
σ

λνμ, the Ricci R λμ and the 

Curvature Invariant R
λλ

 tensors are equal to zero (see Appendix A). In any 

flat Riemannian space-time (x), representing a large distribution of matter, 

the motion of a small particle will be described by the time-like geodesics 
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                                        d
2
x

σ
/ds

2
 = 0         (σ =1,2,3,4)                  (6.1), 

which represent the motion of a particle locally identical with the motion 

under Newton´s Fist law. They are therefore immediately integrable to give 

dx
σ
/ds = v

σ
  and x

σ
- xo

σ
 = s v

σ 
where the four v

σ
 and the four xo

σ 
 are 

constants of integration. In physical terms, these LIC may be said to form a 

system which is falling freely in the gravitational field of the distribution of 

matter which corresponds to the formulation (6.c) of the Principle of 

Equivalence. In other words, the existence of a LICS at every event in 

space-time expresses the Principle of Equivalence and indicates that the 

effect of a gravitational field can be abolished locally by the choice of a 

suitable accelerated coordinate-system. The representation of the history of 

the motions of small test-particles by time-like geodesics and of light-rays 

by null-geodesics (see Section 3.3) in Riemannian spaces form the 

"Geodesic Principle". As stated above, the geodesic principle presupposes 

that the distribution of matter is given through its energy-tensor, that the 

appropriate Riemannian space-time has been determined through Einstein´s 

equations and that the particle itself contributes nothing to the distribution 

under whose gravitational influence it moves.
[3]

 See comments of 

McVittie
[3]

 about geodesic principle, continuous distributions of matter, 

cosmology and Einstein´s equations. 

 (7)Accelerated Coordinate-Systems in Special Relativity.                                                                                 

 It has been mentioned above that the existence of a LICS at every 

event in space-time expresses the Principle of Equivalence and indicates 

that the effect of a gravitational field can be abolished locally by the choice 

of a suitable accelerated coordinate-system. This result has led to some 

confusion for it has been interpreted as equivalent to the statement that the 

essence of GR consists in the use of accelerated coordinate-systems, in 

contrast with SR, where relatively non-accelerated coordinate-systems are 

employed.
[3]

 This statement is, however, misleading because there is 

nothing to prevent the investigator from using accelerated coordinate-

systems is SR if he chooses to do so. Let us consider, for instance, an 

inertial system S in the Minkowski space-time (cT,X,Y,Z), with metric  

                                    ds
2
 = c

2
dT

2
 - dX

2
- dY

2
 - dZ

2
                          (7.1).   
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In S the motion of a non accelerated the test particle would be governed by 

the time-like geodesics equations d
2
X

μ
/ds

2
 + Γλν

μ
 (dX

λ
/ds) (dX

ν
/ds) = 0, 

where the Christoffel symbols Γλν
μ
 = 0, that is, 

                                        d
2
X

μ
/ds

2
 = 0     (μ =1,2,3,4).                       (7.2).     

The Riemann-Christoffel and the Ricci tensors in S are identically zero and 

so is the energy-tensor.                                                                        

 Consider now a non-inertial Minkowski space-time coordinate-

system S´ in which the (ct,x,y,z) are obtained by Lorentz transformations  

from (cT,X,Y,Z). These transformations do not alter the null-character of 

the Riemann-Christoffel and the Ricci tensors of the MST which remains a 

flat space-time (see Appendix A). Hence the Ricci tensor is still identically 

zero and so is the energy-tensor, in spite of the fact that the coefficients    

gik (xi) of the new metric -ds
2
 = gik (xi) dxi dxk  can be no longer constants. 

Thus, ds
2
 does not represent any distribution of matter and therefore no 

gravitation field is present. Note that the equations of motion of a particle 

in S´ can be difficult to obtain in, general case, when the Lorentz γ ≠ 1.   

An example of this can be seen, for instance, in reference [3], pag.78. In 

Sections (7.1) and (7.2) are shown simple cases when γ = 1.   

(7.1) Rotating Reference System.                                                                               

(7.1.a) Cartesian Coordinates.                                                                       

 Let us pass from an inertial reference frame S ≡ (T, X, Y, Z) to a 

non-inertial rotating referential system S´ with constant angular velocity ω 

along the z-axis.        

 

Figure 2. Coordinate system S´ ≡ (ct, x, y, z) rotating relative to the coordinate system 

S ≡ (cT, X, Y, Z). 

             Defining a new referential system S´ ≡ (t, x, y, z): 
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T = t ,                                                                                                                       

X = x cos(ωt) - y sin(ωt),                                                                                                 

Y = x sin(ωt) + y cos(ωt),                                                                                            

Z = z, 

we see that ds
2
 = c

2
dT

2
 - dX

2
- dY

2
 - dZ

2
   now becomes written as                                                                                                                                                                                                                                                                                                                 

         ds
2 
= c

2
dτ

2
 = [c

2
- ω

2
(x

2
+y

2
)]dt

2  
+  2ωx dy dt - dx

2
 - dy

2
 - dz

2
  (7.1.a1). 

