
 

 
 
  
 
 

Heat, the Key to Understanding the 
Quantum 

 
 
  

 Claudio Zamitti Mammana 
 
 

Publicação IF 1712 
10/12/2018 



Heat, the Key to Understanding the Quantum

Claudio Zamitti Mammana
Institute of Physics — University of São Paulo, Brazil

claudio.mammana@yahoo.com.br

December 10, 2018



2



3

Summary

The dynamics of the phase transition processes that occur in the vapor state
of a pure simple substance is here addressed by resuming the research pro-
gram proposed in 1876 by A. Bartoli. It allows derive the Kinetic Theory
of an abstract thermodynamic system (the Perfect Vapor) composed of a
large number of atoms and molecules (as conceived by the current tenets of
chemistry) moving under the taut constraints imposed by special relativity,
|v| ≤ c, and the quantum conditions, |∆p∆q| ≥ h.

Such theory reveals the precedence of special relativity over the foundations
of quantum mechanics, thereby unveiling the elementary non-conservative
forces involved in chemical reactions, and providing a first principles ex-
planation of the time asymmetry of natural processes. Besides superseding
the whole of statistical mechanics, it is shown to add the missing link re-
quired to complete the epistemological chain that connects thermodynamics
to quantum mechanics.
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Chapter 1

Introduction

There is no branch of mathematics, however abstract, which
may not some day be applied to phenomena of the real world.

Lobachevsky

Numbers are mental abstractions which were early proven useful in everyday
life: the notions of the magnitudes of length, area, or volume, give concretion to
what can be universally understood as reality. With the invention of measuring
instruments, different individuals can obtain the same numbers for the same mag-
nitudes. A measurement is a procedure that, once established in a community,
as much as words are established in its common language, give to different indi-
viduals the same numerical value measured. The operations of transposition and
substitution of numbers by algebra extended the scope of applications that can be
used to describe a larger variety of phenomena.

Numbers, the carriers of scientific knowledge
History has shown that the capacity of predicting phenomena became the main
social function of scientific knowledge. Scientific theories are made by humans
for humans. Civilized societies invented media and methods to communicate to
future generations the past knowledge both to preserve and improve it by promot-
ing the intellectual power of their members in the behalf of social and economic
organization.

Although prone to ambiguities, context-sensitivity, or imprecision, natural
language is the main carrier of knowledge in these communication processes.
Its weaknesses might be graceful for poets, a curse for scientists, or powerful
weapons for sophistic propaganda. Injudicious or malicious use of words might
be misleading or harmful to society.

Among the main interests of mathematicians there is the need to improve the
quality and precision of communication. This has been achieved by inventing a
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special language whose vocabulary and grammar are artificially designed. From
its origins, numbers have been the universal carriers of “reality”, which allowed
humans to share their knowledge with their contemporaries and perpetuate it to
future generations.

Abstraction — that “distillation” process by whose means one gets rid of
all the superfluous elements of speech until irreducible essential sentences are
achieved — has been a persistent target aimed by mathematicians in history, which
culminates in the extreme definition, thus expressed by Bertrand Russell:

“Mathematics may be defined as the subject in which we never know what
we are talking about, nor whether what we are saying is true.”

Treating Russell’s aphorism as a joke, the French mathematician Émile Borel
argued [1]:

Cette boutade de Bertrand Russell tend à mettre en évidence le rôle fonda-
mental que jouent en mathématiques les définitions arbitraires. On pourrait
ailleurs dire tout aussi bien: “Les mathématiques sont la seule science où
l’on sait toujours exactement de quoi l’on parle et où l’on est certain que ce
que l’on dit est vrai.” En fait, si nous parlons des propriétés de la droite, le
mot ligne droite n’a pas le même sens dans la géométrie d’Euclide, de Rie-
mann ou de Lobatchefski; mais si la droite est conformément aux postulats
de telle ou telle géométrie, nous saurons exactement de qui nous parlons et
nous serons assurés de la vérité de tel ou tel théorème.

The importance to physical science of Borel’s objection to Russel’s aphorism
is in the imperative condition of being true he imposes on mathematical sen-
tences1. Although superfluous for abstract systems of pure mathematics, it is
essential for natural philosophy: while mathematicians are free to deal with any
universe they choose, physicists are condemned to treat of the particular universe
they live in.

If, in the communication of a theory, the emitter (an author, a speaker, or a
teacher) treats reality as superfluous in its formulation, it becomes very difficult,
if not impossible for the receiver to extract reality from it. Since a physical theory
is not mere algorithm of calculus2, it is a challenge for its emitter to provide the
information by whose means the receiver can recover the reality content that has

1True is an attribute of sentences, a logical property of a message. The meaning of a sentence
of a scientific theory must be shared by the community of Science speaking people.

2An algorithm can be arithmetic, geometric, algebraic, differential, integral or operational. In
scientific communication an algorithm is supposed to be performable by any science speaking
human, anytime, and anywhere, thereby endowed with the same communication universality and
reliability of numbers.
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been removed by distillation. Hence, such recovering process, usually referred to
as interpretation becomes indeterminate.

In the formulation of a physical theory it is essential to endow its fundamental
axioms with evidence, namely, the revelations obtained from the empirical pro-
cesses of observation and experimentation.

Quantum theory suffers from Russell’s syndrome
When we refer to wave functions, we never know what we are talking about, nor
whether what we are saying is true.

A retrospective look at the prehistory of quantum theory reveals that the treat-
ment of this disease was found by Bartoli, whose research program consists in
applying Borel’s medicine: to replace the unsatisfactory definition of heat, given
by the first law of thermodynamics, by the more substantiated one, derived from
electromagnetic theory.

Bartoli research program

Taking into account the revelation by Maxwell that electromagnetic radiation has
the property of momentum, and thereby that radiation exerts pressure upon any
surface it is exposed to, A. Bartoli concluded to be theoretically cogent to replace
the notion of heat, as conceived by the first law of thermodynamics, by that given
by electromagnetic theory [2]. His new characterization of heat, which literally
redefines thermodynamics, can then be summarized as follows:

§ 1 (Bartoli Redefinition of Heat)
Thermal radiation is both a Bernoulli’s discrete fluid, and a thermodynamic sys-
tem.

From this definition the following corollary derives:

If constrained to undergo a Carnot’s cycle, radiation will exhibit its thermo-
dynamic properties and behavior.

This corollary can be demonstrated by thermodynamic arguments applied to
the following imaginary experimental arrangement, designated by hollow:

A hollow is a completely enclosed space empty of all ordinary matter and
traversed by (electromagnetic) radiation energy. [3].
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It was this corollary which allowed Boltzmann to derive Stefan’s law of radi-
ation, used by Planck in his formulation of the quantum hypothesis. It also leads
to the following thermodynamic formula that relates the radiation energy to its
pressure,

E = 3pV. (1.1)

Heat is a fundamental element of a theory of matter
Bartoli’s program significantly improved the explanatory and predictive power
of thermodynamics. In spite of its importance to the epistemology of modern
physics3, specially in the revelation of the thermodynamic properties of radiation,
it was inexplicably interrupted thereafter, and sunk into oblivion.

By thus reviewing the notion of heat, which adds momentum to its charac-
terization, Bartoli program restates thermodynamics as the first Theory of Matter-
Radiation Interaction, thus throwing some light on the interpretations of the quan-
tum theories of radiation proposed later by Einstein and Dirac4.

Revisiting the many inquiries on science of matter, specially in the chapters
scattered by in the good text-books of physical-chemistry, we are persuaded that
the underlying notion which pervades them is that of heat, and suggested to for-
mulate the following conjecture:

Heat is the key to understanding modern physics, namely, special relativity
and quantum mechanics.

The wave function of any molecule of a chemical substance is, itself, a func-
tion of the thermodynamic properties. Hence, its quantum description is
incomplete unless the environment that contextualizes the whole system is
completely specified.

Bernoulli’s discrete fluid
Before proceeding with this Introduction, it is worthwhile recalling the notion of
discrete fluid.

By showing that the mechanical pressure of air can be explained in terms
of the impact of a system of particles in rapid motion against the walls of the
container it is confined within, D. Bernoulli suggested the equivalence between
such mechanical system and the air. This explanation leads to the following model
of the gas:

3It is remarkable the relativistic nature of the phase space of the perfect vapor, as shown in
Sections 4.2.1 and 4.3.1.

4This issue will be discussed in Section 4.2.
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§ 2 (The Discrete Fluid)
A gas is a system composed of a number N � 1 of identical particles with mass
m, endowed with Newtonian degrees of freedom, namely, positions and velocities,
moving inside a container of volume V .

The energy E of the discrete fluid was then shown to be given by the equation:

E =
3
2

pV. (1.2)

It is presumable that among the scientists of Bernoulli’s time, many expected
that the success of Newtonian mechanics in previewing the motion of certain sys-
tems of bodies5 could be extended to predict the time evolution of the state of
gases. This expectation led to a research program that can be thus formulated:

§ 3 To derive the laws of thermodynamics from the mechanics of the discrete fluid.

It is therefore justified to consider Bernoulli’s model of the gas as the first
promising attempt to establish a mechanical explanation of thermodynamic phe-
nomena that is in the origins of the Kinetic Theory of Gases.

In Appendix A, some notions raised during the attempts to formulate a strictly
classical kinetic theory of gases, which are important to the present ap-
proach, are reviewed.

In Section 4.2.1 it will be shown that the mechanics referred to in § 3 is not
classical, but relativistic.

The intentional exclusion of radiation by Newton
The limitations that prevent the classical approach to Bernoulli’s model to preview
the thermodynamic properties of the gas in terms of classical mechanics can be
found in the Definition I of Newton’s Principia:

§ 4 (. . . ) I have no regard in this place to a medium, if any such there is, that
freely pervades the interstices between the parts of the bodies. (. . . )

It is accepted nowadays that this medium6, identified with thermal radiation,
is something that not only pervades the interstices between the parts of the bod-
ies, but also, even inside a thermodynamic isolated system, interacts with them.
Hence, to apply classical mechanics to explain the behavior of a thermodynamic
system, certain amendments to its foundations are required, specially the recogni-
tion that its particles must be susceptible to heat radiation.

5This expectation persisted despite the formulation of the Lunar Theory, whose difficulties
were well-known at the times of Euler [5].

6Once we realize that the space where the bodies move in is Minkowskian, the very notion of
radiation must be reviewed.
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Overview of the present approach
Besides seeking for the solution of proposition § 3, I decided inquiring also about
the following complementary proposition:

§ 5 To endow the mechanical model of a chemical substance with thermodynamic
faculties.

By subjecting the equations (1.1) and (1.2) to the constraints imposed by the
second law, we obtain functional correlations that characterize the thermodynamic
properties of the discrete fluid, thus revealing the differences between the gas
of Planck resonators (black-body radiation), and the perfect vapor, composed of
material atoms and molecules.

For pedagogical purposes, let us pretend rename Electrothermodynamics Bar-
toli’s version of thermodynamics restated by Bartoli. In resuming his program
we are then naturally suggested to rename its corresponding Kinetic Theory after
the title given by Einstein to his first paper on special relativity, namely, On the
Electrodynamics of Moving Bodies. With this metaphor, we can state one of our
main propositions:

§ 6 To show that, in the epistemological order of its formulation, quantum theory
must be preceded by special relativity.

It will also be shown why the corresponding kinetic theoretical representation
of Bartoli thermodynamics requires a departure from the current tenets of sta-
tistical mechanics, and its replacement by a stochastic mechanics7, which might
sound heretical to the current canonic theory of quanta.

A quantum-relativistic kinetic theory
Once revealed that the mechanical representation of thermodynamic transforma-
tions are relativistic, we proceed in seeking for the solution of the following propo-
sition:

§ 7 (Taut Constraints)
To determine the laws of motion of the molecules of a chemical substance subject
to two taut constraints, namely, |v| ≤ c, imposed by special relativity, and the
quantum conditions, ∆p∆q≥ h.

7Stochastic here refers to time dependent evolution of the probability distribution functions of
population numbers, as opposed to equilibrium characterized by stationary, time invariant, statis-
tics.
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Amendment to quantum axioms
Suffering of acquired Russell’s syndrome, the current formulation of the Axiom 3
does not specify which are the natural procedures that lead a dynamic variable of
a system to one of its eigen-values. It postulates that this value becomes defined
as a consequence of an artificial procedure identified with the measurement of a
supposedly persistent degree of freedom.

This freedom of choice allows select, arbitrarily, the most convenient artificial
procedure for calculus, thus introducing speculative noise in the unnatural formu-
lation of some axioms of quantum theory, and in the foundational principles of
statistical mechanics.

Time dependent probabilities
It is remarkable that quantum mechanics, itself, allows determine the conditional
probabilities characteristic of the creation and annihilation processes, which, in
their turn, will be shown to derive from their interaction with radiation.

In concrete instances, the factorization of the wave function [6],

Ψ(x, t) = ψ(x)ϕ(t),

of an ideal gas, allows give different, separate, physical meanings to the functions
ψ(x) and ϕ(t).

In a previous paper [7], I replaced the meaning currently given to the time
variable, which is incompatible with the predictions of the second law of thermo-
dynamics, by the Minkowskian one, based on the revelation that the nature of the
ladder operators8 is relativistic. Such uncoupling of the wave function allows rec-
ognize in the automorphism9 expressed in the Amplitude Schrödinger Equation
ψ(x), a rigorous definition of an equilibrium condition.

Without denying the practical importance of having artificial algorithms des-
tined for the calculation by humans, to correctly interpret quantum theory, it is
necessary to seek for the natural algorithm whose elementary spontaneous pro-
cesses conduct the system towards its final state of equilibrium.

This approach was shown to be successful in the derivation of time dependent
evolution of the Bose-Einstein and Fermi-Dirac occupation number from the rep-
resentation of the ladder operators in terms of the laws of change of Markovian
birth and death stochastic processes.

We will then assume that these eigen-values correspond to the equilibrium
state of a many-body system under the influence of an electromagnetic field10,

8To be justified later, in Section 4.2.1.
9See Section B.4.

10In the absence of a field, the wave function of the system is stationary.
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i.e., in a thermodynamic environment.
As opposed to the current tenets, it is here understood that this equilibrium is

attained, not as the result of a single step process, but, instead, only in the ther-
modynamic equilibrium, after the consummation of a large number of absorption-
emission elementary processes, described by the ladder operations, until its re-
laxation is attained. The system then proceeds fluctuating around one of these
eigen-values, in an equilibrium stable or metastable thermodynamic state.



Chapter 2

Thermodynamics of a Discrete Fluid

One of the preferred approaches to describe the discrete fluid in terms of thermo-
dynamic variables is to assume the Principle of Molecular Chaos. It requires the
knowledge of the average kinetic energy 〈E 〉 of the particles expressed in terms
of the temperature. The simplest way to obtain it is by substituting the product
pV in equation (1.2) by its corresponding value given by the Clapeyron ideal gas
law, pV = RT , giving [4],

〈E 〉= 3
2

NkT. (2.1)

Although suitable for the statistical description of the equilibrium state of the gas
at high temperatures and low densities1, this approach is a crude simplification of
the behavior of real gases, for it conceals the subtle effects of heat on the states
of motion of its particles, thus undermining the understanding of the phenomenon
and impoverishing its subsequent analyses.

Instead of assuming equation (2.1), I therefore preferred to adopt equations
(1.1) and (1.2) as the thermodynamic representatives of the discrete fluid, and
seek for their macroscopic properties, by subjecting them to the laws of thermo-
dynamics. For generality, we will consider the families of abstract substances
defined by the following generic equation,

E = κ pV, (κ is a rational number) (2.2)

as the representative of both these two families of gases.

2.1 The thermodynamic properties of a discrete fluid
To obtain the functional relations involving the thermodynamic variables of these
two families of discrete fluids under the constraints imposed by the second law,

1The molecular chaos approach is briefly reviewed in § 43 of the Appendix A.

16
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we subject equation (2.2) to the Maxwell relation2,(
∂E

∂V

)
T
= T

(
∂ p
∂T

)
V
− p. (2.3)

Substituting (2.2) in (2.3), we obtain the linear PDE of the first order,

T
(

∂ p
∂T

)
V
− 1

κ
V
(

∂ p
∂V

)
T
=

1
κ +1

p, (2.4)

whose solution is given by any of the following expressions,

z = Φp (T κV ) = ΦV

( p
T κ+1

)
= ΦT

[
pV (κ+1)/κ

]
, (2.5)

where z = pV/RT and Φp,ΦV ,ΦT are indeterminate functions. Some conse-
quences of this derivation follow:

§ 8 (The Discrete Fluid is a Two-Phase System)
Being z a function of a single variable, according to the phase rule, equations
(2.5) refer to a two-phases thermodynamic system.

Let us recall the following theorem3:

§ 9 (A) hollow, at a given temperature, constitutes a simple thermodynamic sys-
tem. If it is brought in contact with a heat reservoir of the same temperature, and
its volume is in some way increased or diminished, heat will be taken from or
given to the reservoir. The case is entirely analogous to a mixture of liquid and
vapor enclosed in a cylinder with a moving piston [3].

Theorem § 9 reveals that the discrete fluid exhibits condensation in equilib-
rium, a phenomenon previewed by Einstein for the gas of Bose particles4.

The following corollary holds for every substance:

§ 10 Any form of energy that depends exclusively on the temperature is discarded
in the evaluation of the left hand side of equation (2.3), no matter how important
it is to the heat capacity of the substance.

The following corollary derives from § 10:

§ 11 Being functions of temperature only, the molecular energies of rotation and
oscillation do not affect the equations of state (2.5).

2The conditions imposed on the gas here are essentially the same obtained by Clapeyron in
1834 to derive equation d p

dT = ∆H
T ∆V , known as the first physicochemical application of the second

law of thermodynamics [3].
3This theorem, was first stated by Planck in § 52 of [8].
4Consider the gaseous phase composed of electrons (fermions) removed by the photoelectric

effect from the phase containing the electrons moving inside a metal [9]
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2.1.1 The dimensionlessness requisite

Equations (2.5) give the arguments of the mathematically arbitrary functions Φp,
ΦV and ΦT , but not their functional forms. We have some reason to assume that
the argument of an arbitrary thermodynamic function cannot be dimensional: in
fact, if Φp happens to be, say, a non homogeneous function, Φp(x) = 1/(1− x),
and its argument x, a dimensional quantity such as length, then, in its power series
expansion, 1+ x+ x2 + . . ., the first term is the pure number 1; the second has
the dimension of length; the third the dimension of area; and so on. Whatever
unforeseen use one can find for such function, it does not fit the current standards
of thermodynamic practice. Hence, to assign a physical meaning to the argument
of Φp, we impose on it the dimensionlessness requisite.

In the formulation of his hypothesis of the quantum, Planck paid special
attention to Dimensional Analysis. With the universal constant h, required
by imposing the dimensionlessness requisite on the argument of Boltzmann
entropy, independently of its combinatorial character, Planck discovered the
possibility of establishing a (non-arbitrary) natural system of units5, that ac-
quired importance in cosmological theory, and is being increasingly adopted
by many theoretical physicists [10].

2.2 A family of abstract thermodynamic systems
In classical thermodynamics the entropy S of a simple pure substance is expressed
as a function S = F(E ,V,m) of three variables, namely, its energy E , the volume
V it occupies, and the amount of its substance, here represented by its mass m.

The Boltzmann principle of statistical mechanics, differently, states that the
entropy of a physical system in equilibrium depends solely on the (thermody-
namic) probability W , according to the formula S = k lnW . If statistical mechan-
ics fulfills the requirements to replace equilibrium thermodynamics in physical
theory, then these two entropies must be identical:

F(E ,V,m) = k lnW. (2.6)

Equation (2.6) cannot be solved unless a detailed microscopic description of
the substance is given in terms of the equilibrium occupancy number of quantum
states, which, in their turn, are expressed in terms of the quantities E ,V,m.

Notwithstanding the indeterminacy of the function F , Boltzmann’s definition
of entropy establishes that the quantity W is an integer pure number. We can then

5§164 of [8]
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conclude that the argument of F is correspondingly a single, dimensionless, quan-
tity. Hence, to assure mathematical consistency with the Boltzmann principle, we
impose on the argument of the function F the dimensionlessness requisite.

To treat our problem by the methods of classical thermodynamics, it is advis-
able to introduce the abstract prototype Θ of a family of thermodynamic systems,
whose entropy is given by the following definition,

§ 12 (The Family Θ of Thermodynamic Systems)
The entropy of a member of the family Θ of thermodynamic systems is given by a
function F(W ) of the single dimensionless quantity W, given by the monomial,

W = E χV β mγ
ς . (2.7)

where χ,β and γ are rational numbers, and ς is a dimensional constant, charac-
teristic of the system, that renders W dimensionless.