 For S´ the geodesic equations are d
2
x

τ
/dτ

2
 + Γλν

τ
 (dx

λ
/dτ) (dx

ν
/dτ) = 0, 

where  Γλν
τ
 =  (1/2){ ∂gλν/∂x

μ  
+ ∂gνμ/∂x

λ  
- ∂gλμ/∂x

ν 
},  (τ = 0,1,2,3).  Since 

 
goo = [

 
c

2
- ω

2
(x

2
+y

2
)]

 
, go2 = 2ωx

  
and  g11= g22 = g33 = - 1 we see that the 

only non null Γλν
τ
  are  Γ00

1
 = - ω

2
x, Γ20

1
 = -2ω,  Γ00

2
= - ω

2
y and Γ10

2
= 2ω.  

Thus, the equations of motion for a free massive particle are given by,
[8]

 

d
2
t/dτ

2
 = 0  ,                                                                                                            

d
2
x/dτ

2
 - ω

2
x(dt/dτ)

2 
- 2ω(dy/dτ)(dt/dτ) = 0,                                   (7.1.a2)                                           

d
2
y/dτ

2
 - ω

2
y(dt/dτ)

2 
+ 2ω(dx/dτ)(dt/dτ) = 0,                                               

d
2
z/dτ

2
 = 0. 

As the first equation implies that dt/dτ = k = constant, that is, dt = k dτ the 

remaining (7.1.2) equations may be written as   

d
2
x/dt

2
 - ω

2
x

 
- 2ω(dy/dt) = 0,                                                                   

d
2
y/dt

2
 - ω

2
y

 
+ 2ω(dx/dt) = 0,                                                          (7.1.a3),                                                           

d
2
z/dt

2
 = 0 

These calculations clearly shown that in the non inertial system S´ the 

acceleration has a geometrical nature. Multiplying by m the noninertial 

accelerations given by Eqs.(7.1.a3), written in 3-dim vector notation, we 

get the noninertial forces  

                       md
2
r/dt

2
 = m  ω x (ω x r) - 2mω x (dr/dt)                 (7.1.a4), 

where r ≡ (x,y,z) and ω ≡ (0,0,ω). The component  2mω x (dr/dt) is the 

centrifugal force and - 2mω x (dr/dt) the Coriolis force.
[1,9]

 . These forces 

are not due to physical interactions.   Note that with the choice T ≡ t, 

where T is the proper time measured by clocks at rest in S, the time t is 

exactly the proper time for an observer situated at the common origin O 

of the two systems. So, observers close to O who are at rest in the rotating 

system would accept Eqs.(7.1.a3) and (7.1.a4) as approximately valid and 
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recognizes the terms on the right as forces of acceleration.
[8] 

                                                                                                

 Similar results can be deduced using the "weak field approximation" 

seen in Section (5.4), when we have assumed that gλν = ηλν + hλν where     

ηλν = diag[-1,1,1,1] and hλν is very small but cannot be neglected. The terms 

hλν 
 
→ - ω

2
(x

2
+y

2
)/c

2
,  ωy/c, - ωx/c  would be small for small angular 

velocities ω and so, (7.1.a3) and (7.1.a4) can be obtained.
 [8]

 

(7.1.b)Cylindrical Coordinates.                                                                                                           

 Transforming Cartesian (t,x,y,z) to cylindrical coordinates putting 

z´= z,     x = ρ cosφ, y = ρ sinφ from (7.1.a2) we get the "accelerations"  

d
2
t/dτ

2
 = 0  ,                                                                                                            

d
2
ρ/dτ

2
 - ω

2
ρ(dt/dτ)

2 
- ρ(dφ/dt)

2
- 2ωρ(dφ/dτ)(dt/dτ) = 0,                                                                            

d
2
φ/dτ

2
 - ω

2
ρ

-1
(dρ/dτ)(dφ/dτ)

 
+ 2ωρ

-1
(dρ/dτ)(dt/dτ) =  0,               (7.1.b1)                                           

d
2
z/dτ

2
 = 0. 

Introducing the mass m of the particle and rearranging we have the virtual 

forces, noting that dt = k dτ, 

                                                                                                                          

(A) m[d
2
ρ/dτ

2
]  =  ρ[(dφ/dt)

2
 + mω

2
]

 
+ 2mωρ(dφ/dτ),                                                                            

(B) m[d
2
φ/dτ

2
]  = - 2m(dρ/dτ)(dφ/dτ)/ρ - 2mω(dρ/dτ)/ρ,                (7.1.b2).                                       

(C) m(d
2
z/dτ

2
)  = 0, 

The first term of (A) is the centrifugal force due to particle´s own motion 

and of the rotation of the frame and the second term is the radial Coriolis 

force. The right hand side of (B) is the tangential Coriolis force; it depends 

on the radial velocity, and on the angular velocity ω of the particle in the 

frame and rotation of the frame.                                                                                      

 Now, if the inertial cylindrical coordinate system is represented by 

S´= (t, ρ´,φ´, z´) we have  

                                  ds
2
 = c

2
dt

2
 - dρ´

2
 - ρ´

2
dφ´

2 
- dz´

2
                      (7.1.b3). 

 If  t, ρ, φ and z are the cylindrical coordinates of the rotating system            

S = (t, ρ,φ, z) we see that ρ´= ρ, z´= z  and φ´= φ + ωt. In this way (7.1.b3) 

becomes given by 

                       ds
2
 = (c

2
 - ω

2
ρ

2
)dt

2
- 2ωρ

2
dφdt - dz

2
 - ρ

2
dφ

2 
- dρ

2
       (7.1.b4). 

 



25 

 

(8) Distances and Time Intervals in GR.                                         

 In GR the choice of a reference system is not limited by nothing; the 

3 coordinates x
1
,x

2
, x

3
 can be arbitrary quantities defining the position of 

the particles in the space and the temporal coordinate xo can be determined 

by a clock marking its proper time. The main problem is how one can 

determine using x
o
,x

1
,x

2
, x

3  
the real distances ℓ and the real time lapses τ.   

(8.a) Real time intervals.                                                                                     

 Let us first determine the connection between real times τ and the 

coordinates x
o
. To do this let us estimate the interval ds between two 

events that occur in the same point, that is, when dx
1
 = dx

2
 = dx

3 
= 0. So, 

as  - ds
2
 = gik dxidxk  we get   ds

2
 = - c

2
 dτ

2
 = goo dxo

2
, that is 

                                          dτ = (1/c)(- goo)
1/2

 dx
o
                                (8.a.1),    

from which we see that the finite real time interval τ between two arbitrary 

events occurring in the same point of the space is given by, 

                                                                     
                           (8.a.2). 

 The relations (8.a.1) and (8.a.2) show how to determine the real 

times τ (that is, the proper times in one point of the space) as a function of 

the coordinate xo. Note that, to have physical meaning, we must have   

                                                        goo < 0                                        (8.a.3).  

It is important to stress that the spatial components of tensor gij  must be 

positive and that goo must be negative. One metric tensor that does not 

satisfy the last condition (8.a.3) cannot represent a real gravitational field. 

If (8.a.3) is not obeyed would signify that the correspondent reference 

systems could not describe real bodies.
[1]

 

Weak gravitational field.                                                                             

 As will be seen in Section (5.4) in weak gravitational fields Φ(r) we 

have at a given point of the space, putting x
o
/c = t :  

               τ = (x
o
/c)(- goo)

1/2
 ≈ (x

o
/c) [1+ 2Φ/c

2 
]

1/2
  ≈  (1 + Φ/c

2
) t    (8.a.4). 



26 

 

When Φ < 0 the real or proper time τ flows more slowly than the absolute, 

universal or coordinate time t = (x
o
/c) which is measured in absence of 

gravitational fields.                                                                                         

 In the Newtonian approximation, according to Section 5, goo in 

would be given by goo = (1-2χ /r) = 1 + 2Φ/c
2
 ≈ 1 - 2GM/rc

2
. If, for one is 

measuring the time fixed on the Earth surface, taking G ~ 6,7 10
-11 

MKS,   

M ~ 6 10
24

 kg, r ~ 6,4 10
6
 m and c ~3 10

8
 m/s using (8.a.4) he will see that                  

τ/t ~ 1-10
-10

. That is, the time measured on the earth flows more slowly 

than the time measured in absence of the gravitational field. 

  Time Synchronization.                                                                                              

  Now let us present the notion of Simultaneity in GR. That is, let us 

see if it is possible to synchronize watches that are in two different points 

of the space, in other words, to obtain a correspondence between their 

indications. Let us consider the general case when the metric tensor 

depends on the time coordinate x
o 
. Such synchronization must be done, 

evidently, by an exchange of  luminous signals between these two points. 

To do this let us consider the process of  propagation of light signals 

between two infinitelly close points A and B represented by Figure 3. If xo 

is the time of arrival of the signal in A, the moments of its departure from B 

and its arrival in B will be, respectively, xo + dxo
(1)

 and xo + dxo
(2)

.   

 

Figure 3.Propagation of ligth signals between two infinitesimally close points A and B. 