Once ς is fixed, the values of χ,β and γ can be obtained by the methods of Di-
mensional Analysis. According to the chain rule for derivatives, the fundamental
thermodynamic differential coefficients for the entropy give,(

∂S
∂E

)
V,m

= 1
T = χ

E WF ′ (W ) ,(
∂S
∂V

)
E ,m

= p
T = β

V WF ′ (W ) .
(2.8)

Dividing the latter by the former and adopting the notation κ = χ/β we obtain
the general energy law (2.2) of the members of the family Θ, that confirms that
radiation (a gas of Bose particles) and the gas of fermions are members of the
same family Θ.

The establishment of the functional form of the magnitude W in (2.7) cannot
be obtained by purely thermodynamic methods. This issue will be treated in
Chapters 8, and 9.

2.3 Ideal substances defined by universal constants
Although the quantity ς can be any physical constant, we will concentrate here on
the already known universal constants, and focus on those connected with ther-
modynamic phenomena, as revealed by the theories of thermal radiation, quan-
tum mechanics, and electromagnetism6, namely Planck’s constant h, the speed of
light c, and the charge of the electron e.

The family Θ defined by these constants can be subdivided into two main
groups, according to the dependence of entropy on the mass of the particles.

6Although the gravitational constant G can be included among the fundamental constants of
physics, considerations about gravitation are beyond the scope of this paper.
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2.3.1 Mass-independent entropy
Kirchhoff’s laws of black-body radiation and Wien’s Displacement Law con-
tributed to add spectroscopy to thermodynamics, which imposes the Frequency
Matching Principle7 to the analysis of matter-radiation phenomena.

Such revelation introduced another difficulty in the determination of the ther-
modynamic properties of chemical substances.

In a few cases of abstract substances, these properties could be derived from
the introduction of strongly simplifying hypotheses about their spectra, to
obtain their Partition Functions by the methods of Operational Calculus.

§ 13 (Mass Independent behavior)
It is known that the electric charge e is connected to the constant hc by the fine
structure constant α , so that we can write uhc = 2παue. The quantity uhc char-
acterizes a gas of massless particles (photons), and ue, a gas composed of elec-
trically charged particles whose behavior does not depend on their masses. Both
these gases lead to κ = 3.

The physical meaning of the fine structure constant is debatable. At least
empirically, it is calculated with remarkable precision by the methods of QED, so
to be safely acknowledged as a universal constant for practical purposes.

It is possible, however, to derive such constant from the following heuristic
analysis of the expected frontal collision of one electron against one proton caused
by Coulomb forces, that occurs at a supposedly distance λ between the particles,
as follows:

We can depict such collision as analogous to a reverse photoelectric effect.
It is described by an hydrogen ion absorbing an electron, thus acquiring
an energy P, concomitantly emitting a photon of wavelength λ . Comparing
the total energy of this process with the energy given by Coulomb’s law, we
obtain the value of hc in terms of the energies involved in the collision. Such
phenomenon cannot be derived from electromagnetic theory. Besides, the
resulting identity has the merit of revealing the existence of two elementary
electric charges, proportional to ±

√
hc.

The partition functions of these substances, hence, their entropies, are known
to be expressed in terms of a power series of the Boltzmann factor, e−ε`/kT , where
ε` denotes the element ` of the energy spectrum of the gas, expressed in terms of
its radiation spectrum wavelengths,

λ` ∝
3

√
V
N
. (2.9)

7To be introduced in Chapter 9.
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The lengths λ` were assumed by Wien in his derivation of the displacement law
to be integer divisors of the linear dimensions of the geometry of the container.

2.3.2 Mass-dependent entropy
Chemical reactions involve relativistic change on the masses of the particles of
reactants and products8. Mass relativistic variation occur in any system whose
entropy depends on the masses of its constitutive components.

Gases defined in terms of ς = h lead to κ = 3/2. It is not possible to render
dimensionless the argument T 3/2V of the function Φp in (2.5), unless we
have recourse to Planck’s constant. We therefore adopt the quantum magni-
tude,

θ =
h√

2mπkT
3

√
N
V
, (2.10)

where m is the mass of a molecule of the gas, and N is the number of
molecules of the substance contained in the volume V . The quantity θ can
be recognized as the cubic root of the degree of gas degeneration, which is
ubiquitous in statistical mechanics.

It will be shown that the behavior of these gases depends on the relativistic
variation of the masses of their particles, so that their thermodynamic functions
depend, not on the Boltzmann factor exp

(
− ε

kT

)
, as hitherto assumed by many

authors, but on the magnitude θ .

Although Gibbs adopted the mass as a measure of the quantity of matter in
each phase of heterogeneous substances [11], his successors adopted, as the
quantity of reactants and products in chemical reactions, the dimensionless
stoichiometric numbers, instead. The adoption of the latter option in the
definition § 12, has concealed the relativistic nature of chemical reactions.

Substances composed of electrically charged material particles might ex-
hibit a dual behavior, whether characterized by ς = e, or by ς = h. The
latter occurs when the laws that cause the changes on state of motion of the
particles are relativistic.

8While this fact has been long admitted in the treatises on chemistry, it has been neglected,
either due to the undetectable variation of mass, or due to the then unknown mechanisms of mass-
energy relativistic interconversion processes, previewed in Section 4.2.1.



Chapter 3

The Perfect Vapor

Introduction
Since, according to (Kirchhoff’s) law, we are free to choose any system

whatever, we now select from all possible emitting and absorbing
systems the simplest conceivable one, namely, one consisting of a

large number N of similar stationary oscillators (. . . ) [8]

It is important to emphasize that, in modeling the black-body radiation, the
selection of the system of resonators is not imperative. It was a mere choice made
by Planck to simplify the derivation of the chromatic distribution function.

In a certain sense, it was an unfortunate historical coincidence that the energy
distribution of photons is isomorphic to that of a system of Planck resonators1, for
it led several pioneers of quantum theory to confuse the distribution of energy by
atoms and molecules of a gas with that which holds for photons. This confusion is
still found in some formulations of the partition functions of real gases, and in the
incorrect adoption of Gibbs’ canonical ensembles approach to systems involving
relativistic phenomena, in particular, chemical reactions.

3.1 The Canonical distribution approach

Kinetic theory and statistical mechanics have been committed to the hypothesis
of the canonical distribution of internal energies, that assumes that the probability
pn, of finding a particle of a gas at temperature T with energy εn, is proportional

1In the first reading of Einstein’s 1917 paper, I became confused when I realized that he was
deriving, not the distribution of energy by the molecules of a chemical substance, but, instead, that
he was treating of the black-body radiation, itself.

22
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to the Boltzmann factor,

pn ∝ exp
(
−εn

kT

)
. (3.1)

The canonical distribution hypothesis owes its general acceptance to the many
cases in which the energy of the particles is potential, for instance, in the evalua-
tion of the atmospheric pressure, given by the formula (3.1), for εn = µgz, where
µ is the mass of the molecule, g is the acceleration of gravity and z is the height
above sea level.

Recall that in his derivation of the Stefan law, the working fluid that Boltzmann
submitted to a Carnot cycle, was not a chemical substance composed of atoms
and molecules, but a system of radiation particles [12], the same ”substance”
which led Wien to his displacement law expressed in terms of the Boltzmann
factors (3.1).

This hypothesis, however, does not hold when material particles (atoms and
molecules) exchange heat with the environment, a faculty necessary to properly
characterize thermodynamic and chemical systems.

3.1.1 The inadequacy of Gibbs’ ensembles approach

Recall also that Gibbs’ ensembles approach refers to the canonical distribution
hypothesis. Our objections to the usual justification given to that approach are
recorded in the two footnotes appended by me to the following citation:

From a quantum mechanical point of view, a closed system of n particles
is characterized by its energy levels En. Suppose that from the system we
single out a volume (subsystem) that can still be regarded as macroscopic.
The number of particles in such a subsystem is still very large, whereas the
interaction forces between the particles act at distances whose order of mag-
nitude is that of atomic dimensions. Therefore, apart from boundary effects2,
we can regard the subsystem itself as closed, and characterized by certain
energy levels3 (for a given number of particles). Since the subsystem inter-
acts with other parts of the closed system, it does not have a fixed energy,
and a fixed number of particles, and in fact, it has a non zero probability of
occupying any energy state. [13]

2This hypothesis neglects, with Newton’s definition I (§ 4), the existence of a medium (radia-
tion) that freely pervades the interstices between the parts of the bodies, thereby interacting with
them.

3It is necessary to differentiate the energy levels that can lead to canonic distributions (vibra-
tions or rotations of molecules) from those (relativistic, such as chemical reactions or clustering)
that cannot.
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3.2 The perfect vapor
Theorem § 9 justifies adopting, as an abstract model of the vapor state of chemical
substances, the thermodynamic system defined by equation (1.2), henceforward
denoted by perfect vapor, whose equation of state can be written in terms of the
indeterminate function φp of the single variable θ ,

z = φp(θ). (3.2)

3.2.1 The asymptotic behavior of the perfect vapor

Recall that the limit θ → 0 is usually invoked in kinetic theory as the condition
under which the molecules of a gas can be treated as classical particles with rather
well defined positions and momenta [14]. To improve the reality of equation (3.2),
we subject it to the following asymptotic condition:

§ 14 (Asymptotic Behavior of a Chemical Substance)
The behavior of every known chemical substance in equilibrium, as θ → 0, is
given by the ideal gas law, z = 1.

From § 14, we can express φp(θ) in terms of the power series,

z = 1−θ
(
a1 +a2θ +a3θ

2 + . . .
)
= 1− fσ (θ), (3.3)

where the ai’s are constants and fσ (θ) is a function that characterizes the inde-
terminate substance σ , of the single argument θ , that, expressed in terms of the
thermodynamic variables, acquires the form,

pV +RT fσ (θ) = RT, fσ (0) = 0, (3.4)

The indeterminacy of the function fσ (θ) suggests that each substance (or fam-
ily of substances) σ has its own characteristic function.

3.2.2 The entropy of the perfect vapor

The entropy derived from § 12 for the case of relativistic variation of the mass of
its particles, reveals the existence of a type of partial entropy, hitherto ignored,
which leads to the departure fσ (θ) of the EOS (3.3).

The above derivation of the thermodynamic properties of the perfect vapor,
based on the Maxwell’s relation (2.3), does not preview the expressions of its
partial entropies.
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To obtain the partial entropies of these two phases, denoted by the symbols G
and L, we subject the EOS (3.4), to another of Maxwell’s relations, namely,(

∂S
∂V

)
T
=

(
∂ p
∂T

)
V
, (3.5)

which allows obtain a different PDE, whose solution S = SG+ SL, reveals these
partial entropies,

SG = −3R lnθ , (3.6)

SL = −3
2

R fσ (θ)+3R
∫ fσ (θ)

θ
dθ . (3.7)

The magnitude SG reproduces the Sackur–Tetrode entropy of the monatomic
ideal gas.

We can then assume that the G-phase corresponds to the gaseous phase of the
perfect vapor, composed of mutually independent radicles, and behaving accord-
ing to the laws of the perfect gas, whose entropy, as shown in Chapter 2, is given
by the Sackur-Tetrode equation (3.6).

The L-phase, assumed to correspond to the liquid phase of the perfect vapor,
will be treated as a system of clusters.



Chapter 4

Matter-Radiation Interaction

Introduction

This Chapter reveals that the thermodynamic interconversion processes of heat
and work stem from the constraint imposed by special relativity on the motion of
its particles, thus providing a kinetic theoretical proof of proposition § 6, thereby
suggesting resume the research program § 3, whose purpose is to formulate a Ki-
netic Theory of the Perfect Vapor, according to the following proposition:

To derive the laws of thermodynamics from the mechanics of the discrete
fluid, in the assumption that its particles move in the space of Minkowski.

4.1 Principle of conservation of action

An emblematic instance of the equilibrium between matter and radiation is found
in the vapor state of chemical substances, also referred to as phase transition or
condensation phenomena, approached in thermodynamics by the following theo-
rem:

§ 15 (Conservation of Entropy during Reversible Condensation)
“(when) a system, or any part of a system, undergoes an increase of entropy just
in so far as it absorbs heat from the surroundings, resulting in an equal decrease
of the entropy of the surroundings, and that the increase in entropy is equal to the
heat so absorbed divided by the absolute temperature” [3],

dS =
δqrev

T
. (4.1)
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If our thermodynamic system is composed of radiation (its surroundings) and
the chemical substance, theorem § 15 states the Principle of Conservation of Ac-
tion1 for the matter-radiation equilibrium.

According to definition § 12, both the radiation and the perfect vapor are mem-
bers of the family Θ, whose entropies are given, respectively, by the indeterminate
functions, F (uhc), and F(θ). The results obtained in the previous Chapters allow
analyze the system

Radiation+Perfect Vapor. (4.2)

Besides, from the standpoint of Bartoli thermodynamics, radiation is, itself,
a thermodynamic system in its own right, so that the equilibrium between matter
and radiation presupposes both the equilibrium of radiation and matter, separately,
and the equilibrium of a three phase system,

Radiation+G-phase+L-phase. (4.3)

Recalling that uhc characterizes the equilibrium of radiation, and θ , the equilib-
rium of the perfect vapor, then the equilibrium of the combined system (4.3),
according to theorem § 15, is achieved when,

uhc = θ . (4.4)

Substituting the proportionality relation (2.9) in (4.4) we obtain the expression,

kT ∝ mc2. (4.5)

The result thus obtained is eloquent enough to persuade us to assume that the heat-
work interconversion processes that characterize thermodynamics are relativistic,
which allow assume the provisionally scalar relation ∆ε ∝ ∆mc2.

Proportionality (4.5) reveals a noteworthy faculty thermodynamics is en-
dowed with, namely, to predict the occurrence of relativistic energy conver-
sion processes in the perfect vapor.

Both the suggestion by Roger Penrose that the missing gear of the machinery
that imparts the sensation of the flux of time occurs during a quantum inter-
action; and the widespread belief that “in the elementary equations of the
world, time’s arrow appears only when heat is involved”2 are strengthened
by the revelation of the relativistic nature of thermodynamic phenomena.

1This principle, applied to quantum systems, was heuristically formulated by Ehrenfest [15],
and named by Einstein the Adiabatic Hypothesis.

2Second-hand citation from [16], p. 110.
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4.2 On the complex nature of relativistic energy
In 1924, Dirac published his famous Quantum Theory of Radiation. In 1932, in a
homonimous paper, Fermi wrote [17]:

Dirac’s theory of radiation is based on a very simple idea; instead of consid-
ering an atom and the radiation field with which it interacts as two distinct
systems, he treats them as a single system whose energy is the sum of three
terms: one representing the energy of the atom, a second representing the
electromagnetic energy of the radiation field, and a small term representing
the coupling energy of the atom and the radiation field. If we neglect this
last term, the atom and the field could not affect each other in any way; that
is, no radiation energy could be either emitted or absorbed by the atom.

A confrontation of Dirac’s against Einstein’s Quantum Theory of Radiation
reveals the difficulty we face when we intend to establish the correspondence of
thermodynamics with quantum mechanics:

It is in the way matter and radiation interact that we can identify the essen-
tial difference between Einstein’s from Dirac’s Quantum Theory of Radia-
tion: while in Einstein’s theory a quantum system (atom, molecule) interacts
with the radiation field only when that system emits or absorbs radiation, in
Dirac’s theory, this interaction is permanent and stationary. Both theories
are relativistic: in the former such character is determined by the particle’s
momentum3, ε/c, in the latter, it is the energy of the system that is rela-
tivistic, where the variables are represented by operators. As opposed to
Dirac’s assumptions, Einstein suggests that these interactive processes are
stochastic and independent.

4.2.1 The relativistic character of equilibrium
As is well known, Einstein unveiled the existence of the constraint |v| < c, im-
posed on the motion of material particles in his formulation of special relativity
theory. Hence, it is natural to assume that the energy converted during an ele-
mentary thermodynamic transformation occurring in a material substance in the
presence of an electromagnetic field (a thermodynamic system in contact with a
heat reservoir) can be obtained from the relativistic equation,

ε
2 = m2c4 + c2 p2. (4.6)

Besides the well-know four dimensional Dirac’s factorization of expression√
m2c4 + c2 p2.

3Spin was discovered only in 1924 [4]; seven years after Einstein formulated his theory.
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in terms of quantum operators, there is an elementary one, that, despite its impor-
tance, seems to have been hitherto neglected,

ε
2 =

(
mc2 + ıcp

)(
mc2− ıcp

)
. (4.7)

Equation (4.7), which is justified by assuming that the particle with mass m moves
in the Minkowski space, gives physical meaning in the following circumstances:

When a material particle of mass m interacts with electromagnetic radiation,
its energy undergoes changes caused by the action of the independent elementary
energy conversions processes4 which occur inside chemical substances. Due to
the stochastic independence of these processes, the energies ∆ε or ∆ε∗ involved
are expressed in terms of the two separate complex numbers, whose values are
given, respectively, by the equations,

∆ε = ∆mc2 + ıc∆p, (4.8)
∆ε∗ = ∆mc2− ıc∆p. (4.9)

It will be shown later, in Section 6.2, that the complex energies (4.8) and
(4.9) correspond to the dimensionless complex actions in the mathematical
representation of the ladder operators that act on the clusters that compose
the L-phase of the perfect vapor. Its is noteworthy that these equations can
be recognized to be consequences of the kinetic theory derived from Bartoli
thermodynamics, thus providing a preliminary proof of proposition § 6 that
will be shown to lead to the reformulation of the Boltzmann principle, and
of Axiom 5 of quantum theory.

4.2.2 The transient distinguishability of identical particles
In a previous paper [7] I showed the cogency of assigning, in the epistemological
order of the axioms of the theory of quantum many-body systems, the precedence
of the ladder operators over the indistinguishability and Pauli exclusion “princi-
ples”. This hypothesis is justified by the very derivation of these operators in for-
mal quantum mechanics, where from they can be obtained without any mention
to these principles5.

Further evidences, discussed in Appendix C, revealed by the properties of
chemical substances undergoing large scale departures from equilibrium, as usual

4These interconversion processes can be identified with the absorption and emission of radia-
tion.

5Although usually derived for the particular case of the harmonic oscillator (See, for instance,
§ 41 of [18]), its derivation from special relativity is, as prescribed by Kirchhoff’s law, independent
of the nature of the material body considered.
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in thermodynamic transformations, show that these principles cannot be acknowl-
edged as necessary ontological characters of a substance, but instead, treated as
conditions of statistical equilibrium.

A relativistic kinetic theory brings to sight the existence of certain force-like
agents hidden behind the elementary processes of energy conversion, that
cause non-potential changes on the state of motion of the particles that give
rise to the internal pressure6 of the substances.

4.3 The reciprocity of heat exchange
We can depict the heat exchange between the thermal reservoir and the perfect
vapor (the working substance in a Carnot cycle of a thermal engine), by regarding
the photon as an entity that, when absorbed by (created in) the gas, is correspond-
ingly emitted by (annihilated in) radiation. Conversely, when a photon is emitted
by the gas, it is absorbed by radiation.

Instead of imagining a process where an entity is created from nothing or
that it is annihilated to nothing, we depict these processes as an exchange,
as it occurs in a commercial transaction, when two people give something
to each other at the same time.

This interpretation of the consequences of the elementary energy conversion
process on the perfect vapor provides an adequate framework to analyze the ki-
netics of a Multiple Component System, where creation and annihilation are dif-
ferent names to describe the two-way quantum exchange processes: the chemical
analysis of the vapor evidences that with the exchange of one quantum between
radiation and the perfect vapor during an elementary energy conversion process,
a concomitant exchange of radicles between the two phases of the vapor occurs.

It is usually assumed in spectroscopy that infra-red radiation acts only on the
vibratory and rotational degrees of freedom of the molecules of a substance.
According to theorem § 8, this hypothesis cannot explain the partial entropy
(3.7) of the L-phase. The results obtained by the present approach allows
conclude that the action of heat on the vapor state, whatever the region of
the radiation spectrum where it occurs, imparts chemical reactions between
the different chemical substances that compose the two phases of the perfect
vapor.

6The partial pressure pi acquires physical meaning in the language of Chemical Physics, as the
cause of the internal work, dWi = pidV exerted against internal forces in the gas [19].
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4.3.1 The Newtonian space-time versus the Minkowskian time-
less space

A thoroughgoing discussion of the meaning of time in physics7 is beyond the
scope of this paper. It is here exceptionally mentioned because the present ap-
proach seems to add more confusion to the conundrum of the role of time in our
perception of the phenomenal world. It is worthwhile to consider the following
interpretation raised by the foregoing discussion, which opposes the Minkowski
representation of the square of the four dimensional interval dS,

ds2 = x2
1 + x2

2 + x2
3 + x2

4 (4.10)

to its corresponding Newtonian expression,

ds2 = c2t2−

Euclidean︷ ︸︸ ︷(
x2

1 + x2
2 + x2

3
)︸ ︷︷ ︸

Newtonian

. (4.11)

that describes the relativistic taut constraint imposed on the motion of Newtonian
particles.