  In Figure 3 the parallel straight lines represent the universe lines 

corresponding to the coordinates x
α
 and  x

α
 + dx

α
 , and the dotted sections 

represent the universe lines of the luminous signals(to simplify we can 

suppose that dxo
(1)

 < 0 and dxo
(2)

 > 0). Putting  - ds
2
 = gαβ dx

α
dx

β
 + 2goα 

goodx
o
dxα  + goodxo

2 
 we have  

                   dxo
(1)

 = -{ goαdx
α
 - [(goα goβ - gαβgoo) dx

α
dx

β
]

1/2 
}/goo 
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                    dxo
(2)

 = -{ goαdx
α
 +[(goα goβ - gαβgoo) dx

α
dx

β
]

1/2 
}/goo          (8.a.5) 

It is clear that the total lapse of "time" between the emission and the return 

of the signal to the same point B is equal to 

                    dxo
(2)

 - dxo
(1)

 = -(2/goo) [(goα goβ - gαβgoo) dx
α
dx

β
]

1/2
       ( 8.a.6). 

Let us stipulate as simultaneous with the instant x
o
 at the point A the 

indication χ
o
 of the clock at B located at the half of the instants of emission 

and return of the signal in this point, that is  

                    χ
o
(B) = x

o
 + Δx

o
 = x

o
(A) + (1/2)[dxo

(2)
 + dxo

(1)
]            (8.a.7). 

In other words, χ
o
(B) is "simultaneous" with x

o
(A). Using (8.a.6) we obtain  

                                            Δx
o
 = - goαdx

α
/goo                                                       (8.a.8), 

which is the "time" difference between two simultaneous events happening 

at points  infinitesimally distant A and B. Since t = cx
o
  (8.a.7) can also be 

written, according to Einstein, as  

                      t(B) =  t1
A 

+ (t2
A
 - t1

A
)/2   =   (t2

A
 + t1

A
)/2                      (8.a.9), 

where    t2
A
 = c(x

o
 + dxo

(2)
)  and  t1

A
 = c(x

o
 - dxo

(1)
).   

 In stationary fields that is, when the metric tensor depends on the 

coordinate time x
o
 the clocks synchronization in all space is impossible. 

For static fields, that is, when the metric is time independent this is 

possible. In this case, using (8.a.8), we can determine the simultaneity of 

two events performing the integration   

                                                                          
                                                                                                  (8.a.10). 

In stationary fields is possible to synchronize clocks only along a closed 

path, returning to the initial starting point, obtaining the time difference Δt  

by the cyclic integration
[1]

 of (8.a.10): 

                                                                               

                                                                                                  (8.a.11). 
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In particular, in the case of a rotating coordinate system, taking into 

account the metric given by (7.1.b4), we have, 

                                 Δt = (1/c
2
)∫ ωρ

2
dφ /(1-ω

2
ρ

2
/c

2
 )                     (8.a.12).                               

(8.b) Real Spatial distances.
                                                                                                                                            

 
In SR one can define the element dℓ of real spatial distance as the 

interval between two events spatially close dx
σ
 (σ =1,2,3) happening at the 

same "instant" x
o
, that is, putting dx

o
 = 0 in  - ds

2
 = gλν dx

λ
dx

ν
.  In GR it 

cannot in general be done because the proper time in a gravitational field is 

differently connected with the coordinate x
o
  in different points of the 

space, according to (8.a.1) and (8.a.2).  The calculation of the element dℓ 

is given, for instance, by 
[1,10]

 

                    dℓ
2
 = γαβ dx

α
dx

β
     and     γαβ = gαβ - (goα goβ)/goo           (8.b.1), 

where in the product  dx
α
dx

β
 we have only α and β = 1,2,3. That is, 

temporal components do not contribute.                                                                                  

Example. Cylindrical Coordinates Rotation.                                                      

 Using the cylindrical metric shown in Section 7 and (8.b.1) we get 

         ds
2
 = -(1 - χ

2
)dxo

2 
+ dx1

2 
+ (2ρχ)dx2dxo + x1

2
dx2

2
 + dx3

2
           (8.b.2), 

where ct = xo, ρ = x1, φ = x2  e z = x3 and  χ = ωρ/c. Since the product 

dx2dxo are not taken into account we have the non null terms: 

          goo = -(1 - χ
2
),  g11= grr = 1, g22 = gφφ =  ρ

2 
 and  g33 = gzz = 1.          

In this way, from γαβ = gαβ - (goα goβ)/goo   we get γ11 = g11-(go1 go1)/goo= 1,    

γ22 = g22-(go2 go2)/goo=   ρ
2
/(1 - χ

2
)  and γ33 = g33-(go3 go3)/goo = 1.  So,                                                 

dℓ
2
 =  γ11 dx

1
dx

1 
+  γ22 dx

2
dx

2 
+  γ33 dx

3
dx

3
  = dρ

2
 + dz

2
 + γ22 dφ

2
.  

Finally, we can write 

                           dℓ
2
 = dρ

2
 + dz

2
 +  ρ

2
dφ

2
/(1 - ω

2
ρ

2
/c

2
)                     (8.b.3).  

From (Bb.3) we see that the "real" circumference of a circle with radius ρ is       

                                   ℓ = 2πρ/(1 - ω
2
ρ

2
/c

2
)

1/2    
>  2πρ                       (8.b.4),  
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where  2πρ is the circumference measured by one that is not in the rotating 

system. So, if one fixed on the Earth is measuring the circumference of the 

equator, putting  ρ ~ 6.300 km, c ~ 300.000 km/s , ω = 2π/T and T = 24 h ~ 

9 10
4
s   will verify that ℓ/2πρ = 1/(1 - ω

2
ρ

2
/c

2
)

1/2
  ~ 1+10

-13
. 

 

Appendix A. Curvature Tensor and Space Curvature.                                            
 In GR there are two important tensors, one of rank four R

σ
λνμ called 

Riemann-Christoffel tensor and another of rank two R λμ named Ricci 
tensor. The first one is defined by 

           R
σ

λνμ = ∂(Γλν
σ
)/∂x

μ
 - ∂(Γλμ

σ
)/∂x

ν  
+ (Γλν

τ
)(Γμτ

σ
) - (Γλν

τ
)(Γτν

σ
)    (A.1) 

and the second one obtained by index contraction of (A.1): 

            R λμ
  
= ∂(Γλσ

σ
)/∂x

μ
 - ∂(Γλμ

σ
)/∂x

σ  
+ (Γλσ

τ
)(Γμτ

σ
) - (Γλν

τ
)(Γτσ

σ
)    (A.2).  

The Riemann-Christoffel tensor (A.1) is known as the curvature tensor and 

the scalar           

                                                 R
λλ

 = g
λσ

 Rσλ
                                                                 

(A.3) 

is named curvature invariant. It measures a property of the Riemannian 

space that it is analogous to the curvature of a 2-dim surface described by 

(2.1.5) ds
2
 = a

2
(dθ

2
 + sin

2
θ dφ

2
). Putting θ = x

1 
and φ

  
= x

2
 we verify that

[3,10]
 

                                                    R
λλ

 = - 2/a
2
                                       (A.4). 

As the Gaussian curvature 
[3,10]

 of a sphere of radius a is known to be 1/a
2
 

we verify that (A.4) shows that curvature invariant R
λλ

 is proportional to 

the Gaussian curvature. Note that when the space dimension is larger than 

2-dim the relationship of these tensors to the "curvature" of the space is 

even more remote.                                                                                                                           

 In certain Riemannian spaces of n-dim it is possible to find a 

coordinate-system (X) covering all the points of the space, in terms of 

which the metric becomes  

                                                ds
2
 =  ∑λ ελ(dX

λ
)

2                                                  
(A.5)

                                                                                  
 

where the ελ are positive or negative constants. In these conditions one can 

show
[3]

 that
 
(A.1), (A.2) and (A.3) are equal to zero. Such spaces are flat by 

analogy with the Euclidean space whose metric is of the type (A.5) when 

Cartesian coordinates are used.                                                                                                     

 In a flat space one has necessarily R
σ

λνμ
 
= 0. It is possible to show the 

converse; if R
σ

λνμ
 
= 0 throughout the space, then the space is flat. In other 

words, the  space is flat if the curvature tensor R
σ

λνμ is zero. 
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Appendix B. Absolute Differentiation, Covariant Derivative 

and Geodesics. 

(B.1) Absolute Differentiation.                                                                    

 The absolute differentiation
[1-3,5,8,11] 

of a vector field A
μ
, for instance, 

is denoted by the symbol D defined by the operation  

                                           DA
μ  

= dA
μ
  +  Γλν

τ 
A

λ
 dx

ν
                                 (B.1.1), 

where d is the ordinary differentiation.                                                                   

(B.2) Covariant Derivative.                                                                                      

 The covariant derivative along a curve  is defined by  

              DA
μ
/Dτ ≡ A

μ
; ν (dx

ν
/dτ) = dA

μ
/dτ +  Γλν

τ 
A

λ
 (dx

ν
/dτ)             (B.2.1), 

which is a vector because it is a product of the tensor  A
μ

; ν and the vector 

(dx
ν
/dτ). Note that  dA

μ
/dτ is not a vector.