The radical difference between the structures of the G and L-phases, reveals
that equations (4.10) and (4.11) are not equivalent, i.e., they describe different
physical realities. While the former holds for the L-phase, which is identified with
a many-body (many-radicle) quantum system, characterized by a single, timeless,
non-observable stationary wave function defined in the Minkowsky purely-spatial
domain, the latter, holds for the G-phase, that is perceived as a system of clas-
sical particles evolving in time, in the Euclidean space, that can, in principle, be
observed in the time-varying chemical-thermodynamic domain of phenomena8.

In classical mechanics it is implicit that the coordinates and momentum de-
grees of freedom are independent variables. There is, however, an imper-
ative precondition which is so obvious that is frequently forgotten: these
variables acquire physical meaning only when their values refer to the same
instant of time. From the standpoint of special relativity independence is
not a necessary, ontological, attribute of these degrees of freedom, but an
accidental condition of simultaneity, which denies the very notion of inde-
pendence.

The timeless stationarity of a many-body quantum system can be broken when
it is acted from the outside by an elementary energy conversion process, which is

7For a discussion about this issue, see Rovelli [16].
8As far as I know, our sense organs are chemical “instruments”, sensitive to quantum state

transitions, which are characteristic of time-dependent, hence Newtonian, processes.
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ruled by the laws of creation and annihilation. I therefore propose the following
conjecture:

The change that occurs in a many-body system caused by the action of an
elementary energy conversion process describes the phenomenon known as
the collapse of its wave function.



Chapter 5

The Meaning of the Quantum of
Action

Introduction

After the revelation that the elementary energy conversion processes that occur
in the perfect vapor are relativistic, we can state the purpose of the forthcoming
Chapters, in terms of the following proposition:

§ 16 To find the natural laws that rule the elementary processes that cause the
changes of the concentration of the G-phase of the perfect vapor that conduct it
towards the final state of thermodynamic equilibrium.

The present Chapter is an intermediate contribution to the demonstration that
the elementary relativistic energy conversion processes (4.8)-(4.9) are prerequi-
site for the kinetic theoretical description of these processes, further modified by
the quantum constraints ∆p∆q≥ h.

Henceforward renamed “elementary processes of quantum exchange”, these
elementary processes will be shown to occur in the perfect vapor during the chem-
ical reactions, already mentioned in the Chapter 3, that characterize the subject
of present approach, namely, the state transitions that occur in that abstract sub-
stance.

In the present Chapter, the reinterpretation of the heat-work relativistic in-
terconversion processes, expressed in terms of equations (4.8)-(4.9), as conse-
quences of the taut constraint ∆p∆q ≥ h, their connections with the Schrödinger
equation, and a first approach to the understanding of their role in the explana-
tion of chemical reactions, will be discussed. The central point of the present
discussion can be summarized in the following definition:
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§ 17 The relation (5.1) describes a taut constraint imposed by radiation on the
transmutation processes that act on the population of the phases of the perfect
vapor.

In Chapter 6 the description of these processes will be used in a new deriva-
tion of the creation-annihilation operators, in connection with inelastic col-
lisions which, besides providing a cogent explanation of a chemical reaction,
reveals the Minkowski structure of the phase space of the perfect vapor, that
will eventually lead to a reinterpretation of the Boltzmann entropy in Chap-
ter 8, and of the Axiom 5 of quantum theory in Chapter 10.

5.1 The Old Quantum Theory Era
In the body of physical knowledge developed during the first quarter of the last
century, also known as the Old Quantum Theory Era1, Planck’s constant appeared
in several equations, with different meanings, given in terms of either line, or
multiple integrals, as amendments to the classical definition of the mechanical
action. In the attempts to describe certain thermodynamic, radiation or atomic
phenomena, both of them were applied.

The numerical value of the constant h was first derived by Planck, himself,
from the empirical chromatic distribution curve of the black-body radiation. Other
theoretical approaches suggesting experiments to obtain this value, notably Ein-
stein’s theory of the photo-electric effect, followed. Although important, the
knowledge of its numerical value does not give physical meaning to this con-
stant, specially its role in the explanation of quantum phenomena, as stated in
proposition § 16.

The Planck constant and the magnitude θ

It is not accidental that the interpretation of θ is connected with varied interpreta-
tions given to Planck’s constant, and vice-versa. In fact, the well-known relation,

∆p∆q = ∆E ∆t ≥ h. (5.1)

can be rewritten in the form,
θ ≤ 1. (5.2)

As will be shown in the forthcoming Sections, it is the physical role played
by the magnitude θ in the quantum explanation of the several thermodynamic
phenomena that provides a more cogent interpretation of Planck’s constant, not

1In the forthcoming we will refer to this era by the acronym OQTE.
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the opposite. In other words, it is thermodynamics that precedes quantum theory
in the epistemological order of physical knowledge, not the inverse.

Let us recall the following thermodynamic variables expressed in terms of the
magnitude θ :

1. According to Section 2.3.2, the entropy of the perfect vapor is given by a
function of the single variable θ , which describes the argument of the partial
entropies:

(a) SG of the gaseous G-phase, given by equation (3.6), reproduces, for
a gas of single radicles, the Sackur-Tetrode entropy of the monatomic
gas;

(b) SL, of the liquid L-phase, whose mathematical expression (3.7), de-
pends on the indeterminate function fσ (θ ,), describes a system of
clusters. From the evidences exhibited in Appendix D we conclude
that this quantity corresponds to the main departure of the entropy of
real gases from the ideal gas law;

2. the mean value of the action (A13), developed by a particle traversing the
space interval that separates two consecutive collisions;

3. the invariant quantity of the Brownian movement, defined as the distance
traversed by a granule during two consecutive localizations [20].

5.2 Sommerfeld relations are taut constraints
One of the first interpretations given to Planck’s constant was proposed by Som-
merfeld, as a constraint imposed on the motion of a mechanical system [21],

∆p∆q = h. (5.3)

Later Sommerfeld restated it in the following terms2:

§ 18 (Sommerfeld’s Conjecture)
Planck’s constant h (quantum of action) puts a lower limit to the size p`q` for
every pair of degrees of freedom, {p`,q`},

∆p`∆q` = h (5.4)

Conjecture § 18 allows translate the relation (5.1) into the language of set the-
ory:

2Ch. V, §28.7 [22].
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§ 19 (Sommerfeld Redefinition of the Phase Space)
The inequality,

∆p`∆q` > h, (5.5)

describes an open subset of the classical phase space, whose boundary set is given
by the equality (5.4).

From this interpretation the following corollary derives:

Under the condition (5.5), the processes that cause changes on the values
of any degree of freedom, are classical.

It is noteworthy that every process that affect the value of the degree of free-
dom ` of a system, determined by quantity ∆p`∆q`, or its very elimination
by the quantum condition expressed in the taut constraint (5.4), causes, ac-
cording to Boltzmann principle, a variation on the entropy of that system.

5.3 Bohr’s model of the hydrogen atom
Bohr’s description of the energies exchanged between the atom and radiation dur-
ing the absorption and emission of radiation processes, conjointly referred to as
the elementary processes of quantum exchange. Section 5.8 gives complementary
information about the elementary processes of energy conversion described by the
relativistic equations (4.8)-(4.9).

Although superseded by the wave and matrix mechanics, the model of the hy-
drogen atom proposed by Bohr revealed the empirical foundations that spectral
analysis imparts to the epistemology of quantum mechanics, namely, the deriva-
tion of the Balmer series, the theoretical calculus of the Rydberg constant, and the
association of the Ritz combination principle with the absorption and emission
processes in the hydrogen atom.

The discrete character of the energies involved in these processes revealed by
spectroscopy implies in the assumption of the finite duration and discrete character
of the elementary processes of quantum exchange between the material particles
and electromagnetic radiation. Since all these quantities are obtained from spec-
troscopic measurements, Bohr’s model of the hydrogen atom was justified by its
consequences, the epistemological criterion universally (though unavoidably pro-
visional) adopted to the acceptance of speculative theories. It is worthwhile to
recall the second postulate of the supporting theory of Bohr’s model:

∆εmn = εm− εn = hνmn, (5.6)
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where εm and εn are the values of the energy in the states, {m,n} under consider-
ation.

The abbreviated form ∆ε = hν of expression (5.6), became known as the
Einstein-Bohr relation.

To equate the variation of the energy given by (5.6) to the relativistic vari-
ations described by the equations (4.8) and (4.9), we must inquire, not on
the meaning of Planck’s constant, itself, but on the algebraic structure its
existence imparts to the mathematical representation of quantum phenom-
ena, namely, its influence on Schrödinger equation, on the laws of chemical
change implicit in the ladder operators, and in the Axiom 5.

The interpretation that implicitly derives from Bohr’s second postulate is that
of a finite matter-radiation interaction process, between an atom and heat, during
which a finite amount of energy ∆ε is involved.

5.3.1 A heuristic description of Bohr’s second postulate
Let us focus on the absorption and emission processes.

Equation (5.6) can be rewritten in terms of the period ∆τ = 1/ν of the oscil-
latory process with frequency ν ,

∆E ∆τ = h. (5.7)

In the lack of a picture to visualize the processes involved in the exchange
of one quantum of action between the atom and radiation, it might be helpful to
speculate on a possible interpretation of the transformations that occur during their
evolution, by comparing a frontal elastic collision of a ball against a wall with the
behavior of the Planck resonator.

The reversion of the momentum the ball undergoes during such collision can
be likened to the reflection of a periodic signal on a mirror, where the first half-
period of the collision corresponds to the “absorption” of the momentum of the
ball, immediately followed by its “emission” during the second half-period. The
duration of both these processes is finite. The difference between them is in the
time interval that separates an absorption from its subsequent emission: while
in the mechanical system the emission starts when the momentum of the ball
vanishes, in the case of radiation. that period is indeterminate, i.e., absorptions
and emissions are stochastically independent.

5.3.2 Reinterpretation of heat
There are many evidences to assume that these processes, known as the absorp-
tion and the emission of one quantum of frequency ν , are elementary, stochastic,
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and mutually independent. In the Chapter 4 it was shown that the thermodynamic
analysis of the equilibrium between the perfect vapor and electromagnetic radi-
ation can be explained in terms of the relativistic equations equations (4.8) and
(4.9). Confronting the amount of energy there expressed with the corresponding
value given by equation (5.6), we conclude that the very notion of heat exchanged
between matter and radiation, must be reviewed.

Furthermore, in the way to introduce the amendments required to improve
the connection between thermodynamics and the quantum theory, it is imperative
to remind that the nature of Carnot’s abstract “working substance” is chemical,
so that its corpuscles are neither Newtonian particles, nor Planck resonators, but
atoms and molecules.

5.4 Algebraic approach to the Planck resonator
Let us assume momentarily, with classical mechanics, that the unit of action h is a
scalar quantity. Justified by this provisional hypothesis we can apply the rules of
ordinary algebra to combine relations (5.4)-(5.5), thus obtaining,

∆E ∆τ = ∆p`∆q` = h. (5.8)

We can correspondingly rewrite (5.5) in the form,

∆E ∆τ = ∆p`∆q` > h, (5.9)

While the character of equation (5.4) is corpuscular (expressed in terms of
mechanical translational degrees of freedom), that of equation (5.6), as op-
posed, is undulatory (expressed in terms of oscillatory degrees of freedom).

5.4.1 The algebra of quantum exchange

Assuming that ∆q` = λ` in (5.8), where λ` is the wavelength of radiation, we have
∆p` = h/λ` which substituted in equations (4.8) and (4.9), gives the quantum-
relativistic equations that describe the elementary processes of quantum exchange,
namely, the absorption and emission processes of one quantum of radiation by
atoms.

∆ε` = ∆m`c2 + ıc
h
λ`

, (5.10)

∆ε∗` = ∆m`c2− ıc
h
λ`

. (5.11)
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Equations (5.10) and (5.11) will be justified in Section 6.2, when the forces
that act on the corpuscles (radicles) of the perfect vapor are shown to be
described by the algebra of the ladder operators.

According to the Principle of Conservation of Action (Section 4.1) we can
state:

§ 20 (The Principle of Reciprocity)
The exchange of quanta between matter and radiation are reciprocal processes:
to an absorption of one photon by a particle there corresponds the emission of
one photon by radiation, and vice-versa.

In the phase transition processes triggered by the elementary processes of
quantum exchange that occur in the perfect vapor, we can see a similarity with
the three conservative principles of classical mechanics, namely, the invariance
of energy, momentum and angular moment: during an elementary processes of
quantum exchange, the energies involved are given by the quantum-relativistic
equations (5.10)-(5.11), which establish the functional correlation of the degrees
of freedom that describe these interaction processes, namely, the mass, the mo-
mentum, and the spin, the latter being the discrete quantum version of the angular
momentum.

To the three conservative principles of classical mechanics, namely, the in-
variance of energy, momentum and angular moment, there correspond the invari-
ant entities in the phase transition processes in perfect vapor. In the elementary
processes of quantum exchange, the energies involved are given by the relativis-
tic equations (4.8)-(4.9), where from the quantum-relativistic equations, (5.10)-
(5.11), derive. These equations establish the functional correlation involving the
degrees of freedom that describe these interaction processes, namely, the mass,
the momentum and the spin, a discrete version of the angular momentum.

5.4.2 The Inadequacy of Liouville’s Theorem

Being the entropies (3.6) and (3.7) exclusive functions of the thermodynamic
variable θ , they are not invariant quantities, as previewed for potential systems
of particles by Liouville’s theorem3. Thermodynamic invariance occurs only in
those processes in which θ is constant in a quantum-like condition, which was
interpreted by Ehrenfest as adiabatic [15].

3This theorem was called conservation of extension-in-phase, by Gibbs in his definition of the
microcanonic ensemble[23].
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It is noteworthy that the elementary changes of entropy, described in thermo-
dynamics by the variation T ∆S, when translated into the microscopic repre-
sentation of kinetic theory, has no limit for ∆S→ 0, for they are bound4 by
the taut constraints relations (5.4)-(5.5).

The algebra of Quantum Mechanics endows the complex numbers that rep-
resent dynamical variables with the faculties of operators, with the power
to cause changes on the values of these variables. It will be shown in Sec-
tion 6.2 that the operators that derive from equations (5.10) and (5.11),
describe the causes of change of the concentration of the G-phase of the
perfect vapor.

In fact, the volume of the phase space cannot be treated as a strictly scalar
classical variable. As a complex variable, it varies in the Minkowski space, where
it is endowed with thermodynamic faculties. Hence, a system of particles whose
state of motion is susceptible to the action of heat (hence, to thermal radiation)
does not satisfy Liouville’s invariance theorem.

The foregoing considerations allow us to state:

5.4.3 The Algebra of Quantum Complex Numbers

Complex numbers are usually defined as members of a Field. Hence, for every
complex number u 6= 0, there is its inverse u−1. This is not true in quantum al-
gebra, because the complex conjugate u∗, necessary to evaluate u−1, corresponds
to an elementary processes of quantum exchange which is independent of the ele-
mentary processes of quantum exchange represented by the complex operator u.

This evidence imposes a reinterpretation of the Axiom 3, for while it gives the
algorithm necessary to artificially calculate the eigen-values of a given dynamic
variable, it does not inform that the natural algorithm performed by real parti-
cles is the result of the composition of stochastic, mutually independent processes
of absorption and emission of quanta, described by their corresponding quantum
ladder operators.

The phenomenon that reveals that a mechanical system of particles is en-
dowed with thermodynamic faculties is its susceptibility to heat (radiation).

From the standpoint of classical mechanics, the variation of θ in the perfect
vapor characterizes a non-conservative process.

4See § 30.
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5.5 Inelastic collisions and the quantum of action
A workable description of the motion of particles in a vapor can be obtained from
a reinterpretation of the description of the motion of the molecules in the gas given
by Maxwell:

§ 21 During the great part of their course the molecules (of the gas) are not acted
on by any sensible force, and therefore move in straight lines with uniform veloc-
ity. When two molecules come within a certain distance of each other, a mutual
action takes place between them (. . . ). Each molecule has its course changed, and
starts a new path [24].

In the present approach, differently, the relations (5.4)-(5.5) are interpreted,
not as the manifestation of measurement uncertainties, but as the description of a
taut constraint, that gives to Maxwell’s mutual action a different meaning, namely,
that of an inelastic collision of finite duration, in the course of which the mechani-
cal action developed by the colliding particles is determined by the quantum-rela-
tivistic laws of absorption and emission of one quantum of action.

Maxwell’s description § 21 refers to two processes: the inertial inter-collisions
translation, and an inelastic collision, corresponding, respectively, to the edges
(F) and vertexes (C) of the polygonal line that describes the Brownian movement,
as reviewed in Section A.10.

5.6 Chemical reactions and entropy
The description of atoms and molecules that compose the chemical substances in
terms of the laws of Dalton and Avogadro, as revealed by chemistry, are adequate
for our analyses of the behavior of the perfect vapor.

A chemical reaction can be depicted as a finite process during which heat is
absorbed or emitted according to Hess’s law, thus allowing redefine his notion of
heat of reaction in terms of the equilibrium of the elementary energies exchanged
between the radiation and the individual molecules involved in a chemical reac-
tion.

We can then assume, with kinetic theory, that each elementary quantum state
transition in the perfect vapor is the result of the inelastic collision involving radi-
cles and clusters. During an endothermic collision there occurs the

5.7 The second law and the taut constraints
Experience has shown that an adequate mechanical representation of the ele-
mentary processes of a chemical reaction are inelastic collisions, an assumption
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that allows depict the gas as a mechanism in which its moving parts (atoms and
molecules) are constrained by a mechanical equivalent of the second law.

As revealed by Analytical Mechanics, the introduction of a certain class of
constraints into a system of particles, or their removal from it, cause a change
on the number of its degrees of freedom, hence, on its Boltzmann entropy. This
fact allows regard a chemical reaction as the consequence of the quantum-relativ-
istic taut constraints that impose, stochastically, restrictions on the motion of the
molecules involved.

Note that, according to § 13, electrically charged particles can have two dif-
ferent behaviors, either strictly quantum or quantum-relativistic. In the latter, one
cannot differentiate the motion of the particle under the influence of an electro-
magnetic field from its motion in a Minkowski space, a circumstance in which the
description § 21 can be restated as follows:

§ 22 (Maxwell’s Description in the Minkowski Space)
(. . . ) when two molecules come within a certain “interval” from each other in the
Minkowski phase-space-time, an elementary process of quantum exchange can be
triggered, giving rise to a quantum-relativistic transition (an elementary chemical
reaction).

5.8 How do degrees of freedom become conjugate?
Having verified that equation (5.8), and thereby, Planck’s constant h, has also a
vestigial meaning inherited from classical mechanics, we are suggested to seek,
hidden behind the relations (5.4)-(5.5), the operative faculty that comes to sight
only after the mentioned Newtonian degrees of freedom of a radicle become con-
jugate.

Equation (5.8) can be rewritten in the form of the work of a force well-known
from classical mechanics,

∆E =
∆p`
∆τ

∆q` = hν . (5.12)

If this algebraic manipulation is justified, we are allowed to adopt the equation
(5.8) as the expression of a non-conservative process. The quantity ∆p`

∆τ
·∆q` in

equation (5.12) can be interpreted as the work exerted by radiation, either on
some degree of freedom of the material medium that composes the gas during an
absorption of a quantum, or vice-versa during an emission.

The connection between the pairs of degrees of freedom {p`,q`}, or between
{E ,τ}, can be justified when we realize that Planck’s constant cannot be inter-
preted merely as a scalar magnitude. Due to the enigmatic nature of Planck’s
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constant, the mathematical interconnection of these pairs of quantities were given
in the formulation of wave mechanics, by a non-conventional treatment of the
operators of calculus, as follows.

By rewriting equations (5.4)–(5.6), in the forms,

∆E =
h
∆t

, and ∆p =
h

∆q
, (5.13)

the difference operators ∆, become interpreted, in wave mechanics, as the discrete
version of the corresponding differential operators of energy and momentum, re-
spectively,

h
∆t
→ Ê =

h
2πı

∂

∂ t
, and

h
∆q
→ p̂x =

h
2πı

∂

∂x
. (5.14)

The correspondences (5.14), and the algebraic properties of the operators
adopted in quantum mechanics, establish the rules required to formulate the PDEs
that characterize atoms and molecules as many-body quantum systems. In an
equation, these operators can be interpreted as “conjugators”, i.e., entities that re-
place the degrees of freedom, originally independent, into a single conjugate unit,
imposed on them by the EPQE.

Furthermore, in these operators, the Planck constant h appears combined with
the imaginary unit ı. According to the rules of algebra above, they can be treated
as a single symbol.