[2]                                                                                     

  
Along a geodesic the velocity field v

μ
 = dx

μ
/dτ which is tangent to 

the curve in each point obeys the equation 

   d
2
x

μ
/dτ

2
 +  Γλν

τ 
(dx

λ
/dτ) (dx

ν
/dτ)  = 0,  that is,  

 dv
μ
/dτ  +  Γλν

τ 
v

λ
 v

ν
  = 0   

This implies, using (B.2.1), that  

                                                  Dv
μ
/dτ = 0                                      (B.2.2), 

that is, one verifies that along a geodesic v
μ
 = constant. Note that in a 

Riemannian space ("curve") as Γλν
τ
 ≠ 0 a particle even in absence of a 

physical interaction has inertial accelerations[see Section 7].                                   

 For flat spaces found in Special Relativity(SR) a free particle, not 

submitted to external forces, moves along a geodesic ("straight line") with 

constant velocity v
μ
 and null acceleration d

2
v

μ
/dt

2
.  As a null geodesic in 

Minkowski Space  (MS) is given by ds
2
 = (dx

4
)

2
 - (dr)

2
  = 0 we get (dr/dt)

2
  

=  v
2
 = c

2
, showing that it represents the history of a light ray motion.                                  

 In GR in an obvious generalization of the SR, it is postulated that a 

free particle describes a geodesic. The hypothesis that free particles 

describe geodesics is called Geodesic Principle and corresponds to an 

extension of the Inertia Principle of Galileo.  In fact in GR the "free 
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particle" is immersed in a Riemannian geometry dictated by a gravitational 

field. The interaction is "substituted" by the geometry.  

Appendix C. Spacetime Intervals and Vectors.                                                                    

 In Euclidean space  the separation between two points is measured 

by the distance between two points. This distance is purely spatial and is 

always positive. In a Riemannian spacetime the separation between two 

events takes into account not only the spatial separation between the events 

but also their temporal separation. In this case, between two events, we 

have spacelike intervals that are defined taking into account the metric  

                                          ds
2
 = gμν

 
dx

μ
dx

ν
                                         (C.1). 

(a) ds
2
 < 0    →   Timelike interval.                                                                               

 In Minkowski spacetime we have c
2
∆t

2
 > ∆r

2
. For two events 

separated by a timelike interval there is enough time between them to exist 

a cause-effect relationship between them.                     

(b) ds
2
 > 0    →   Spacelike interval.                                                                      

 In Minkowski spacetime we have c
2
∆t

2
 < ∆r

2
.  When a spacelike 

interval separates two events there is no enough time between their 

occurrences that can be explained as being created by a causal relationship 

crossing the spatial distance between the two events with the speed of light 

or slower.                                                                                                                            

(c) ds = 0   →    Lightlike interval or null interval.                                                           

 In Minkowski spacetime c
2
∆t

2
 = ∆r

2
.  In lightlike interval the spatial 

distance between two events is exactly the time interval elapsed between 

the two events. Events connected by photons have lightlike or null  

intervals.                                                                                                          

Vectors.                                                                                                                 

 In Riemannian spacetime a vector q
λ
  is defined as timelike, spacelike 

or null if the following conditions are, respectively, obeyed
[8]                   

                                                                                                               

                                      gλν(x) q
λ 
q

ν 
 <  0 , > 0  or  = 0.   
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 Appendix D. Paths of particles moving in the vicinity of spherical 

massive objects using Lagrangian formalism.                                            

 As seen in Section (3.4) the path of massive particles and photons 

described, respectively, by timelike and null geodesics can be obtained 

using the Lagragian formalism. This is done solving the Euler-Lagrange 

equations                                                                                                      

                              d(∂L/∂ӿ
μ
)/ds - ∂L/∂ӿ

μ
 = 0                              (D.1), 

 where   x
α
 = x

α
(u),  ӿ

α
 =  dx

α
/ds and  

                                                                                                                                   

              L(ӿ
α
, x

α
) ≡ (1/2)gμν(x

α
) (dx

μ
/ds) (dx

ν
/ds)               (D.2).  

                                                                                                                             

 Solving (D.1) let us see how to determine the motion of massive 

particles and of photons in the vicinity of a spherical massive object. 

Following Sec. 5 the metric for a spherical object with mass M is the SM 

ds
2
 that in spherical polar coordinates (r, θ, φ) is given by 

                      ds
2
 = (1-2χ /r) c

2
dt

2
 - dr

2
/ (1-2χ/r) - r

2
dθ

2
 - r

2
sin

2
θd

2
φ      (D.3),  

where χ = GM/c
2
, x

o
 = t,  x

1
 = r, x

2
= θ  and x

3
 = φ. 

(D.a) Massive Particle.                                                                                  

 Taking into account the metric (D.3) one can show that the 

Lagrangian (D.2) becomes written as
[8]

  

L(ӿ
α
, x

α
) = (1/2){ c

2
(1-2χ/r)(dt/ds)

2
 - (1-2χ/r)

-1 
(dr/ds)

2 
- r

2
[(dθ/ds)

2 
+ (dφ/ds)

2 
sin

2
θ

 
}  (D.a.1). 

  Because of the spherical symmetry, there is no loss of generality in 

confining our attention to particles moving in the "equatorial plane" with    

θ = π/2. In this case (D.a.1) is simplified and for  μ = 2, that is, x
2
= θ  we 

get from (D.1) and (D.a.1), 

           F(r)
-1

(d
2
r/ds

2
) + (mc

2
/r

2
)(dt/ds)

2 
- F(r)

-2
(m/r

2
)(dr/ds)

2
 - r(dφ/ds)

 2
  = 0, (D.a.2) 

where F(r) = (1-2χ /r). 

 Since t and φ are cyclic coordinates we get from (D.1), putting                   

t
+
 = dt/dτ  and  φ

+
 = dφ/dτ :  

                            ∂L/∂t
+
 = const     and     ∂L/∂φ

+
 = const                 (D.a.3).  

With (D.a.3) and θ = π/2 in (D.a.2) we obtain    

                           (1-2χ /r) t
+
 = k          and           r

2
 φ

+
 =  h                 (D.a.4), 

where k and h are integration constants. The first one gives the relation 

between the coordinate time t and the proper time τ and the second one is 
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analogous to the equation of angular motion conservation. We have from 

(D.3) with θ = π/2: 

                                    c
2
F(r)t

+2
 - F(r)

-1
r

+2
 - r

2
 φ

+2 
= c

2
                         (D.a.5), 

which is much less complicated than (D.5) and yields an equation 

analogous that expressing the energy conservation. Indeed, taking into 

account (D.a.4) we obtain, putting u =1/r and where E =c
2
(k

2
-1)/h

2
:
[8]

 

                            (du/dφ)
2
 + u

2
 = E + (2MG/h

2
)u + (2GM/c

2
)u

3
        (D.a.6). 

 The analogous Newtonian equation which is given by 

                                        (du/dφ)
2
 + u

2
 = E + (2MG/h

2
)u                   (D.a.7), 

where h = r
2
(dφ/dt) is the angular momentum per unit of mass has a well 

known solution 
[8,9]

  

                                  u = 1/r = (GM/h
2
)[1 + e cos(φ - φo)]. 

 The general relativistic effect introduced by the cubic term u
3
 in 

planetary motion in (D.a.6) is analyzed in reference 8 (pag.144-146). 

Vertical Free-Fall.                                                                                                      

 In this case φ = constant, thus from (D.a.6) → φ
+
 = 0 → h = 0. In this 

way putting  φ
+
 = 0  and  (1-2χ /r) t

+
 = k in  (D.a.5) we obtain, 

                                         r
+2

 - ck
2
 +c

2
(1-2χ/r) = 0                              (D.a.8). 

If  the particle is at rest (r
+
 = 0) when r = ro

 
 → k

2
 = 1- 2χ/ro, showing that k 

is not an universal constant, but depends on ro, that is, on the geodesic. In 

particular, if r
+
 → 0 when r → ∞ , then k = 1.                                              

 Differentiating (D.a.8) we get, 

                                                      r
++

 + GM/r
2
  = 0                             (D.a.9). 

This equation has the same form ( d
2
r/dt

2
 + GM/r

2
 = 0) as that found in the 

Newtonian approach; remembering that in (D.a.9) the coordinate r is not 

the vertical distance and the derivative r
++ 

 is with respect of the proper 

time τ of the particle in motion, not the universal time t.                         

 Putting k
2
 = 1- 2χ/ro in (D.a.8) we obtain              

                                            r
+2

/2 = MG(1/r - 1/ro)                              (D.a.10) 

which is "similar" to that in the Newtonian theory. Integrating (D.a.10) 

assuming that ro is the initial coordinate of particle at τ = 0 we can calculate 

the proper time τ experienced by the particle in falling from ro up to r : 

                                t = (1/ 2GM) [r0r/(
r

r0

ò r0 - r)]1/2dr                           (D.a.11).  

It permit us to establish the relation r = r(τ).  To obtain r = r(t) we take into 

account dt/dr = (dt/dτ)/(dτ/dt) with (D.a.4), 
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                                dt/dτ = k/(1 - 2χ/r) = (1-2χ/ro)
1/2

/(1 - 2χ/r). 

and with (D.a.10) getting, with χ = GM/c
2
: 

         ν(t) ≡ dr/dt = -[r
3/2

(ro - 2m)
1/2

]/{c(2m)
1/2

 (r - 2m)(ro - r)
1/2

}     (D.a.12) 

 The way in which the coordinate time t depends on r  for a radially 

falling particle becomes more comprehensible if, considering for simplicity 

that it is at rest at infinity ro →∞, we compare its coordinate speed, 
obtained from (D.a.12),  

                                v(r) = |dr/dt| = (2mc
2
)

1/2
(r - 2m)/r

3/2
 

 with the classical Newtonian speed
[9]

  

                                             vc(r) =  √2mc
2
/r

1/2
.                                                     

This difference is clearly seen in Figure (D.1). 