By assuming that the Planck constant is not a real, but an imaginary constant,
we conclude in favor of proposition § 6, in conformity with the results obtained
in Section 4.2.1.

The formulation of Schrödinger equation consists in translating the Hamilto-
nian that characterizes the mechanical system of particles involved in that process,
into the language of these operators5. This authorizes one to assign to relations
(5.4)-(5.5) the operative faculties that were hidden in the previous interpretations.

By operative faculty of an agent we understand its “power to cause a change”
on the entity on which it acts. Although the notion of force has been criticized
by some authors [25], mathematicians borrowed its meaning from Newto-
nian physics to establish the way the notion of operator is to be interpreted.

From the previous considerations we can conclude:

The motion of the molecules of the gas in the sub-phase-space (5.9) is clas-
sical, where the identity (5.8) refers to a finite elementary process whose
duration is given by the period 1/ν .

5To justify this procedure it was necessary to have recourse to an artificial Principle of Corre-
spondence. The strange limit operation (5.14), should have a more sound foundation, concerning
the mathematics of taut constraints.



44 CHAPTER 5. THE MEANING OF THE QUANTUM OF ACTION

5.9 On being and becoming
A chemical reaction can also be interpreted as an elementary exchange of heat and
work that characterizes thermodynamics.

§ 23 (Destruction and Creation of Degrees of Freedom)
During a chemical reaction the degrees of freedom of the reactants are destroyed,
and the resulting products that are created acquire new degrees of freedom with
unpredictable values.

From § 23 derives the following corollary:

§ 24 The classical degrees of freedom, namely, momentum and position of a par-
ticle of the perfect vapor, pass away as independent attributes when the particle
moves from the G-phase, to enter into the L-phase thus becoming described by
conjugate differential operators inside it, after undergoing the non-conservative
process that takes place during a chemical reaction.

Corollary § 24 enforces the understanding that “conjugation” is a previously
non-existent relation between momentum and position, expressed by the Hamil-
tonian combination of the operators (5.14) in the composition of Schrödinger’s
equation. Such relation can be “created” (come to be) or “destroyed” (pass away)
during the elementary processes of quantum exchange.

Hence, in quantum theory we cannot say that position and momentum are
“something” that always existed together with the particle, a conclusion that raises
a challenge to the interpretation of the uncertainty principle, and serious objection
to its acceptance as a fundamental principle of physics.

The definitions of position and momentum, as fundamental degrees of free-
dom in classical mechanics, acquire meaning only if referred to the same
instant of time, a notion that has a characteristic meaning in special rela-
tivity, expressed in terms of simultaneity and space-time interval. Note that
relativistic simultaneity (zero length of space-time interval6) is a precondi-
tion for the consummation of the phenomenon “becoming conjugate”, as
discussed in Section 5.8.

The principle of reciprocity § 20, can then be naturally extended to the con-
densation phenomenon:

§ 25 In the perfect vapor, the annihilation of one radicle in its L-phase, corre-
sponds to its creation in the G-phase, and vice-versa.

6This condition might be related with the notion of entanglement.
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In current quantum mechanics the words creation and annihilation will be
used according to the meanings given in § 4.3. With this understanding, statement
§ 25 describes a transaction, in which the words creation and annihilation acquire
the complementary meanings of “death and birth (reincarnation)”, as metaphors of
the reciprocal processes that correspond to the exchange of a radicle between two
coexisting phases. This reinterpretation justifies having recourse to the Markovian
theory of birth and death processes in Appendix C where from the kinetics of the
population of the clusters in the L-phase derives.

5.10 The uncertainty principle
In spite of the variety of meaningful interpretations given to the relations (5.1)
during the OQTE, much of the literature abandoned them in favor of the hitherto
almost indelible Heisenberg’s Uncertainty Principle interpretation, renaming it
uncertainty relations.

Being founded on the notion of measurements of the degrees of freedom of
micro-particles, the uncertainty principle is unsuitable for the analysis of
chemical7 or thermodynamic phenomena. The hypothesis verification pro-
cesses adopted in thermodynamic experiments (using measurement instru-
ments such as thermometers, calorimeters, barometers, spectrometers, etc.)
do not focus on the degrees of freedom of the particles of the system.

I intend to show that, though compatible with the interpretations of the Planck
constant proposed during the OQTE, including those derived from the conception
of heat that stems from Bartoli thermodynamics, the definition § 17 is shown to be
incongruous with the formulation of the uncertainty principle, an issue that will
be discussed separately, in Appendix B.

5.11 Knowing without touching the bodies
Before Jules Verne no scientist would dare submit to a financial institution a
project to launch rockets to touch an heavenly body. The remarkable theoretical
results obtained by the ancient astronomers about the motion of celestial bodies
were based on techniques of passive observation. The same happens in thermo-
dynamic observation:

The results of the measurements performed to determine the values of macro-
scopic magnitudes do not touch the particles. Any influence of whatever (a) the

7See § 23.
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measurement equipment used, (b) its operator is, or (c) the proximity of any ob-
server, are purposely discarded at the outset by construction8, from their experi-
mental arrangements.

8In chemical and thermodynamic practice, care is taken in the establishment of standard pro-
tocols designed to minimize the effects that the interference of observation and measurement pro-
cesses can cause on the state of the system.



Chapter 6

Taut Constraints

Summary

Except for Planck’s constant itself, all quantities in the relations (5.4)-(5.5)
are classical. It is therefore legitimate and insightful to analyze them from
the Newtonian perspective. It will be shown in this Chapter that equation
(5.8) can be adopted as the expression of an stochastic taut constraint that
arises when the molecules of the gas interact with radiation.

The changes on the populations of the quantum states of the clusters in the
L-phase of the perfect vapor, are caused by the elementary processes of quantum
exchange, triggered by the taut constraints |v| ≤ c, imposed by special relativ-
ity and ∆p∆q ≥ h, imposed by the quantum conditions. During these processes,
known as absorption or emission of radiation, quanta are exchanged between the
substance and radiation, and radicles are exchanged between the phases of the
perfect vapor. Their relativistic nature was revealed in the derivation of the equa-
tions (4.8) and (4.9), and the variation of the momentum ∆p = ε/c, was shown to
correspond to the quantum expression, ∆p = h/λ .

Henceforth, in the description of the phenomena involved in the perfect vapor,
the two taut constraints are combined into a single representation, expressed in
terms of non-commutative complex quantities which, in formal quantum mechan-
ics are represented by the ladder operators1 {a,a†}. We can then state the

§ 26 (Fundamental Problem of Kinetic Theory of Vapor)
To show that the taut constraints imposed on the state of motion of the molecules of
a chemical substance under the influence of an electromagnetic field, reproduce
and detail the constraints imposed by the second law of thermodynamics on its
behavior.

1See §41 [18]

47
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According to Analytical Mechanics, the introduction or elimination of a cer-
tain class of constraints changes the number of degrees of freedom of the phase-
space of a system of particles.

Recall that according to § 23, the phenomena that cause changes on the number
of degrees of freedom of reactants and products have been identified as chemical
reactions. In the present approach, will focus on the changes imposed by the taut
constraint |∆p∆q| ≥ h on the entropy formation in the perfect vapor.

Since state transitions are identified with chemical reactions, we will corre-
spondingly assume the following proposition:

To show that the kind of constraint that arises when the particles of the per-
fect vapor interact with radiation, causes changes on the number of degrees
of freedom of the phase-space occupied by its molecules.

Instead of interpreting the variation ∆p and ∆q of the values of the conjugate
quantities {p,q} in relations (5.4)-(5.5) as measurement uncertainties, as pre-
scribed by the uncertainty principle, in the forthcoming they will be treated as the
changes the momentum and position a particle of the gas undergo during a finite
time interval of length ∆t under the action of a certain type of force, described in
terms of the difference operator ∆.

This assumption is justified both by its thermodynamic consequences, and
by their correspondences with the operators of wave mechanics, as shown
in Section 5.8.

Whatever the elementary processes that cause changes on the phase space
where the corpuscles of the perfect vapor move, their collective effect is
thermodynamic.

6.1 Forces imposed by taut constraints
In Newtonian mechanics the work ∆E performed by a force f is expressed by the
equation,

∆E = f ·∆q, (6.1)

where ∆q is the displacement traversed by the particle. Denoting by ∆p the change
of the linear momentum of the particle, equation (6.1) can be written in the form,

∆E =
∆p ·∆q

∆t
, (6.2)

where ∆t is the period of time during which the momentum of the particle under-
goes the variation ∆p.
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In Newtonian mechanics the meaning of force is usually assigned to the finite
quantity ∆p/∆t, and exceptionally to the derivative operation of Calculus,

f = lim
∆t→0

∆p
∆t

. (6.3)

Let us rewrite (6.2) in the form,

∆E ∆t = ∆p ·∆q. (6.4)

If the derivative (6.3) exists, then,

lim
∆t→0

∆E ∆t = lim
∆E→0

∆E ∆t = 0. (6.5)

To examine the physical meaning of (6.4) when the constraint (5.8) is added
to mechanics, we invoke Bridgman’s criterion2:

§ 27 Nature imposes a lower bound on the products in (6.4), so that the operation
which gives them meaning is not (6.5) but, instead, the quantum constraints, (5.8).

Recall that Newton’s second law provides a general indeterminate equation
that is completed with the special laws of forces that act on the motion of the
bodies. When the quotients ∆p/∆t and ∆E /∆q have, for a given motion of a
body, well defined3 limits for ∆t → 0 and ∆q→ 0, then (6.4) can be rewritten
as a second order ordinary differential equation whose solution, given its initial
conditions, completely describes that motion.

When, as opposed, the influence of the quantum constraints cannot be ne-
glected, a different system of “equations of motion” derived from a quantum-
relativistic analysis must be considered. In either case, however, it is possible
to assign, to ∆p/∆t, at least symbolically, the Newtonian meaning of force and
to reason, in the analysis of quantum phenomena, in terms of certain force-like
agents that cause the change of the motion of the particles. The interpretation § 27
justifies the following assumption:

§ 28 (Taut Constraints)
The foregoing considerations suggest to treat the relations (5.1) as taut constraints
imposed on the motion of the molecules of the gas that arise only during the ele-
mentary processes of quantum exchange, when the molecules of the gas interact
with radiation.

2“In dealing with physical situations, the operations that give meaning to our physical concepts
should be the physical operations actually carried out” [26].

3When the constraints imposed by the quantum constraints have negligible influence on the
motion of the body.
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Hypothesis § 28 allows adopt Sommerfeld’s conjecture § 18 as the descriptor
of an inelastic collision, and thereby of a chemical reaction (see Section 6.3).

Taut (unilateral) constraints can be treated in Analytical Mechanics according
to the following suggestion [27]:

“The motion of a system on which unilateral constraint is imposed may be
divided into portions so that in certain portions the constraint is taut and
the motion occurs as if the constraint were bilateral, and in other portions
the constraint is not taut, and the motion occurs as if there were no such
constraint. In other words, in certain portions a unilateral constraint is
either replaced by a bilateral constraint or is eliminated altogether.’

Hence, the motion of particles whose degrees of freedom satisfy the condition
(5.5) must be treated as classical. The condition (5.4), differently, imposes on the
particles involved, the behavior described in proposition § 26.

6.1.1 Mechanical consequences of the quantum taut constraints
Since according to the quantum constraints § 27, the limit operation ∆q→ 0 does
not exist, we conclude that:

The derivative
lim

∆q→0

∆E

∆q
,

is undefined in the scope of quantum phenomena.

According to a well known theorem of classical mechanics,

§ 29 The forces that arise in the motion of a particle constrained by the quantum
constraints are non-conservative.

When the quantum constraints cannot be neglected, it is not only hopeless to
search for an approximation for this process in terms of some suitably chosen
(perturbation) potential, but specially misleading, for it conceals the existence
of the elementary energy conversion processes and their intrinsic irreversibility,
hindering the quantum nature of thermodynamic phenomena.

We also assume that the quantum constraints also imply that . . .

. . . if, in the treatment of any magnitude that is under the action of the quan-
tum constraints, is described by a continuous and differentiable function, the
former condition prevails over the latter.

where from the following well known corollary derives:
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The use of the limit operation of differential calculus must be reviewed under
the quantum constraints.

This proposition has far reaching consequences, for, by denying the existence
of convergence processes that, acting on the degrees of freedom of a single parti-
cle, give rise to well defined limit values, the quantum constraints undermine the
very foundations of differential calculus, thereby subverting the whole of Analyt-
ical Mechanics4.

§ 30 This condition should not be surprising, for, as already noted in § 23 and
§ 24, during a chemical reaction, when the molecules of the reactants become
subject to the taut constraints (5.4)-(5.5), their classical degrees of freedom are
annihilated, loosing both their physical meaning (and their classical identities5),
and new ones, with “unpredictable” values, are created with its products.

6.1.2 Action representation of Hamilton’s equations

According to § 21 the motion of a radicle in the G-phase is the alternation of two
elementary motions, viz., a free path and a collision. To describe them we invoke
the system of Hamilton equations,

dq
dt

=

(
∂H
∂ p

)
q
,

d p
dt

=−
(

∂H
∂q

)
p
. (6.6)

The description of the former, being classical and conservative, is straightfor-
ward.

An inelastic collision, as opposed, is a non-conservative process requiring an
ad-hoc treatment.

To describe the variation of the actions ∆αq and ∆αp of the two possible out-
comes of a collision, we rewrite Hamilton’s equations (6.6) in their finite forms
in the time interval of duration ∆t,

∆αq = (∆H)q ∆t = ∆q∆p,
∆αp = (∆H)p ∆t =−∆p∆q.

(6.7)

4The way out this radical restriction imposed by the uncertainty principle is found in the Law
of Large Numbers, which, applied not to a single particle, but to a large population of particles,
provide the convergence processes that legitimate the use of the limit operator of Calculus in
Statistical Mechanics, playing the role of an asymptotic operator.

5This phenomenon, that has nothing to do with the observation or measurement processes, has
led to interpret expressions (5.4)-(5.5) as uncertainty relations by the uncertainty principle.



52 CHAPTER 6. TAUT CONSTRAINTS

We can readily recognize in (6.7) the Newton’s second law prototypes (5.1),
and thereby assume the existence of two independent phenomena, described re-
spectively by the variations αq and αp of the actions developed during the reaction,
as already proposed in § 6.4.

Since we are focusing on the motion of an individual particle, abstracted from
its environment, we must assume that the energy is not invariant, i.e., the Hamil-
tonian HC of a collision is time-dependent, say, ∆HC 6= 0 during the time interval
∆t (that corresponds to the classical expression ∂HC/∂ t 6= 0), whence6, the phe-
nomena described respectively by ∆αq and ∆αp, are independent.

We are then led to the following corollary:

§ 31 (The two elementary energy conversion processes)
To describe the interaction of a particle with its environment (a “quantum-rela-
tivistic reaction”) the two equations in (6.7) are uncoupled, i.e., they are mutu-
ally independent, corresponding to two different processes7 of finite duration that
cause the quantum changes of the state of the particle.

As in Section 4.2.1, we here assume that these two processes are identified
with absorption and emission of a photon by a system.

6.1.3 The environment as a requisite
The principle of conservation of energy imposes another requirement to describe
the motion of particles under the quantum constraints. According to § 29 we must
assume the existence of an environment8 where the particles move and with which
they interact, exchanging the non-conservative amounts of energy (heat) emitted
or absorbed during these processes.

That the interaction of material particles with a certain kind of environment
is a mechanical problem was recognized in the synthesis of the electromagnetic
theory. While this theory can satisfactorily characterize the nature of the envi-
ronment that is susceptible to interact with electrically charged particles and ex-
plain this interaction requiring no modification of Newtonian Mechanics, it can-
not explain the behavior of the electrically charged particles involving atoms and
the molecules [6]. Specially, it can explain neither how the environment causes

6This fact is more formally represented by the properties of the dynamic quantities, imposed
by special relativity in equations (4.8)-(4.9).

7The assumption that there are two opposing processes was emphasized in the notation adopted
in equation (6.7), where the subscripts q and p (usually neglected in the representation of Hamil-
ton’s equations), were imported from the partial derivatives in (6.6).

8Such environment is here identified with the medium referred to by Newton in the Definition
I of his Principia, § 4.
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changes on the behavior of the particles of a chemical substance, nor how they are
reflected in their thermodynamic properties.

Thermodynamics identifies the environment with a thermal bath (heat reser-
voir) characterized by its temperature. Although the identification of the physical
properties of this environment, together with the understanding of the way it inter-
acts with material particles, are essential for the complete formulation of a kinetic
theory, the revelation of the mechanical nature of heat was not considered a prob-
lem of thermodynamics before Bartoli thermodynamics.

6.2 Bose operators

Rewriting the actions (6.12) in the dimensionless form,

∆α

h
=

∆p ·∆z
h

+ ı
∆p×∆z

h
, (6.8)

∆α∗

h
=

∆p ·∆z
h
− ı

∆p×∆z
h

. (6.9)

we obtain,
(∆α−∆α

∗) = 2ı(∆p×∆z), ,

thus recovering in ∆α/h, and ∆α∗/h, respectively, the (quantum) complex algebra
representation of the creation and annihilation operators

{
a†,a

}
that characterize

the Bose–Einstein statistics.

6.3 The action developed during a binary collision

In classical mechanics a binary collision is usually treated as a two dimensional
motion. Taking the origin of coordinates in the center of mass of the system
composed of the two colliding particles, the Lagrange function of the motion in
the plane formed by the vectors of the relative velocity of the system before and
after the collision can be written in terms of complex variables,

L =
m
2
(∆ż)(∆ż∗), (6.10)

where ∆z is the vector that describes the trajectory traversed by the system, and
∆z∗, its conjugate.

During the evolution of the collision a certain quantity of action ∆α = L ∆t
is developed. In the evaluation of this complex quantity, an indeterminacy arises,
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for pre-multiplication and post-multiplication of L by ∆t give different results. It
is known from experiment that the factors of the product,(

∆t
∆z
∆t

)(
m

∆z∗

∆t

)
6=
(

m
∆z
∆t

)(
∆z∗

∆t
∆t
)
, (6.11)

correspond to different, independent phenomena, so that the “algebraical can-
cellation law” does not hold, implying in the non-commutative product of these
quantities. We can then write,

∆α = L ∆t = (∆p)(∆z∗) ,
∆α∗ = ∆tL = (∆z)(∆p∗) . (6.12)

According to Section 4.2.1, this character of the Lagrange function can be
ascribed to the constraint imposed by the laws of special relativity on the
motion of the particles involved in this kind of inelastic collision.

In agreement with § 31, we assume that the non-commutative character of the
product (6.11) is due to the existence of two independent processes that cannot
be confused, namely, absorption and emission, represented by two different math-
ematical expressions that are concealed in the classical interpretation of equa-
tion (6.10).

Axiom 5 of quantum mechanics takes for granted the non-commutativity of
the products

∆p∆z 6= ∆z∆p.

This implies recognize that Q-complex numbers (complex numbers in quan-
tum theory) are not members of a division algebra9.

In fact, to be satisfied, the division operation,
z1

z2
= z3, if z2z3 = z1.

requires the existence of a solution for the following system of simultaneous
equations,

x2x3− y2y3 = x1,
x2y3 + x3y2 = y1.

However, in nature, these equations are not simultaneous. Actually, they
correspond to two distinct and independent phenomena, namely, the inter-
change (absorption or emission) of one quantum of action between matter
and radiation. These two processes occur in different, mutually exclusive,
instants of time10.

9This raises a problem to mathematicians: Are they members of an associative algebra?
10In considering this fact, we must take into account that simultaneity of two events is an acci-

dental condition imposed by special relativity to be satisfied.
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6.4 Causes of change of the volume of the phase-
space

Equations (6.8) and (6.9) describe the changes that the dimensionless volume of
the phase-space of the perfect vapor undergo under the action of the elementary
processes of quantum exchange they describe, leading us to conclude:

§ 32 The algebraic structure of the phase space of a system of particles interacting
with radiation is Minkowskian.

The revelation § 32, which allows eliminate the ambiguity already detected in
Section 5.8, implies the need to reformulate the Boltzmann Principle, by adopting
θ as a variable endowed with both thermodynamic and relativistic faculties.

By introducing the definition,

∆p×∆z =−ı
h
2
. (6.13)

where h is Planck constant, we recover, in ∆α/h, and ∆α∗/h, the complex num-
ber representation of the creation and annihilation dimensionless operators {a†,a}
that characterize the Bose–Einstein statistics, and the stochastic indistinguishabil-
ity that characterizes the thermodynamic equilibrium of a gas of Bose particles.

6.4.1 Ladder operators describe relativistic processes
As already pointed out in § 31, to give physical meaning to the motions character-
ized by ∆α and ∆α∗, we introduce the following postulate:

There are in Nature two independent phenomena characterized respectively
by the actions ∆α and ∆α∗, corresponding, respectively, to the absorption
and emission elementary processes.

Such interpretation implies a revision on the observability of certain quantum
phenomena:

§ 33 (Displacement in the Time Dimension)
We can regard the development of the imaginary part of the action caused by the
kind of inelastic collision above discussed, as a torsion in the Minkowski plane,
that corresponds to a displacement of the particle in the time, towards the future
or the past, depending on the arithmetic signal of the torsion.

Statement § 33 explains why elementary particles might become non-observable.
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6.4.2 Thermodynamic equilibrium
In the Axiom 3 of quantum theory, the measured value of a dynamic variable is
given by the eigenvalue of its associated operator, as stated in its Axiom 3. How-
ever, being Schrödinger’s space alone equation an automorphism11, its solution
describes an equilibrium condition, whose eigenvalues give, not the measured val-
ues of a dynamic variable at a given instant, but its values at the thermodynamic
equilibrium (stable and supposedly12 metastable), a conclusion that imposes an
amendment to that axiom.

11 Section B.4.
12Depending on further inquires on this issue.



Chapter 7

Molecular Mechanics

Summary

This Chapter details the model of the vapor state of a chemical substance,
which allows explain the elementary quantum-relativistic laws that cause the
thermodynamic changes on the structure and motion of its molecules during
their interactions with radiation. The derivation of the partial entropy SL of
the liquid phase of the vapor is also discussed.

Introduction

After the revelation by Bartoli that heat can be properly described by a discrete
fluid, we can regard the vapor state of a chemical substance as a three phases
thermodynamic system in persistent mutual interaction, as expressed in (4.3). It
is known from thermodynamics and chemistry that the gaseous and liquid phases
are two distinct chemical substances, which allows conclude that:

A phase transition is a chemical reaction.

In Section 4.2.1 it was shown that this phenomenon is relativistic, and that
the quantities of energy exchanged between matter and radiation are given by
equations (4.8) and (4.9), which, after modified by the quantum taut constraints
∆p∆q≥ h led to equations (5.10)-(5.11). In Section 6.2 it was revealed that these
equations reproduce the mathematical expressions of the ladder operators

{
a,a†}

for bosons. With these results we are in condition to obtain the mathematical ex-
pression of the entropy SL, and an explanation of the kinetics of the condensation
and evaporation processes.

57
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7.1 The chemical description of the vapor
The entropy of a chemical substance can be decomposed into several partial en-
tropies, depending on the different nature of the degrees of freedom with which
its molecules are endowed, e.g., rotations, oscillations, etc.

The existence of the two phases G and L in the perfect vapor was revealed in
Section 2.2, based on very general hypotheses about its entropy S, whose partial
entropies are given by,

S = SG+SL,

expressed in equations (3.6) and (3.7), in terms of the same single argument θ .
In this and the following Chapters we will focus on the partial entropy SL of

the liquid phase for the simple cases of substances that have a single equilibrium
state, supposed to be attained when the perfect vapor is under the action of a
standard spectrum, namely, that of the black-body radiation1.

Before entering into this subject, let us remind that the evaporation and con-
densing processes, by whose means heat is exchanged between matter and radi-
ation, depend on the set of frequencies to which the former is susceptible, and
on the frequency spectrum of the latter. Although thermodynamics is concerned
mainly with stable equilibrium, an incomplete frequency matching of spectra in
the interaction processes might lead to metastable states, a subject of considerable
importance to climatology.

In the previous Chapters it was shown that both the function fσ (θ) in the
EOS, (3.3), of the perfect vapor, and its partial entropy SL, are different
descriptions of a regular departure from the ideal gas law. In Appendix D,
the confrontation of the pV T data of steam against the EOS of the perfect
vapor confirms that result.

7.1.1 Radicles and Clusters
Chemistry has established that material substances are composed of atoms and
molecules. A kinetic theory of the vapor must therefore be based on the physical
characteristics of these entities. The chemical substances in the G and L-phases
are more appropriately described, not by atoms and molecules, but by radicles
and clusters:

§ 34 (Radicles)
We will assume that during the conversion processes from gas to liquid, or vice-
versa, the molecules of the perfect vapor do not dissociate in smaller molecules.

1Note that the pV T data set of the steam table represented in fig. D.1 does not denounce any
evidence of the metastable states known to exist in water.
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Instead, during these phase transition processes, they are supposed to behave as
indivisible units, as it happens with atoms in chemical reactions. The particles of
the substances with this character were named radicles by Berzelius [28].

§ 35 (Clusters)
A cluster ` is a molecule, treated as a many-body quantum system, composed of
a random number r`(t) of radicles, thereby described by a single wave function,
ψ` (r`(t)). The PDFs2, which describe the population dynamics of a cluster, is
determined by the conditional probability laws that rule the elementary processes
of creation and annihilation.

We can think of a cluster as a polymer of radicles and, as usual in the conjec-
tures about the structure of the liquid state, It is assumed to be a molecule with
short life cycle.

According to the correspondence rules (5.14), the degrees of freedom of each
constitutive radicle become conjugated by its wave function inside a cluster.

7.1.2 On the chemical structure of the phases

From the foregoing considerations we can represent the vapor by the perfect va-
por, whose phases can be described as follows.

The G and the L-phases, are assumed to be distinct chemical substances,
whose interactions involve chemical reactions.

The G-phase, here interpreted as the gas phase of the vapor, is composed of a
random number NG of radicles, whose partial entropy is given by the quantity,

SG =−NGk ln(θ),

which reproduces the Sackur-Tetrode entropy of the ideal monatomic gas.
The concentration of the G-phase is given by the quantity NG/N.
The L-phase, here interpreted as the liquid phase of the vapor, is composed of

an enumerable set of clusters3. As specified in § 35, the dynamic variable which
characterizes the quantum state of a cluster `, is its population, i.e., the random
the number r`(t) of radicles it contains.

2The acronym PDF will be adopted henceforward to designate a Probability Distribution Func-
tion.

3In fact, this description is a simplification. The L-phase is, itself, composed of a random num-
ber sub-phases, composed, in their turn, of groups of clusters with the same number of radicles.
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7.1.3 On phase transitions
Phase transitions occur when the perfect vapor interacts with radiation. Accord-
ing to Prévost’s Law of Exchanges, during these processes bursts of photons are
exchanged between the thermal bath and the perfect vapor. We then introduce the
following postulate, which will be shown to be in conformance to the Laws of
Change determined by the quantum theorems on creation and annihilation:

To the exchange of one photon between the thermal bath and the substance,
there corresponds the exchange of a radicle between the G-phase and one
(unspecified) of the clusters in the L-phase4.

7.2 Molecular Mechanics
In this inquire we will focus on the processes occurring during the interaction
between the clusters and radiation, adopting as paradigm the laws of Newton.

The description of an elementary quantum state transition can be expressed in
terms analogous to Newton’s first law:

§ 36 (The quantum version of Newton’s First Law)
Every cluster continues in its state of (chemical) rest, described by a stationary
wave function, unless it is compelled to change that state by forces impressed upon
it.

In the previous Chapters it was shown that quantum-relativistic forces arise as
consequence of the taut constraints, which arise when the clusters interact with
electromagnetic radiation, thus causing the collapse of its wave function, and its
replacement by another new one.

These interaction processes, identified with the phenomena of emission and
absorption of radiation by the components of the perfect vapor, are referred to by
the expression elementary processes of quantum exchange.

7.2.1 Entropy variation due to chemical reaction
According to the principle of conservation of action, equations (5.10)–(5.11) can
be written in the form:

∆α` = ∆m`c∆q+ ıh,
∆α∗` = ∆m`c∆q− ıh. (7.1)

4This simplification is justified by its consequences.
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According to the Boltzmann principle, variation of entropy corresponds to
change on the volume ∆α of the phase space, which, according to equations (7.1),
is not a scalar, but a complex entity. Hence, an elementary change of the entropy
is expressed either by the expression Ln(∆α`), or Ln(∆α∗` ), where Ln designates
the complex logarithm function.

The variation of the volume of the phase space just described is discrete, oc-
curring in increments or decrements h. When described in terms of dimensionless
quantities, it changes in steps of one imaginary unit.

Note that the equations (7.1) reproduce the expressions of the operators of
creation and annihilation of particles in a quantum state5.

This allows conclude that the quantum-relativistic equations (7.1) describe the
way an elementary process of quantum exchange induce the cluster of the L-phase
to eject (destroy or annihilate) one radicle, which thereby is created in (becomes
a member of) the G-phase, while it absorbs (creates) one quantum of radiation
in that cluster. In the opposite phenomenon, a cluster (creates) “absorbs” one
radicle from the G-phase, concomitantly emitting (annihilating) one quantum in
radiation. Such explanation of an elementary quantum state transitions suggest
the following conjecture:

The previous considerations describe a chemical reaction, It can be ex-
plained in terms of a different interpretation of the current tenets of quantum
theory, where from the description of the creation and annihilation processes
derive.

7.3 On the equilibrium of the perfect vapor
The second quantization rules of annihilation and creation, respectively6,

â` ΨN1N2...N`...⇒
√

N` ΨN1N2...N`−1... (7.2)
â+` ΨN1N2...N`...⇒

√
N`+1 ΨN1N2...N`+1... (7.3)

does not describe an identity but a process, in fact, a quantum state transition in
which we are not entitled to assume that a particle is added to the many-body
system, coming from nothing. Instead we are allowed to assume that it comes
from elsewhere. The same interpretation holds for the effect described by the
annihilation operator.

In equations (7.2)-(7.3) I used the symbol⇒, instead of the identity symbol
“=” adopted in the literature, to emphasize that action of the ladder opera-
tors

{
a,a†

}
is not described by an identity a = b, as understood in ordinary

5See §41 in [18].
6Eqs. (64,6) and (64,9), are transcribed, respectively, from §64 [29].
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algebra, where it is said that we can interchangeably use either a or b in
any equation. Instead, its meaning is similar to those symbols used in the
description of chemical reactions. The wave functions at the left-hand side
of the equations above are understood to collapse, giving rise to the new
wave functions at their right-hand side. Furthermore, these processes are
irreversible.

Furthermore, according to Born’s interpretation of the wave-function Ψ`, the
quantum state transition, referred to by action of the ladder operators (7.2) and
(7.3), describes a random event, which implies assuming that a dynamic variable
(in this case, the state occupancy number r`) changes erratically under the action
of the elementary processes of quantum exchange. We can then conclude that its
eigen-value r̄`, will not be attained as a consequence of a single step quantum
state transition, but, according to the Law of Large Numbers, only after the con-
summation of a large number of stochastically independent recurrence of these el-
ementary processes approaches the relaxation time characteristic of the substance
in that thermodynamic state.

7.4 Elementary changes on dynamic variables
The distribution of the total number N of radicles in the perfect vapor, by the G-
phase and the clusters of the L-phase, is an instance of the classical combinatorial
problem of distributing balls in cells [30].

In our case, there is a compromise between the quantity NG of radicles in the
G-phase, and the energies ε` stored in the L-phase: which are bounded by the
total energy E of the perfect vapor.

The current approach of statistical mechanics to the Bose and Fermi statis-
tics is based this compromise. That approach is a two step procedure: first, the
calculus of the volume of the phase space is performed, on which either the indis-
tinguishability, or the Pauli’s principle on depending on the nature of the particles,
is imposed.

In the second step, the previous result is subjected to the (here objected) Prin-
ciple of Most Probable Configuration, in which the maximum entropy is sought
for a fixed number N of particles and a fixed amount of energy E [4]. If, instead,
we seek for the minimum energy E for fixed N and fixed entropy S (assuming that
indistinguishability and Pauli’s exclusion determine equilibrium conditions), we
would obtain exactly the same result. The formulation of the infinitesimal energy
change in terms of the Lagrange’s indeterminate multipliers method, allows both
interpretations.

We will adopt here two different approaches. To calculate the equilibrium en-
tropy in Chapter 8, we will state, in agreement with Einstein’s hypotheses adopted
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for absorptions and emissions in his 1917 paper, and Prévost’s law of exchanges,
that emissions and absorptions must compensate each other in the thermodynamic
equilibrium state.

To describe the state transition condensation or evaporation kinetics we will
translate in Appendix C the conditional probabilities determined by quantum me-
chanics, which characterize the creation and annihilation processes, as the laws
of change of Markovian birth and death stochastic processes, which give the time
varying PDF of the random number of occupancy in quantum states of the clusters
of the L-phase.

7.5 The laws of probability
The number of radicles in a chemical substance is too large to be handled by mea-
surement or by calculus. It is therefore sensible to adopt the statistical approach
described in § 43, in which the Principle of Molecular Chaos is replaced by Born’s
quantum mechanical interpretation of probability as the product ψψ∗ of the wave
function ψ .

Since the radicles of the perfect vapor are grouped randomly into clusters,
instead of inquiring about the instantaneous values of the r`(t) of the individual
degrees of freedom of the radicles, we will focus on the time evolution of their
probability distribution functions7.

7.5.1 Transmutation and radicles migration
The chemical changes a given cluster undergoes are expressed by the variation of
the random number r`(t). These changes are necessarily discrete, caused by the
elementary processes of quantum exchange that act on the cluster `. Since these
changes are chemical reactions, they are relativistic.

We regard the rules imposed by the operators (7.2) and (7.3), as the trials of a
combinatorial game of chance, whose outcomes, abstractly described in the § 37
and § 38, can be restated in terms of the following statements:

§ 37 (Emission of one Quantum of Action by a Cluster: Condensation)
When a cluster is compelled by the combined quantum taut constraint to emit one
quantum of action, the same magnitude is transferred from one radicle of the G-
phase to radiation, and this radicle undergoes a transmutation process of time
duration τe, during which it is incorporated into that cluster. The position and
momentum degrees of freedom of the radicle, originally independent when in the
G-phase, become conjugated inside the cluster, as the consequence of the action

7Henceforward we will adopt the acronym PDF to designate a probability distribution function.



64 CHAPTER 7. MOLECULAR MECHANICS

of the elementary process of quantum exchange that causes the following change
on its population,

r`(t)⇒ r`(t + τe)+1, hence, NG⇒ NG−1. (7.4)

It can be said that the radicle of the gas phase of the vapor decays to its liquid
phase, in an elementary condensation process.

§ 38 (Absorption of one Quantum of Action by a Cluster: Evaporation)
When the cluster absorbs one quantum of action from radiation, one radicle of the
L-phase is transferred to the G-phase though a process of duration τa. Its position
and momentum degrees of freedom, originally conjugate, become independent and
unpredictable, according to the transmutation elementary process that causes the
following change on its population,

r`(t)⇒ r` (t + τa)−1, hence, NG⇒ NG+1. (7.5)

The transfer of one radicle from the liquid to the gaseous phase is known as
an elementary process of evaporation.

In both of these cases, there occurs a process known as the collapse of the
wave function ψ`, caused from the outside, when the cluster ` and a radicle “fall”
into a quantum taut constraint.

The internal state of a cluster cannot be perceived by humans because it is a
stationary configuration hidden inside the Minkowski subspace. Only its change,
manifest in the variation of the G-phase concentration can be, in principle, ob-
served by us, because it occurs in the observable Newtonian space-time we are
biologically endowed to perceive.

7.6 The natural convergence to eigen-states
Creation-annihilation operators occur when a cluster interacts with radiation. A
real cluster is not endowed with the faculty to perform by itself the convergence
to its eigen-value (equilibrium) population. Its convergence to the final state of
equilibrium is the result of the incessant action of the elementary processes of
quantum exchange on its internal state.

In vitro, i.e. during the calculation by computer algorithms, that artificially
implement the process prescribed by Axiom 3, the convergence to its eigen-value
is attained. This axiom suggests the false idea that the convergence to the eigen-
state is a single-step process.

In natura, instead, convergence is not a single step process. The phase transi-
tions the L-phase undergoes are caused by the action of a large number of stochas-
tic processes of creation-annihilation acting on its clusters, which are known to be
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mutually independent. As opposed to quantum particles, humans, after learning
quantum theory, become endowed with the faculty to preview the eigen-states of
a dynamical variable that characterizes equilibrium, by artificially performing the
algorithms of calculus prescribed by the solution of Schrödinger’s space alone
equation.

Differently, a natural cluster evolves undergoing erratically the recurrent stochas-
tic processes of creation-annihilation until the system attains its stationary state
of statistical fluctuation around the equilibrium state.

7.7 Reinterpretation of Axiom 3
According to Axiom 3 of the current tenets of quantum mechanics, when the
system is subject to a measurement process its wave-function collapses, and its
dynamic variables are “forced” to assume the eigen-values of their corresponding
operators. The dynamic variable of a cluster is its population r`(t), whose value
is determined by the combined action of the three above mentioned elementary
stochastically independent processes.

The value of the population r`(t) that is meaningful for thermodynamics is
not that obtained as the result of a measurement made at the an arbitrary instant t,
but the average asymptotic value r̄, for t→∞, that corresponds to the equilibrium
state of the perfect vapor.

§ 39 (Equilibrium)
The equilibrium between a cluster ` and radiation is attained when,

lim
t→∞

r`(t) = r̄.

In practice, the asymptotic value r̄ is attained after elapsed the relaxation time
characteristic of the clusters of the substance considered.

The values of the occupation random numbers r`(t) are

The forces that cause the changes on the internal state of a cluster come
from the outside, arising when it happens to be subject to the taut constraint
∆p∆q = h, that “triggers” an elementary processes of quantum exchange.

Hence, the actions hνmn = hν∗nm were fused into certain Hermitian matrices
of quantum theory. This expedient allowed the derivation, by humans, of arti-
ficial algorithms for the calculation of eigen-values or eigen-vectors. However,
as already commented in Section 7.6, these artificial algorithms not necessarily
represent the spontaneous, intrinsic natural faculty the perfect vapor is endowed
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with, by the relativistic nature of the elementary processes of quantum exchange,
to move towards its equilibrium state.

The merge of creation and annihilation into a single matrix reflects the tacit,
although false, assumption that they are not stochastically independent. The fore-
going considerations led me to blame this merge for the mistaken conclusion that
quantum theory is unable to preview the time asymmetry of such natural pro-
cesses.

Statement § 39 differs from Axiom 3, in that it assumes that the value r̄` is the
result, not of an instantaneous (or almost so) collapse of the wave function
of the cluster in the case of an observation or of a measurement, but after
being recurrently modified by the incessant action of stochastic absorptions
and emissions elementary processes, which conduct the system erratically
towards its equilibrium state, independently of its initial state.

7.7.1 Statistical equilibrium
As I have already shown [7]:

It is the persistent action of the stochastic processes of absorption and emis-
sion that lead the quantum system to its equilibrium state.

The variations (6.12) of the actions are assumed to correspond to the three mu-
tually independent stochastic phenomena involved in the absorption and emission
of a photon, or vice-versa, depending on the system in focus, whether radiation
itself, or the gas of material particles, characterized respectively by the variation
of their actions,

∆α = ∆αq and ∆α
∗ = ∆αp,

Hence the effects of the elementary processes of quantum exchange on the
state of motion of the gas will be neutralized only statistically, when the average
actions accumulated during these processes compensate each other, i.e., when
they attain the following condition of stochastic equilibrium, which, according to
the Law of Large Numbers, is attained only after the relaxation time has elapsed:

〈∆α〉Relax = 〈∆α
∗〉Relax. (7.6)

Since expression (7.6) describes the thermodynamic equilibrium, it will be
used in Section 8.3 to evaluate the entropy of the perfect vapor.

We can then summarize the results above:
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The connection of Planck’s constant h with the imaginary part of the com-
plex representation of the variation of action, gives physical meaning to both
the constants, h and the imaginary unit ı, revealing the quantum-relativistic
character of the elementary processes of quantum exchange, that correspond
to the absorption and emission of quanta by the material particles, mathe-
matically described by the non-commutative operators of the creation and
annihilation.

7.7.2 The L-phase as a “gas” of clusters
From the previous considerations, we propose a tentative description of the L-
phase of the perfect vapor as a gas of certain entities, imagined as many-body
systems, composed, in their turn, of particles of the perfect vapor “entangled”
with each other, thus forming a many-body system.

An image of the L-phase of the perfect vapor can then be depicted as a ran-
dom number L of clusters, where the cluster ` is a many-body system com-
posed of a random number r` of radicles of the perfect vapor, characterized
by a quantum number `.

To describe the formalization of the abstract system of bosons, in terns of
the random variables L and r`, in agreement with de the description of the
current tenets of statistical mechanics, BEFORE apply it to the perfect vapor.

The number radicles in the L-phase, in each instant, is therefore a random
number SL, given by the sum,

SL = r1 + r2 + · · ·+ r` · · ·+ rL. (7.7)

Equation (7.7) characterizes a compound process. If we denote by β (s) the
generating function (GF) of the probability distribution function (PDF) of the
random variable r`, and by g(s) the GF of the PDF of the random variable,
SL, then its compound PDF is given g(β (s)) [30].