 
Fig.(D.1). Comparison of the coordinate speed v(r) with the classical Newtonian speed vc(r) for 

a particle falling from rest at infinite. 

 

Motion in a circle.
[8]     

                                                                                                                    

 For a circular motion in the equatorial plane we have r = const and, 

consequently, r
+
 = r

++
 = 0. Equation (D.a.2) then reduces to 

                    mc
2
t
+2

 = r
3
 φ

+2
           giving           (dφ/dt)

2
 = GM/r

3
   (D.a.13) 

From (D.a.13) we see that for Δφ = 2π the coordinate time Δt for a 

complete revolution is given by 

                                               Δt = 2π(r
3
/GM)

1/2
                              (D.a.14).  

 This expression is exactly the same as the Newtonian expression for the 

period of a circular orbit of radius r, that is, Kepler´s third law. However, in 

the relativist case we cannot say that r is the radius of the orbit, but we see 

that the spatial distance traveled in one complete revolution is 2πr, just as 

in the Newtonian case. 
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Fig.(D.1). Spacetime diagram shown a circular orbit as viewef by a fixed observer at r = ro. 

Fig.(D.1) is a space time diagram illustrating one complete revolution as 

viewed by an observer fixed at a point r = ro. B1 is the event observed when 

the particle is at the start point of orbit at A1 , while B2 is that of his viewing 

its completion at A2. If the coordinate time difference between A1 and A2 is 

Δt  the coordinate time difference between B1 and B2 is also Δt , according 

to (5.3.14). So, the proper time Δτo which the observer measures for the 

orbital period Δt is given by  

                                            Δτo = (1-2χ /ro)
1/2 

Δt                             (D.a.15). 

As ro →∞, Δτo →∞, so Δt is the orbital period as measured by an observer 

at infinity. So, as Δt is directly observed, according to (D.a.14) the 

coordinate r also could be measured if the mass M is known.                              

 Now, let us determine the proper lapse of time  measured by an 

observer moving with the rotating particle A. In this case the relationship 

between t and τ is obtained using (D.a.4) and (D.a.13).  So,  

                                        t
+2

 = k
2
r

2
/(r - 2χ)

2
        [a]                               and     

                                  φ
+2

 = mc
2
t
+2

/r
3 
= mc

2
k

2
/[r (r-2χ)

2
]   [b]            (D.a.16). 

 Substituting (D.a.16) [a] in (D.a.5) and putting r
+
 = 0, since now the 

observer moves in a circle, we obtain  

                                             k
2
 = (r-2χ)

2
/[r(r - 3χ)]                           (D.a.18).                                                  

Putting this k
2
 in (1-2χ /r) t

+
 = k, given by (D.a.4), we get, as t

+ 
= dt/dτ: 

Δτ = (1-2χ/r) k
-1

Δt  = [(r-3χ)/r]
1/2

 Δt = 2π{(r
3
/MG) (1-3MG/rc

2
)}

1/2
 (D.a.19). 

 This equation shows that we can have circular orbits  only for  k
2
 > 0, 

that is, only when r  > 3χ = 3GM/c
2
. In the limit r → 3χ, Δτ → 0, 

suggesting that photons can orbit at r = 3χ .This indeed occurs(see reference
[8]

). 
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Appendix E. Length and Time in Schwarzschild Spacetime(SST). 

 The SST has the line element given by, with  χ = 2M/c
2
: 

         ds
2
 = c

2
dτ

2
 = (1-2χ /r) c

2
dt

2
 - dr

2
/ (1-2χ/r) - r

2
dθ

2
 - r

2
sin

2
θd

2
φ      (E.1). 

If we take a slice given by t = constant we obtain a 3-dim manifold. Putting 

the line element                                                                                                                 

 ds
2
 = g*ijdx

i
dx

j 
   (i,j = 1,2,3, x

1
= r, x

2
= θ, x

3
 = φ ),    g*ij

  
= - gij

 
 (E.2), 

describing a slice which is a space rather than a spacetime. As g*ij is time 

independent we can observe two events at the same point in space 

occurring at different times. When M = 0 the line element (E.1) describes a 

flat spacetime, while the line element (E.2) describes the Euclidean flat 

space in spherical coordinates according to (2.1.4).                                            

 What about radial distances given by θ and φ constants? The line 

element (E.1) shows that for these infinitesimal radial distance dR is given 

by  dR ≡ dr/(1-2χ/r)
1/2

 , so dR > dr and r no longer measures radial 

distances. Not even the origin of the r coordinates can be defined!   
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