Furthermore, according to the definition § 12, this function is an exclusive
function of θ . Hence, for s = θ , we have,

g(s) = g(β (θ)). (7.8)



Chapter 8

Ladder Operators and Entropy

Summary

In this Chapter the particles in Brownian Movement are considered to be in
persistent interaction with a heat reservoir.

This approach depends on the extension of Boltzmann’s entropy to properly
reflect the relativistic nature of the interaction processes, that are ruled by
the laws of change determined by the Bose character of the agents defined
by equations (6.8) and (6.9), and shown that they are responsible for the
changes caused on the volume of the phase space.

8.1 The Bose character of radiation
It can be verified that:

Equations (6.8) and (6.9) are the complex algebra representatives of the
creation and annihilation dimensionless operators {a†,a} that characterize
the Bose–Einstein statistics.

Equations can be derived from (4.8) and (4.9), can be rewritten in the dimen-
sionless form,

∆α

h
=

∆mc
h

+ ı, (8.1)

∆α∗

h
=

∆mc
h
− ı, (8.2)

which reveals that the elementary processes of quantum exchange increase or de-
crease the dimension of the phase space by one quantum unit.
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8.2 The interaction {matter⇔ radiation}
To properly represent the action developed during the elementary processes of
quantum exchange, we will adopt the complex quantities (8.1) and (8.2) to ex-
press both the inner and outer products in a single mathematical unit. It provides
a clear differentiation between the variation of the action during these processes
from its corresponding classical, expressed by inequality (5.9).

The volume of the phase space of the gas is then revealed to be represented
by a complex number, thus extending the definition of Boltzmann’s entropy. For
the particles moving in the classical subspace of the phase space, ∆α j > h, the
entropy is given by

S j = ln
(
∆p j ·∆q j

)
.

Denoting by ∆α
(
a†) and ∆α (a) the variation of the action, generated by the

operators (6.8) and (6.9). We can write the variation of the entropy by substituting
the scalar by the scalar the complex logarithmic function (Ln) in the Boltzmann
principle1, when the gas absorbs or emits one quantum,

Sk =

{
Ln
[
∆αk

(
a†)] = Ln [(∆pk ·∆qk)− ı(∆pk×∆qk)] ,

Ln [∆αk(a)] = Ln [(∆pk ·∆qk)+ ı(∆pk×∆qk)] .

In summary,

S j = ln
(
∆p j ·∆q j

)
, for

(
∆α j > h

)
, (8.3)

Sk =

{
Ln
[
∆αk

(
a†)] = Ln [(∆pk ·∆qk)− ı(∆pk×∆qk)]

Ln [∆αk(a)] = Ln [(∆pk ·∆qk)+ ı(∆pk×∆qk)]

}
, for (∆αk = h) .(8.4)

8.3 Equilibrium formation processes
Since the elementary processes of quantum exchange involve force-like agents
that cause the changes on the motions of the particles of the gas, we have some
reason to believe that they are the main responsible for the processes of equi-
librium formation in the perfect vapor. An amendment to Boltzmann principle,
referring to the equilibrium condition, expressed in terms of the balance between
absorptions and emissions of quanta by the particles of the perfect vapor, is here
proposed.

1In the following expressions the superscripts c e q designate the classic e quantum behaviors,
respectively. The signals of the equations (8.4) depend on the system to which they refer, if
radiation or the gas.
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The elementary processes of quantum exchange are the responsible for the
variation of the dimension of the phase space. Since they are stochastic and in-
dependent, they cause a fluctuation of the volume of the phase space, that corre-
sponds to the variation of the entropy of the perfect vapor.

The change of the entropy caused by the “combination” of the two opposite
processes of absorption and emission, is given by the amount,

Ln
(

a†
k

)
−Ln(a j) = Ln

[
(pk ·qk)− ı(pk×qk)

(p j ·q j)+ ı(p j×q j)

]
. (8.5)

Denoting the quotient,

ϑ =
p×q
p ·q

(8.6)

we can rewrite equation (8.5) in the dimensionless form,(
a†

k
a j

)
=

1− ıϑk

1+ ıϑ j
. (8.7)

Since the entropy of the perfect vapor is given by (3.2), equation (8.7) can be
rewritten in terms of the single magnitude θ :

Both the quantities ϑk and ϑ j are described by the same PDF. We can then
replace the quotient (1−ϑk)/(ϑ j) by a function g(θ) of a single argument
θ , and rewrite (8.7) in the form,

S = ıLn

(〈
a†
〉

〈a〉

)
= 2arctan(g(θ)) . (8.8)

Equation (8.8) is insufficient to determine the entropy of the perfect vapor. As
pointed out in Section 2.3.1, the functional form of g(θ) depends on the matching
of two frequency spectra, namely, of radiation and of the characteristic of the
chemical substance. Hence, we cannot predict the thermodynamic properties of
the perfect vapor, unless the frequency spectrum of the radiation with which it
interacts is given. To properly characterize its thermodynamic properties, it is
convenient to establish, by convention, a standard radiation spectrum, an issue
that is the subject of Chapter 9.

8.4 Potential Theory of the Equilibrium in the L-
phase

According to Krönig’s description of the motion of a particle in the gas, the trajec-
tory of a particle between two consecutive elastic collisions is inertial, with length
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∆q and constant momentum p. Such edge F of the polygonal line, · · · FCFCF · · ·,
can be represented by a free (slide) vector, as in Perrin’s analysis of the Brownian
movement [20]:

Une autre vérification plus frappante encore, dont je dois l’idée à
Langevin, consiste à transporter parallèlement à eux-mêmes, les dé-
placements horizontaux observés, de façon à leur donner une orig-
ine commune (. . . ) Cela revient à considérer des grains qui auraient
même point de départ.

After sliding to the point +ı of the complex plane the origins of the free vec-
tors corresponding to the actions developed by a particle immediately after the
absorption of a quantum from radiation; and sliding to the point −ı of such plane
the end points of the free vectors immediately before the emission of one quan-
tum, we can recognize in equation (8.5) the representation of the flux of quanta in
the perfect vapor, with a source in the point +ı and a sink in the point −ı of the
complex plane.

The description of such flux can be seen in fig. 111, Ch III §2, p. 252 [31].



Chapter 9

Principle of Frequency Matching

Summary

This Chapter treats of the incapacity of The Kinetic Theory of the Perfect
Vapor to provide a complete description of the vapor state of a chemical
substance.

In the previous Chapters I showed that Bartoli’s reformulation of thermo-
dynamics allows obtain a relativistic kinetic theory of a system of material
particles, denoted by the Perfect Vapor. The quantum hypothesis was then
introduced as a consequence of the taut constraint ∆p∆q≥ h, which allowed
derive its thermodynamic representation in terms of the ladder operators.
With the reinterpretation of the relativistic role of time in quantum theory it
became possible to explain the time asymmetry in thermodynamic phenom-
ena, and reveal the hidden forces involved in the entropy formation.

However, this approach does not provide the theoretical elements required
to predict the set of clusters that compose the L-phase of any given chemical
substance, i.e., its liquid phase. As can be easily seen, the variety of clusters
existing in the L-phase, are given by the molecular structure of the radicle,
itself, and of the variety of clusters it can engender.

The liquid phase is still largely a terra incognita. The entropy of a chemical
substance can be, in principle, inferred from their absorption-emission spectra.
However, the hypotheses proposed to explain the liquefaction processes, notably,
clustering and nucleation, lead to different theories of entropy formation.

The analyses of rotations and vibrations of parts of the radicles and clusters
constrained by the different articulation points formed inside the molecules, have
been the main sources for predicting the absorption/emission spectra of the vapor.
As pointed out in § 10, neither these procedures, nor the methods to calculate
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the contribution of nucleation, formulated by Kelvin and Gibbs, shown to be in
conflict [32], can explain the origin of the term fσ (θ) in the EOS of the perfect
vapor.

9.1 Incompleteness of thermodynamics

With the development of spectroscopy the measurements of the frequencies or
wavelengths of radiation became subject of intense examination, which led to the
representation of the hydrogen series in terms of functions of integer numbers by
Balmer. After Bohr proposed a theory of the hydrogen atom capable to derive
the Rydberg well known formula, ν = cR

(
1
n2 − 1

k2

)
from few postulates, the em-

pirical knowledge accumulated by spectroscopy found a speculative explanation,
expressed in terms of the quantities in Bohr’s theoretical redefinition of Rydberg
constant, R = mHe4

4πch2 , where mH is the mass of hydrogen. The measurement of
the numeric values of these constants, characteristic of atomic phenomena, were
obtained by methods independent of spectroscopic analysis, thus representing a
major breakthrough in the empirical foundations of quantum theory.

9.2 Varieties of Spectra

Except for the particular cases, such as the black-body radiation, we cannot pre-
view the thermodynamic properties of an arbitrary radiation or of any given chem-
ical substance, unless their respective frequencies spectra are given.

To characterize the thermodynamic properties of a chemical substance, a con-
vention is required, by choosing a standard, for instance, the spectrum of the
black-body radiation, as arbitrarily adopted in this Chapter.

The indeterminacy of the entropy of the perfect vapor persists even in the
equilibrium equation (8.8), which remains unknown until the generating func-
tion g(θ), is given. As pointed out in Section 2.3.1, that function depends on
the matching of the two frequency spectra that characterize the radiation and the
chemical substance.

9.3 Frequency spectrum of a discrete fluid

Kirchhoff’s approach to spectroscopy revealed that the character that differen-
tiates one chemical element from the others in the periodic table is its frequency
spectrum, which was later shown to be determined by the set of its quantum states.
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This same character was shown to hold for chemical substances, i.e., the fre-
quency spectrum is an individual identity of each substance. Hence, the descrip-
tion of the thermodynamic state of a chemical substance is incomplete until its
characteristic frequency spectrum is known.

9.3.1 Metastable States

When black-body radiation interacts with a chemical substance the latter will be
eventually conducted to its fundamental state of stable equilibrium, under the
quantum taut constraint. The spectrum of a different radiation might neither cause
any change in the thermodynamic system, nor lead it to its fundamental state of
equilibrium. It can, instead, conduct the system to some state of metastable equi-
librium.

The specification of the radiation spectrum is particularly important when
the chemical substance can be found in a variety of metastable states, as
it happens with clouds in the atmosphere. Meteorological observation re-
vealed that dry air is transparent to most frequencies of solar radiation,
though sensitive to the heat emitted from the surface of earth, that functions
as a geographically distributed set of frequency transducers, thus leading to
the multiplicity of metastable cloud formations observed.

9.4 The principle of reciprocity

According to the Principle of Conservation of Complex Action (Section 4.1), we
can conclude that the absorption and emission processes are reciprocal.

Besides justifying the Bose character of equations (6.8) and (6.9), this princi-
ple allows develop the analogical reciprocity between the L-phase of the perfect
vapor and the quantum harmonic oscillator, which characterizes radiation.

However, due to its abstract character, we are allowed to specify neither the
molecular structure of the radicles of the perfect vapor, nor the structure of the
clusters they engender in the L-phase. Nevertheless, by assuming the hypotheses
advanced by Einstein in his 1917 paper, we can conclude that the processes in
which photons and the elements of its phases interact, are reciprocal, according
to § 20.

Considering the mutual independence of the absorption and emission pro-
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cesses, equilibrium is settled only when the equation (7.6) is satisfied1,

〈∆α〉
〈∆α∗〉

≈ 1. (9.1)

With these considerations we can take a step towards the statistical equilibrium
of the population of particles in the L-phase of the perfect vapor.

9.5 The principle of the frequency matching
The behavior of a chemical substance in a given environment can only be deter-
mined if both, the frequency spectrum characteristic of the substance, and that of
the incident radiation, are given.

The thermodynamic characterization of radiation confined inside a fixed
volume is given by Wien’s displacement law (or equation (2.5), derived in
Chapter 2), expressed in terms of an indeterminate function f (u) of the ar-
gument

uhc =
hν

kT
=

hc
λkT

∝
hc
kT

3

√
N
V
.

Note that Wien’s formula suggests that thermodynamics predicts the exis-
tence of a variety of spectra described by the same argument uhc.

9.5.1 The algebra of frequency matching
By adopting the symbols of set theory algebra, let us denote by R the frequency
spectrum of the environmental radiation, and by L the frequency spectrum of the
chemical substance in consideration.

We then define the susceptibility S of the given substance to this particular
radiation by the set intersection, S= R∩L.

When the S 6= /0, we say that the substance is susceptible to radiation R, oth-
erwise, that it is transparent to it.

9.6 The black-body radiation as a standard
Recall that a thermal reservoir is defined in classical thermodynamics as a system
endowed with infinite heat capacity, characterized exclusively by its temperature,
which is maintained constant whatever the changes that occur in the system with

1The symbol “≈” is here used to denote the fluctuation between the values of the quantities
involved.
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which it interacts. It is known, however, that the heating process of a chemical
substance is determined, not only by the temperature of the heat source, but also
by its sensitivity to the frequencies of the radiation spectrum.

Hence, to be complete, the definition of the heat bath in thermodynamics must
specify its frequency spectrum. Thermodynamic practice therefore had, I pre-
sume, to adopt tacitly as the standard radiation spectrum, that of the black-body
radiation.

9.6.1 The Indeterminate character of Wien displacement law

The argument uhc plays the role of a functional of the probability distribution
function of the environmental radiation. According to this formula the frequency
spectrum of heat is indeterminate. Hence, it must be treated as arbitrary and spec-
ified for each particular case studied. Planck determined the functional form of
f (uhc), which is exclusive of the particular case of black-body radiation.

Being a functional of Wien’s2 chromatic distribution, except for the black-
body, temperature alone cannot determine the frequency spectrum of radiation.
However, I presume, it has been a common practice to confuse the electromagnetic
radiation with the set of Planck’s resonators, and to adopt its frequency spectrum
as paradigmatic for the characterization of chemical elements and chemical sub-
stances in thermodynamic analysis.

9.6.2 The equations of the Planck resonator

The PDF of the occupancy number random variable r` is well known from the
description of radiation in terms of the quantum harmonic oscillator. Its generating
function is usually expressed in the form of its partition function3,

β (s) =
1
2

csch
(

hν

2kT

)
. (9.2)

This implicit “standard”, however, is unrealistic, for there is an infinite variety
of radiation spectra, depending on the physical nature of their sources. A com-
plete description of radiation for thermodynamical analysis requires the knowl-
edge of the particular spectrum of the radiation with which the specific system
under analysis interacts. Furthermore, no chemical substance is susceptible to the
frequencies outside the set of the spectrum determined by its molecular structure.

2Planck’s distribution is a limit instance of Wien’s indeterminate spectrum.
3Recall Section 2.3, where it is shown that the characteristic argument of the entropy of radia-

tion is ς = hc, so that s = hν

2kT .
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9.7 Migration of radicles between phases
In the finite time during which the perfect vapor exchanges a quantum with radia-
tion, one of its molecules, under the action of the laws of the creation–annihilation
operators, is exchanged between the phases G and L. Such processes are recur-
rent, leading the perfect vapor to equilibrium, when absorptions and emissions
compensate each other.

The interpretation of the creation-annihilation operators cannot therefore be
taken literally as the agents of a process during which a particle is created from
nothing, or annihilated to nothing, but the agents that cause the exchange of a
particle between the G and the L-phases (See § 23 and § 24).

In the exchange of heat between matter and radiation, the photon that is ab-
sorbed by the gas was emitted by the heat reservoir, and the photon emitted by
the gas is absorbed by that reservoir. We can then conclude that the occupation of
photons in quantum states of radiation correspond reciprocally to the occupation
of particles of the gas in the L-phase, i.e., the form of the partition function for
particles in the cluster of quantum number ` is the same for photons in the quan-
tum state `, however with a different argument s of the function β (s) in (9.2),
corresponding to particles with mass. We therefore put s = θ , obtaining,

β (s)⇒ 1
2

csch
(

θ

2

)
, (9.3)

as expected from definition § 12. Hence, the expression of the GF of the random
variable SL is given by,

g
(

1
2

csch
(

θ

2

))
.

9.7.1 The compound generating function of the L-phase
The generating function g(s) of the random variable SL, according to the theory
of compound distribution processes, is given by the generating function of the
L-phase of the perfect vapor, namely, the extended Boltzmann entropy, (8.8),
discussed in Section 7.7.2.

Due to the equation (2.7) that defines the entropy of the perfect vapor for
ς = h, we conclude that the quantity ϑ , defined in (8.6), must be expressed in
terms of a function ϑ(θ) of θ . Hence, the relation (8.8) can be written in the
form,

arctan
(
ϑ j
)
= arctan(ϑ(θ)) .

In the particular case in which the perfect vapor is under the influence of black-
body radiation, the function ϑ(θ) is given by (9.3), which gives the generating
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function of the thermodynamic properties of the perfect vapor’s L-phase, that, in
its turn, describes a compound process,

SL
k

=

{(
j+

1
2

)
π− arctan

[
2sinh

(
θ

2

)]}
, (9.4)

where the integers j = 1,2, · · · might represent the contribution of some yet unex-
plained phenomenon.

9.8 The equation of state of the perfect vapor
From the entropy (9.4) it was possible to derive the function,

f (θ) =
θ

2
sech

(
θ

2

)
, (9.5)

which appears in the equation of state (3.4).
As shown in Appendix D, after removing the influence of the supposedly con-

tribution of the nucleation processes that give rise to the L (liquid)-phase from
steam pV T data, their adherence to a single curve in the θ × ζ plane (fig. D.2)
is noteworthy. It is then justified to confront the theoretical expression (9.5) with
these data.

Since the theoretical function f (θ) is an odd function4, it can explain the
remarkable half-turn symmetry observed in the vapor region of steam. Besides, it
reveals that the observed adherence to a single curve, depends on the translation
of the origin of (9.5) to the center [θm,ζm] of symmetry in the experimental curve,
localized in the mid-point of the segment AB. The non-negligible dispersion of
points around the point B = [θ ∗,ζ ∗], and the low accuracy method used for its
determination impedes the accurate location of this point in the graphics.

With these empirical evidences, the entropy (9.4) of the perfect vapor, can be
rewritten in the form,

SL
k

=

{(
j+

1
2

)
π− arctan

[
2sinh

(
θ −θm

2

)]}
,

where j is a constant whose presence, although mathematically justified, could
not be explained by me.

4This finding might justify the notion of quasi-particles in dealing with certain many-body
problems.



Chapter 10

Amendments to The Axioms of
Quantum Mechanics

In this Chapter it is intended to show how the present kinetic theory of the perfect
vapor can contribute to our understanding of the interaction of matter and radia-
tion. Our purpose is to improve the empirical contents of the axioms of quantum
theory to more properly support the speculative assumptions, and avoid confusion
and controversy.

10.1 Epistemological order of physical knowledge
In the following we summarize our attempts to reorder the epistemological chain
that connects observation to quantum theory, after the results hitherto obtained:

1. In Section 4.2.1 its was shown that the analysis of the equilibrium between
the perfect vapor and radiation according to Bartoli thermodynamics reveals
that its corresponding kinetic theory, constrained by the second law, is rela-
tivistic.

2. In Section 5.8 it was shown that the conjugation process, which takes place
during an emission of quanta by a cluster, endows Planck constant with the
faculties of a (Hilbertian) differential operator, which leads to restate the
Axiom 5 of quantum theory in terms of these operators.

3. In Section 6.2 the relativistic energy conversion processes were shown to
obey the ladder operators rules.

4. In Chapter 8 the main departure of the thermodynamic behavior of the per-
fect vapor from the ideal gas law was determined.
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5. In Appendix C it was shown how the ladder operators determine the laws of
change of the probability distribution functions of the occupancy numbers
of the clusters that compose que L-phase of the perfect vapor.

6. Furthermore, the discrete nature of the taut constraints ∆p∆q ≥ h imposed
on the motion of the molecules, revealed by spectroscopy, must be added to
complete both the thermodynamic and the kinetic theoretical description of
the perfect vapor, a target still unattained.

10.2 The Axioms of quantum theory

Before presenting the amendments suggested by this approach to the axioms of
quantum theory, let us recall their current formulations as proposed by Chpol-
ski [18]:

Axiom 1 Les états du système de la mécanique quantique se décrivent
par de vecteurs |ψ〉 de l’espace hilbertien abstrait.

Axiom 2 Aux variables dynamiques de la mécanique quantique on
fait correspondre des opérateurs linéaires et hermitiens F agissant
dans l’espace hilbertien des vecteurs d’états.

Axiom 3 Les seuls résultats possibles des mesures de la variable dy-
namique donné dans l’état défini du sytème sont les valeurs propres
de l’opérateur associé F.

Axiom 4 La probabilité Wψ( f ) d’obtenir par mesure la variable dy-
namique F dans l’état |ψ〉 la valeur est donné par la formule Wψ( f )=
|〈 f 〉|2 où f est le vecteur propre de l’opérateur F appartenant à la
valeur propre f .

Axiom 5 Aux coordonnées x j et aux impulsions p j ( j étant le numéro
du degré de liberté) correspondent dans le système de la mécanique
quantique les opérateurs X j et P j satisfaisant aux relations de com-
mutation

X jPk−PkX j = ıh̄δ jkI (10.1)

où h̄ est la constante de Planck.
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10.3 The Amendments to the Axioms
The central point of the present reformulation is in the Axiom 5, where the three
main foundational elements of quantum mechanics, namely, (a) the Planck con-
stant, (b) the imaginary unit ı, and (c) the commutation rule, are introduced. As
shown in Section 4.2.1, both the imaginary unit and the commutation rule, essen-
tial to give thermodynamic and chemical meanings to the creation and annihilation
operators, derive from special relativity. The only addition to the relativistic for-
mulation prescribed in equations (4.8) and (4.9) required to introduce the Planck
constant, is the taut constraint, ∆p∆q ≥ h, which enters together with the imagi-
nary unit in (10.1).

From the above amendment to Axiom 5, Axiom 1 derives as a corollary.
Axiom 1 is necessary for the formulation of the differential equations of quan-

tum mechanics. The above mentioned amendment to Axiom 5 introduces the most
fundamental evidence (well confirmed by experience), that the universe where
the elementary microscopic processes evolve, has the Minkowskian structure of
space-time.

The wave function Ψ(x, t), can always be decomposed into two [6], Ψ(x, t) =
ϕ(t)ψ(x). With the above interpretation, the functions ϕ(t) and ψ(x) acquire the
following meanings:

The time variable function ϕ(t), that is affected by the imaginary unit “ı”,
will be here interpreted as mere manifestation of the relativistic nature of
the state transition phenomenon of absorption and emission of radiation by
the particles of the gas. The function φ(t) is then replaced by the equa-
tions of the Markovian birth and death stochastic processes, whose laws of
change are derived from the conditional probabilities specified by the cre-
ation and annihilation operators, as is currently derived from coordinate
alone Schrödinger equation of the harmonic oscillator.

As shown in Chapter 3, the G-phase is defined in a time-varying Euclidean
space, described by classical mechanics. The clusters in the L-phase were shown
to be stationary systems, each one described by a single time-independent (space
only) wave function, i.e., a quantum many-radicle system, defined in the Minkowski
timeless 4-space domain, thereby non-observable.

Observable inferences about the internal structure of the quantum many-radicle
system becomes possible only when a transient elementary processes of quantum
exchange occurs, during which a chemical-like reaction takes place. Such process,
ruled by the laws of absorption and emission, causes a change on the population
of particles in the phases of the thermodynamic system. Since these processes
cause corresponding changes on the thermodynamic state of the system, these
phenomena become, in principle, observable.
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This possibility exempts mechanics of molecular systems from having re-
course to the interference of observers or instruments, provided experimentalists
are entrusted to avoid their influences.

Axiom 2
This postulate is the consequence of the new type of limit introduced in Sec-
tion 5.8. The mentioned correspondence is no longer stated dogmatically, but,
instead, as the result of this new type of limit that has been implicitly smuggled to
differential calculus by the current tenets of quantum mechanics.

The Taut Constraints
The taut constraints, defined by relations (5.4)-(5.5), are interpreted according to
the unconventional limit transformations (5.14) that imply the existence of a PDE,
namely, Schrödinger equation, that couples (conjugates) p with q.

The current understanding of a chemical reaction imposes on any theory of
quantum phenomena to recognize that classical degrees of freedom, namely po-
sition and momentum, are not persistent: the reactants’ degrees of freedom are
destroyed and new ones, with unpredictable values, are created in their products
(See § 23 and § 24). These processes give rise to statistical indistinguishability and
Pauli exclusion rules in many-body quantum systems.

Axiom 3
The statement “The only results of the measurement of the dynamic variable”
in this axiom, is replaced by “The results of the measurements of the dynamic
thermodynamic variable in the equilibrium”.

The current formulation of Axiom 3 refers to an unspecified artificial method
of calculus of these values to be performed by physicists. It does not describes
the real processes that occur in nature. In the latter, equilibrium formation is
described by a natural nondeterministic procedure of calculus of eigen-values,
that results of the reiteration of three stochastic, mutually independent, processes,
described by the ladder operators which, in their turn, as expressed in terms of
conditional probabilities. As I have shown [7], these uncorrelated processes lead
the systems of Bose, Fermi, and Boltzmann particles to converge asymptotically,
with Arrhenius rates, to the mentioned eigen-values, after elapsed a finite time
known in thermodynamics as the relaxation time.
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As a corollary of this axiom it follows that the indistinguishability and Pauli
exclusion principles, hitherto assumed to be ontological properties of many-body
quantum systems, can be reinterpreted as mere conditions of thermodynamic equi-
librium. When a quantum system is removed from its equilibrium state, its par-
ticles can be transiently distinguished, and in a given quantum state more than
one Fermi particle can transiently be found. We must refer to the equilibrium
phenomena, not as that of absolute indistinguishability, but as statistical indistin-
guishability in persistent fluctuation.

Axiom 4
Similarly, this axiom should not be interpreted as the description of the phe-
nomenon, but as of the artificial algorithm of calculus of the conditional prob-
abilities whose asymptotic values are given by the mentioned eigen-values.

Further Comments on Axiom 5
Finally, in the amended version of Axiom 5, Planck’s constant is redefined as
an imaginary constant, whose empirical origin is determined by the intrinsically
relativistic nature of the quantum phenomena, described in Minkowski formalism,
thus giving a reliable empirical content that is missing in the current formulation
of Axiom 1, whose amended version, here proposed, turns it a mere corollary of
the amended Axiom 5.

The non commutative relation (10.1) impedes the acknowledgement the al-
gebra of complex representation of ladder operators as a field, for the product
(x+ ıy)(x− ıy) correspond to no natural process, as assumed in § 31, and in Sec-
tion 6.3. It is introduced in quantum theory by the new limit rule (5.14) to describe
the action of the taut constraints

∆p∆q≥ h, ∆E∆t ≥ h, (10.2)

on the state of motion of the particles of a chemical substance. The mathematical
representation (6.8) and (6.9) of the ladder operators in terms of dimensionless
complex numbers are derived in Section 6.2.



Appendix A

Classical Phase Space

Summary

Classical mechanics describes the motion of bodies in the Newtonian uni-
verse, which is devoid of electromagnetic radiation. During its motion, a
system of particles preserves certain collective quantities, thereby important
to be taken into account in the formulation of thermodynamics.

Liouville’s theorem assumes that the Boltzmann principle is valid for hypo-
thetical classical motions, thus leading to a faulty1 definition of entropy, as
an invariant magnitude characteristic of a system of particles.

Thermodynamics imposes on entropy the character of additivity, which re-
quires the existence of an universal constant with the dimensions of action
to render its argument dimensionless.

Furthermore, it states that the entropy of a gas is variable: its value changes
according to the second law, when its material constituent particles interact
with electromagnetic radiation. Thermodynamic phase transitions of chem-
ical substances under the action of heat can only be explained by kinetic
theory if it is assumed that the states of motion of its particles are, them-
selves, susceptible to heat.

A.1 Inadequacy of a Classical kinetic theory of gases
Chemical substances can be found in different metastable states. The varieties
of atmospheric clouds and of snowflakes are evidences of the existence of such

1Some of the properties of entropy are shared with that which can be derived from Liouville’s
theorem. Although devoid of thermodynamic faculties, the definition here introduced might be
useful for pedagogical purposes, mainly by showing how the logarithm function arises naturally.

84



A.1. INADEQUACY OF A CLASSICAL KINETIC THEORY OF GASES 85

states in water, and of the variety of their condensation and solidification paths.
This fact has raised hypotheses about the existence of a memory capacity of water
to retain the vestiges of the road it takes towards the state in which the substance
is found in any equilibrium state, whether stable or metastable.

Observation has revealed that the evolution of the macroscopic state of a gas
described by the thermodynamic magnitudes, such as pressure, volume, temper-
ature, etc., culminates in a stationary state of thermodynamic equilibrium. In the
formulation of the present theory, as has been usual in kinetic theory and statistical
mechanics, we adopt the simplifying hypothesis according to which the discrete
fluid considered has a single equilibrium state. With this assumption we can state:

§ 40 The final state of the system of particles that compose the discrete fluid is
independent of its initial state.

Recall that the motion of the particles described by classical mechanics obeys
the following principle:

§ 41 (Principe de Déterminisme de Newton)
L’état initial d’un système méchanique (l’ensemble des positions et des vitesses
de ses points à une date quelconque) définit de façon unique le futur de son mou-
vement [33].

The striking contradiction between the empirical revelation § 40 and the theo-
retical principle § 41 evidences that classical mechanics cannot explain the motion
of the particles of the gas towards its thermodynamic equilibrium. The general-
ization of this contradiction to substances liable to fall into metastable states of
equilibrium is straightforward.

The principle of molecular chaos
To circumvent the incapacity of classical mechanics to describe thermodynamic
phenomena, Maxwell and Boltzmann found that, by assuming the Principle of
Molecular Chaos, and having recourse to probability theory, specially to the Law
of Large Numbers and the de Moivre-Laplace Theorem, the average values of
velocities and kinetic energies of the particles of a system could be obtained. This
approach established another research program, known as Statistical Mechanics.

Comments on Order and Chaos
In commenting about the philosophical opposition of Chaos to Order, Bridgman
pointed out that the notion of order requires an explicit reference to a context. It
is timely to recall his citation [26]:
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”G. N. Lewis has justly pointed out that it could be possible to formu-
late the rules of some card game so that any arrangement of the cards
whatsoever would be a regular arrangement from the point of view of
that game”.

In my opinion [34], this philosophic issue is connected with the notion of in-
formation, where connection between an emitter and a receiver, required to
give meaning to messages, substantiates the context as a necessity. It is re-
markable that none of these notions has any meaning outside the biosphere,
which led me to conclude that information is an epistemological primitive of
Biology. In fact, no information processor is found outside the biosphere2.
Neither Mathematics, nor Physics, can give it a cogent notion, capable to
scan the variety of fields in which its meaning is required to characterize.

The conundrum of entropy
An inquire on the kinetics of the perfect vapor is justified by the incapacity of
statistical mechanics to give cogent definitions of temperature and heat, and par-
ticularly, by the debatable attempt to explain the asymmetry of time in terms of
the ill-defined Principle of the Most Probable Configuration. Boltzmann, himself,
objected to this formulation [22]:

“I do not think that one is justified in accepting this result without reserva-
tion as something evident, at least not until an exact definition of what we
are to understand by the term ‘most probable distribution’ has been given”.

The objection raised by Boltzmann is cogent. While it is possible to assign
a meaning to the statement most probable value to a set of scalar quantities, de-
fined by the values that a variable can take — in this case, a random variable —
no cogent meaning can be assigned to the statement most probable distribution,
for “distribution” describes the von Mises sample space of a statistical experi-
ment [30]. The drawbacks of the sample space approach to endow a system of
particles with thermodynamic faculties are discussed in Appendix B.

Such confusion led many physicists and philosophers of science to feel uneasy
in acknowledging statistical mechanics as a fundamental theory, neither they seem
to feel more comfortable in treating thermodynamics as a heretical theory to be
banished from physics.

Conformity to the official canons, however, has exerted a strong influence in
the support of the set of axioms on which statistical mechanics is founded, namely,

2To those critics who might argue: “But neither a computer, nor a robot are a living beings!”, I
would answer: “Yes, but their ancestors are. Hence, they are members of the phylogenetic tree.”
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the “principles” of Boltzmann, Indistinguishability, Pauli’s exclusion, and the al-
ready mentioned Principle of the Most Probable Configuration. Such theoreti-
cal program, known as the reduction of thermodynamics to statistical mechanics,
however, seems to be far from unanimity [35],[36]. A way out this conundrum,
which requires slight amendments to the quantum axioms discussed in Chapter 10,
is briefly reviewed in Appendix C.

A.2 The pioneer’s approaches
Once convinced that there is no classical explanation of the equilibrium formation
processes that occur in a real gas, the pioneers of the kinetic theory of gases —
presumably inspired in the Atomistic Doctrine of the Greek philosophers Leuci-
pus and Democritus, and propagated by Lucretius’ poem De Rerum Natura —
attempted to find an explanation of the equilibrium stationary state in terms of the
notion of the chaotic motion of atoms.

The incorporation of the notion of chaos in kinetic theory opened a new road
to the study of the properties of gases. Although useless to describe the tran-
sient processes that lead the gas to the state of thermodynamic equilibrium, it was
shown to be specially appropriate for the study of equilibrium itself. The pur-
pose of kinetic theory became, therefore, to seek not a detailed description of the
trajectories of its particles, but, instead, the thermodynamic properties of gases
(pressure, temperature, etc.), and their correlations, in the equilibrium.

The notion of chaotic motion presumably led Maxwell and Boltzmann to re-
gard the particles of the gas as the moving pieces of a game of chance, such as dice
throwing, coins tossing, or cards shuffling. They might have realized that taking
this road it would be possible to apply the findings of Probability Theory to the
study of the motion of particles in the thermodynamic equilibrium.

This approach led to the Boltzmann principle that equates the phase space
of the mechanical system of particles to the sample space notion of Probability
Theory, thereby anticipating the notion of entropy defined in statistical mechanics.
This theory, however, does not explain how the imposition of the random behavior
in it particles, endows the gas with susceptibility to radiation.

A.3 The Boltzmann principle
The Boltzmann principle presupposes the following hypotheses:

Sample Space. In thermodynamic equilibrium the phase space, de-
fined according to Liouville’s theorem § 42, can be redefined as a
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Sample Space of probability theory, thereby allowing, redefine the
entropy of a system of particles in terms of classical magnitudes.

Asymptotic Conditions. Thermodynamic equilibrium is characterized
by the asymtotic conditions established in proposition § 43.

Coordinates. (In the absence of a gravitational field), the PDF of the
coordinates of a particle in any direction of the space is uniform in
the whole of the extension of the volume V occupied by the gas.

Velocities. (In the absence of a gravitational field), the PDF of the
velocities is characterized by the asymptotic behavior of the random
processes, whose Gaussian distribution is given by the de Moivre-
Laplace theorem, whose first moment is zero (the gas is assumed to
be at rest in the laboratory) and its second moment is determined by
the mean value of the energy (2.1) of the gas.

From the foregoing hypotheses Maxwell and Boltzmann could derive the fol-
lowing macroscopic (hence, thermodynamic) properties of the system of identical
particles of mass m: (a) the density of the gas, given by Nm

V ; (b) the average en-
ergy, E /N; (c) the average momentum,

√
2πmkT ; and (d) the extension-in-phase

(or volume of the phase space), given by the integral [23].

Ω =
∫
· · ·
∫

d p1 · · ·d pndq1 · · ·dqn. (A1)

The angular momentum of the elementary particles (atoms) is usually ne-
glected, except in the case of polyatomic molecules, when they are expressed
in terms of their classical moments of inertia.

A.3.1 The mechanical meaning of temperature

Statistical mechanics adopts, as an axiom, the Boltzmann principle, that defines
the logarithm of the volume Ω of the phase space as the mechanical representa-
tive of the entropy of the system. Being the conjugate of entropy, one might be
persuaded that temperature acquires thereby a mechanical meaning. It is here in-
tended to show that, instead, the physical meaning of temperature is given by the
way heat is defined.

Without any mention to heat, the very idea of temperature behind the Boltz-
mann principle is merely formal, devoid of physical meaning, for it does not lead
to the same consequences previewed by the second law of thermodynamics, spe-
cially the spontaneous tendency of the gas to move towards its equilibrium state.
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To circumvent this limitation, an amendment was added to the Boltzmann
principle, namely, that the system moves towards its state of “Most Probable Dis-
tribution”. In Appendix B an approach to the time-dependent equilibrium for-
mation process, that is independent of the debatable Most Probable Distribution
Principle, is proposed.

A.4 Many-body problem in classical mechanics
The inquiries on the theoretical methods to evaluate the thermodynamic properties
of the gases started with the confirmation that the discrete fluid is an instance of
the problem of N bodies, formulated in the beginnings of Newton’s gravitation
theory, then known as the Lunar Theory3:

To determine the trajectories of the Moon, the Earth and the Sun moving
under mutual gravitational attraction.

It was found possible to simplify the problem by approaching it with lesser
ambition: instead of seeking for trajectories one might be satisfied with study
the simpler case, namely, the thermodynamic equilibrium. In the development of
Newtonian mechanics, four theorems referring to characteristic collective mag-
nitudes — hence thermodynamic — of a system of particles have been proved.
Three of them refer to the conservation of energy, momentum, and angular mo-
ment. The fourth, which is usually detached from these three in the treatises on
Classical Mechanics, is Liouville’s theorem that establishes the invariance of the
volume Ω of the phase space of a system. Gibbs stated this theorem (without
mentioning its author), in the following statement [23]:

§ 42 (Conservation of the Extension-in-Phase)
When the phases bounding any extension-in-phase vary in the course of time ac-
cording to the dynamical laws of a system subject to forces that are functions of the
coordinates either alone or with the time, the value of the extension-in-phase thus
bounded remains constant. In this form the principle may be called the principle
of conservation of extension-in-phase.

The notion of phase space might have suggested to Boltzmann that a defini-
tion of entropy can be derived from Liouville’s theorem4 (Statement § 16 in [33]),

3Though sought by the most eminent mathematicians, no exact finite algorithm was found to
describe these trajectories.

4There are doubts about the original author of this theorem [37].
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reveals the existence of an invariant magnitude in the motion of Newtonian parti-
cles in a space devoid of electromagnetic radiation, namely, the volume Ω of the
phase space of that system.

Despite the inadequacy of Newtonian mechanics to describe the equilibrium
state and its formation, it is legitimate to insist in a classical analysis of this mo-
tion, seeking, if not the for trajectories of the particles, at least for finding the
conditions that impede Newtonian mechanics explain the formation of the ther-
modynamic equilibrium in gases.

It has been hitherto accepted that, according to Heisenberg uncertainty princi-
ple, the determination of the trajectories of real particles (atoms and molecules) in
real gases has no physical meaning, and that the entropy of the gas — defined by
the Boltzmann principle as the logarithm of the volume of the phase space — in
opposition to the Liouville’s theorem — is not preserved when the gas undergoes
thermodynamic fluctuations in the equilibrium, not to say when it undergoes large
scale thermodynamic transformations.

In Chapter 2 it was shown that the entropy of a discrete fluid of material par-
ticles is an exclusive function of the magnitude θ . Hence, one of the mechanical
characteristic magnitudes of the gas, as imposed by the dimensionless requisite,
has the dimension of action, there introduced together with Planck’s constant, h.

Let us then review the notion of action that justifies the definition of entropy in
classical mechanics, as suggested by Boltzmann and formulated by Planck [38].

A.5 The action in classical mechanics
In classical mechanics the action A occurs in two applications, where it is defined
either by the line, or by a multiple integral. The line integral,

∆A B
A =

1
2

∫ B

A
p ·dq, (A2)

can be interpreted as the evolution that a mechanical system undergoes in travers-
ing the trajectory between the points A and B of the Euclidean space. The in-
terpretation of this integral is analogous to that of the work exerted by the force,
f = d p/dt in that trajectory, defined by the integral,

∆W B
A =

∫ B

A

d p
dt
·dq.

The other application of the action in classical mechanics is found in the defi-
nition (A1) of the volume of the phase space, inside which a degree of freedom of
a mechanical system evolves, given by the double integral,

∆A =
∫ pB

pA

∫ qB

qA

d p ·dq, (A3)



A.6. THE ENTROPY IN CLASSICAL MECHANICS 91

A.5.1 Ambiguity in the interpretation of action

Let us consider the differential expression of the energy E written in form,

dE =
d p ·dq

dt
, (A4)

that has two distinct ambiguous meanings, either as the work of a force f , or as
the kinetic energy p2/2m,

d p ·dq
dt

=

{
f ·dq, where f = d p

dq ,

d p2

2m , where p = mdq
dt .

(A5)

Ambiguity in expressions (A5) can only be eliminated in the scope of special
relativity, where action, usually assumed to be a scalar, is redefined as a
complex magnitude. The preliminary arguments that justify the relativistic
redefinition of the phase space were introduced in Chapter 3.

The main occurrence of the action in classical mechanics is in the formulation
of Hamilton’s Principle of Least Action, where it plays the role of a condition,
rather than that of (a curious and perplexing [39]) property of the motion. As
a condition, the numeric values it acquires are irrelevant; what matters in this
application is that the time integral of the Lagrangian of motion is maximum or
minimum.

With the revelation of the universal Planck’s constant, however, the numerical
value of action acquires crucial importance in the role it plays in the laws that
rule the motion of atoms, molecules and subatomic particles, requiring redefine
the mechanical action as a dimensionless variable by assuming the existence of a
universal (Planck) constant, thereby endowing entropy with the additive property.

A.6 The entropy in classical mechanics
Let us consider the variation of the action

(∆A`)
B
A =

∫ pB
`

pA
`

∫ qB
`

qA
`

d p` ·dq`,

developed by a particle with degrees of freedom {p`,q`}, as it moves from A to B
in the free space.
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Assuming that the motions of the F degrees of freedom of the system of parti-
cles are mutually independent, then the volume ∆Ω of the phase space developed
by a system of F particles, is defined by the multiple integral,

∆Ω =
F

∏
`=1

∫ B`

A`

dp` ·dq` =
F

∏
`=1

∫ B`

A`

dα`. (A6)

The infinitesimal volume of the phase space, where the degrees of freedom
p`,q` vary, can be rewritten in the form,

d p`dq`⇒ dα`.

Rearranging its terms, we can rewrite (A6) in the form

dΩ =
∫ B`

A`

F

∏
`=1

d p`dq` =
∫ B`

A`

F

∏
`=1

dα`. (A7)

For a mechanical system of F mutually independent degrees of freedom com-
posed of N≥F point-particles, taking into account the differentiation of a product,

d(uvw · · ·) = (uvw · · ·)
(

du
u

+
dv
v
+

dw
w

+ · · ·
)
,

we can rewrite (A6) in the logarithmic form,

dσ = dlnΩ =
F

∑
`=1

dln(α`) ,

that defines the quantity σ . Let us recall Liouville’s theorem:

A system of particles moving under the influence of forces defined by func-
tions that depend exclusively on its coordinates, or also on the time, we can
write:

S = kσ = k lnΩ = k
F

∑
`=1

ln(α`) , (A8)

were k is the Boltzmann constant, is an invariant quantity of motion.

A.6.1 Classical entropy is non-additive
It is important to warn the reader that the entropy “’defined’ in classical mechanics
does not satisfy the dimensionlessness requisite (See Section 2.1.1).

While electromagnetic radiation can be ignored in the analysis of the motion
of large (macroscopic) bodies, from Perrin’s granules to planets, it must be taken
into account when the bodies are microscopic, such as atoms or molecules.
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Equation (A8) can be adopted as the formal definition of the entropy of the
system considered. This definition is in agreement with Definition I of Newton’s
Principia, that discards, at the outset, any influence of thermal radiation on the
motion of the parts of the discrete fluid.

Being the logarithm a transcendental function, to give it a physical meaning,
we must assume that its argument is a dimensionless number. The way out
this difficulty has been obtained in classical thermodynamics by adopting the
definition of the relative entropy, defined by the variation it undergoes when
the thermodynamic system evolves from a reference state 1 to an arbitrary
state 2,

S2−S1 = k ln
Ω2

Ω1
, (A9)

so that Ω2/Ω1 becomes dimensionless.

However, since according to Liouville theorem, Ω1 = Ω2, classical entropy
is always zero.

The impossibility to form a dimensionless number with the quantities Ω1 and
Ω2 in classical mechanics, impedes one to write,

ln
Ω2

Ω1
= lnΩ2− lnΩ1,

and thereby, interpret entropy as an additive quantity, as required by thermo-
dynamics. This requirement is fulfilled only with the introduction of Planck
constant.

That the volume Ω of the phase space is not an invariant quantity under the
influence of heat radiation can be easily verified by substituting the action
α` by the dimensionless quantity θ` = h/α` (where h is Planck’s constant),
in equation (A8), to obtain the Sackur-Tetrode absolute entropy per degree
of freedom of the monatomic gas, that depends both on the thermodynamic
state (temperature, volume, etc.) of the perfect vapor, and on the quantum
states (their population) of the clusters, conjointly.

Although inadequate to properly represent the thermodynamic entropy, the
above derivation reveals some of its functional properties, providing a justification
of its definition in terms of the logarithm lnΩ of the volume Ω of the phase space,
and of the addition of Planck constant, ln

(
Ω

hF

)
, to satisfy the dimensionlessness

requisite.
A more adequate definition of entropy could be obtained by following the

above steps, after assuming, at the outset, that the dimensionless volume of the
phase space, given by expressions (8.1) and (8.2), is a complex quantity, as shown
in Section 8.1.
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A.7 The thermodynamic phase space
As previously shown, the equilibrium condition § 40 is in contradiction with the
principle § 41 of Newtonian mechanics. Besides, according to Newton’s Defini-
tion I of his Principia, the equation (A8), that defines the entropy of a classical
system of particles, holds only if the influence of electromagnetic radiation on
the motion of the particles can be ignored. Such hypothesis can be assumed in
the equilibrium condition, for, in spite of the unceasing action of radiation on the
motion of the particles of the fluid, it does not perceptibly affect the values of the
macroscopic (thermodynamic) variables that characterize the system.

It is impossible to give thermodynamic meaning to a discrete fluid unless it
is assumed that its particles interact with radiation.

Hence, equilibrium can be understood as the asymptotic behavior of the parti-
cles of the gas, as time approaches infinity5.

A.8 The statistical approach
With the confirmation that a classical model of the gas is unattainable, some au-
thors capitulated and proposed a different research program, known as statistical
mechanics, expressed by the following proposition:

§ 43 (Principle of the Molecular Chaos)
To find the characteristic Probability Distribution Functions (PDF) of two random
variables, namely, the degrees of freedom (positions and velocities) of the particles
of the gas in its thermodynamic equilibrium.

Without explaining how, statistical mechanics assumes that heat imparts to
the chemical substances the disordered motions of their atoms and molecules,
whatever the word disorder might meanA.1.

A.9 Equilibrium as an asymptotic behavior
Examples of mathematical expressions in which an approximated formula to cal-
culate the value of a function f (n) for large values of the integer variable n led
to the field of Asymptotic Analysis. A classical example is the de Moivre-Stirling
formula,

n!≈
√

2πn
(
nne−n) . (A10)

5In experimental thermodynamics the asymptotic behavior can be observed when the relax-
ation time is reached.
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that arises in statistical mechanics where it is required to calculate the derivatives
of an originally combinatorial function of the integer quantity n!.

To evaluate the equilibrium state of a discrete fluid we can seek for inspiration
in the principle of asymptotic analysis, by advancing the following conjecture:

If the asymptotic equivalents of the (unknown) laws of movement of the parti-
cles of a discrete fluid can be found, then it might be possible to characterize
its equilibrium state in terms of thermodynamic variables and criteria.

Maxwell and Boltzmann realized that, if the particles of a gas are regarded
as the moving pieces of a game of chance, such as in the throwing of dice, the
flipping of coins, or the shuffling of cards, then it would be possible to apply
asymptotic analysis, then established in Probability Theory by the de Moivre-
Laplace theorem6, to the study of the movement of its particles in the equilibrium.

Hence, it is assumed that the equilibrium state of the discrete fluid is the result
of each trial of this game, i.e., each equilibrium state is described by the outcome
of a trial that starts at any instant of time and ends after the relaxation time has
elapsed.

Relaxation processes in real gases might either be almost instantaneous in
explosive chemical reactions, or last for hours, as can be observed in the
metamorphosis of atmospheric clouds.

To apply this theorem to the motion of particles in a discrete fluid, the follow-
ing principle was stated:

For the molecules of gas in a closed box, in the absence of external force, all
positions in the box and all directions of velocity are equally probable. [4].

Several applications of the principle of molecular chaos to approach the equi-
librium of a discrete fluid were proposed. It is worthwhile mentioning the Statisti-
cal Mechanics of gases, the Kinetic Theory of Gases and the Theory of Brownian
Movement.

Statistical Mechanics. This theory is based on the Boltzmann Prin-
ciple, that postulates the equivalence between the phase space of
Hamiltonian mechanics and sample space of Probability Theory. This
approach allows redefine entropy in terms of molecular chaos.

Kinetic Theory of Gases. The purpose of this approach can be stated
in terms of the attempts to answer to the following question:

6The de Moivre-Laplace theorem is a special case of the Central Limit Theorem, proved in
1901 by Lyapunov.
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What is the distribution of velocities and, thereby, of the kinetic energy of
the particles of a discrete fluid in its equilibrium state?

Having recourse to the de Moivre-Laplace theorem of Probability Theory,
Maxwell and Boltzmann were able to solve the equilibrium distribution of ve-
locities and energies for the particular case of the Perfect Gas.

The present approach supersedes the Boltzmann Transport Equation.

A.9.1 The sample space (combinatorial) approach

Two new approaches to derive the thermodynamic properties of gases from quan-
tum theory, were later proposed. After the revelation by Bose that photons in
equilibrium behave as a combinatorial system of indistinguishable particles, Ein-
stein proposed the extension of this character to the particles of a gas, and after
the formulation by Pauli of his exclusion rule, Fermi explained the behavior of
electrons in equilibrium in a metal as a gas of particles constrained by Pauli’s
exclusion principle.

Both these derivations were based on identifying the phase space of the gases
with the sample space, that led Planck, inspired by a suggestion given by Boltz-
mann, to adopt the logarithm of the volume of the phase space as the mechanical
redefinition of entropy [38].

The combinatorial analysis of the two types of particles superseded the Prin-
ciple of Molecular Chaos in favor of the Boltzmann principle in the calculation
of the thermodynamic properties of these gases. With the theorems of the many-
body quantum systems, that predict the existence of two kinds of wave functions,
symmetric and anti-symmetric, the successful derivation of the Bose-Einstein and
Fermi-Dirac statistics has sustained the orthodox sample space approach to statis-
tical mechanics.

The recent history of physics leads us to conclude that the empirical sources of
quantum theory, as well as the phenomena it intends to explain, pervades classical
mechanics, probability theory, thermodynamics, chemistry, electromagnetic the-
ory, and special relativity. Each one of these theories addresses a certain domain
of phenomena, expressed in its own language, with its own vocabulary, grammar
and epistemology.

The translation of the different notions established by those competing theo-
ries into the language of a single unified target theory requires the conciliation of
their original meanings.
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A.10 The Brownian movement
Let us recall another important simplification of the motion of particles of a gas
in equilibrium: Krönig’s description of the motion of its particles:

§ 44 (The Krönig Gas)
The molecules of the gas (do not oscillate about definite positions of equilibrium,
but that they)7 move with constant velocity in right lines until they strike against
other molecules, or against some surface which is to them impermeable.

Statement § 44, which provides a kinetic theoretical description of the Brow-
nian movement, can be restated in terms of a directed graph, where the edges F
correspond to the inertial motion in straight lines and the vertexes C, to the elastic
collisions against either another particle or the internal surface of the container.
We can then frame our analysis on the following abstraction,

The trajectory of a particle moving in a gas can be depicted as a polygonal
line, represented by the symbol8,

. . .FCFCFCFC . . . (A11)

A.10.1 Action change during the free path traversing
The momentum ps of a particle traversing the side s of length ∆zs of the polygonal
line is constant. Assuming that the particles of the gas are identical, the action
developed by this particle during this motion is given by,

αs = ps ·∆zs =
m
2
(∆zs)

2

∆ts
,

where ∆ts is the time between two consecutive collisions.

Random Variable. In the theory of the Brownian motion the quantity
αs is treated as a random variable, AK . Hence, the values acquired
by the variable αs during the motion of the particle between two con-
secutive collisions, represent the outcomes of experiments of a ran-
dom process, where each collision is a trial. Hence, according to the
Law of Large Numbers of probability theory we have,

〈AK 〉= lim
n→∞

1
n

n

∑
s=1

m
2
(∆zs)

2

∆ts
=

m
2

〈
∆z2

s
〉

〈∆ts〉
, (A12)

7As shown in § 11, being an exclusive function of temperature, vibration can be ignored here
8The symbol {FC}+ of formal Language Theory can be used instead of the notation

FCFCFCFC . . ..
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Equation (A12) allows the empirical estimation of the expectation of
the random variable AK .

Note that the condition n→ ∞ that defines the convergence process in (A12) can
be replaced by a large value of ∆t, that is determined, for practical purposes, by
the value known as the relaxation time.

The waiting time for a collision can be assumed to have a Poisson distribu-
tion. It is interesting to inquire if this hypothesis allows derive straightfor-
wardly such distribution with the amplitude parameter θ . Such derivation
will justify in Appendix C to assume that the action of the ladder operators
on the many-body system can be properly represented by a Markovian birth
and death stochastic processes.

Perrin’s Experiments. Since the values of the ∆ts are difficult to be measured, an
approximation to them was obtained by Perrin in a series of n measurements of
the lengths ∆zs, s = 1,2, . . . ,n, of the sides of the polygonal line, performed at
equal intervals of time τ .

In these experiments it was confirmed that the quantity ∆q2/τ (where ∆q is the
distance traversed by the corpuscle between two consecutive observations made
at equally spaced time intervals τ) is — as previewed by Einstein in his Theory of
the Brownian Movement — an invariant magnitude characteristic of the state of
equilibrium [20].

We can then conclude that, for identical corpuscles, the average action 〈αK 〉
developed by the particles traversing their free paths, is an invariant property of a
gas in equilibrium.

A.10.2 Traversing a conservative trajectory

In a second moment, we consider the polygonal line in which the motion across
the edge F is, according to Krönig’s conjecture § 44, inertial, hence, conserva-
tive. The quantity ∆ts now represents the time between two consecutive elastic
collisions. Since the trajectory of a particle in its motion is interrupted by elastic
collisions, we can still work with the same formula (A12) to obtain a more realistic
value of the average action 〈αK 〉 developed by the particle in the edges F of the
polygonal line.

From Maxwell-Boltzmann kinetic theory, the average value of the variation of
momentum of a particle (treated as a random an independent variable), during its
translation between two consecutive collisions, is given by the expression 〈∆p〉=√

2πmkT , and the average inter-collisions length 〈∆q〉 can be approximated by
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the average inter-particle distance, 3
√

V/N, whence we can write,

〈∆p ·∆q〉=
√

2πmkT 3

√
V
N
. (A13)

The average activity (defined as the kinetic action developed during a finite
interval) αK = 〈∆p ·∆q〉 of the Krönig gas is revealed to be a function of the tem-
perature T , a non-classical magnitude. Hence, the thermodynamic properties of
this gas cannot be derived from purely classical hypotheses. Expression (A13) is
also found in the Sackur-Tetrode entropy of the monatomic gas, whose connection
with the Brownian Movement approach will be discussed in Sections 2 and 5.

Since the particles of the gas are identical, we can assume that the probability
distribution function of the random variable αK is the same for all the particles
and assume that the same holds for all inter-collisions trajectories of each particle.
From the standpoint of probability theory, it can be said that

To the random variable αK there corresponds the sample space of a game of
chance, where each collision can be interpreted as a trial whose outcome is
the action developed by the particles between two consecutive inter-collision
displacement.

The volume of the ΩK of a gas composed of N Krönig particles is given by
the multiple integral,

ΩK =
∫ N

∏
`=1

d p`dq`.



Appendix B

On Uncertainty and
Indistinguishability

Introduction
The thermodynamic consequences of indistinguishability of identical molecules
were considered by Maxwell in the analysis of diffusion processes; by Gibbs in
the calculation of the entropy of a mixture of a gas with itself; by Tetrode in the
derivation of the entropy of the monatomic gas; by Bridgman in the mixture of
two imaginary gases whose molecules are infinitesimally different; by Bose, who
revealed it as a character of the photons in equilibrium radiation; and by Einstein
in his derivation of condensation in a gas of Bose particles.

B.1 Heisenberg’s justification
In his description of the determination of the position of a free particle, Heisen-
berg refers to “the light illuminating it1”.

In the procedure to localize the particle, it is illuminated, a phenomenon that
can be identified as the agent that causes the change on the position of the parti-
cle, for it is known that light is endowed with the momentum degree of freedom,
thereby causing a change on the state of motion of the particle. Instead of inter-
preting the effect of illumination as an uncertainty imparted by the procedure, as
prescribed by the uncertainty principle, we can explain it in terms of the change
caused by the incidence of a photon on the population of the quantum state of the
many-body system where to the particle is moved.

This reinterpretation leads us to conclude that there is an epistemological

1§2 a), p. 20-1 [40]
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precedence of a quantum elementary process, namely the interaction between the
particle and radiation, over its consequence, namely, the progressive statistical
indistinguishability of identical particles of the perfect vapor [7].

Condensation is here described as the result of a large number of the transient
elementary processes of absorptions and emissions that take place during the in-
teraction of the vapor with radiation.

B.2 Einstein versus Einstein
In 1905 Einstein identified that high frequency radiation behave as it were com-
posed of discrete particles. Almost two decades later, de Broglie suggested that
material particles might exhibit, as photons do, undulatory behavior. It became
then natural at that time to hint: “that which works for photons, works for mate-
rial particles as well”. When Bose discovered that radiation can be regarded as
a system of indistinguishable particles, it should not be surprising that Einstein’s
conspicuous intuition led him to conclude that if photons are indistinguishable,
as Bose said, then material particles might behave similarly, thereby conducting
him to develop the presently known theory of Bose-Einstein condensation.

This assumption, introduced ad hoc by Einstein, was later shown, in the scope
of the many-body approach to the gas, to be a character of the wave function
of such systems, expressed in terms of the symmetry (indistinguishability and
Pauli’s exclusion) principles. This understanding still persists in the current tenets
of many-body theory, in spite of the serious objections raised against it at the time
of its introduction [41]. An alternative hypothesis about the physical origins of
the symmetry principles, which eliminates these objections, and allows explain
condensation kinetics, is reviewed in the Appendix C.

Some physicists, notably Ehrenfest and Schrödinger promptly raised objec-
tions against the way Einstein treated material particles as indistinguishable. It is
opportune to reproduce Schrödinger’s criticism here:

The essential point in the new theory of the gas, developed recently by A.
Einstein, consists in the need to invoke a completely new statistics to de-
scribe the movements of the molecules of the gas, the Bose statistics. This
new statistics should not be considered as something primary, requiring no
explanation. Furthermore it seems to hide the hypothesis of a certain depen-
dence or interaction among molecules of the gas that is difficult to analyse
here2.

In response to these objections, Einstein wrote,

2Second-hand citation (pp 199-200 [42]).
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Mr. Ehrenfest and some other colleagues objected that in Bose’s Theory of
Radiation and in mine analogous theory for the ideal gas, the quanta and
the molecules, respectively, are not treated statistically as mutual indepen-
dent entities without any explicit warning about it in our works. This critic
is completely justified. (. . . ) The counting of these “complexions” of dif-
ferent probabilities would not result in the correct value for entropy in the
case of an effective independence among molecules. The formula (for en-
tropy) expresses, therefore, indirectly, a certain hypothesis about reciprocal
influence among molecules, influence of a completely mysterious nature up
to now, that results in precisely the same statistical probability that we have
been defining as “complexions”3.

However, as astonishingly as it seems, almost a decade before Bose’s find-
ing, Einstein derived Planck’s radiation formula — and thereby the same Bose-
Einstein statistics characteristic of indistinguishable particles — based, not on a
supposedly “ontological” character of the ensemble of particles, but, instead, on
the condition of equilibrium between matter and radiation, thereby opposing two
irreconcilable interpretations, which were confronted neither by Einstein himself,
nor by anybody else at that time.

The whole of experimental data about black-body radiation, from Kirchhoff
onwards favours the hypothesis that Planck’s radiation law (hence, indistinguisha-
bility) is not a necessary, but an equilibrium condition.

In the subsequent development of Bose-Einstein and Fermi-Dirac statistics,
however, Schrödinger’s forecast of the existence of “interactive” processes was
bypassed in the most radical way, by acknowledging indistinguishability as a fun-
damental principle, i.e., as something primary, requiring no further explanation.
The symmetrical and anti-symmetrical character of wave functions of a system of
identical particles and the subsequent definitions of the creation and annihilation
operators, together with their mathematical properties, were thereby derived as
mere consequences of those principles.

Such confrontation, which recovers the opposition between being and becom-
ing of pre-Socratic philosophers, deserves some considerations as follows.

B.3 Loss of identity
In the classical mechanics of a system of identical particles, the identity of each
particle is specified by its position and momentum. These degrees of freedom
have been unconditionally accepted to be persistent characters of a particle, i.e.,
something that, although variable, always existed together with it.

3idem, p. 191.
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Hence, as a consequence of a chemical reaction, reactant molecules loose
their identities, and the molecules of its products receive new ones. In summary,
chemistry reveals that classical degrees of freedom are non-persistent characters
of molecules.

That which can be treated in chemistry as the loss of identity, has been treated
by the uncertainty principle as an ontological character of the particles belonging
to a system of identical particles, which impedes a given particle to be distin-
guished from any other in the system. One might say that God decided that not
even Himself can distinguish two ontologically indistinguishable particles.

As opposed to the interpretation given by the uncertainty principle, we can
assume that particles are not ontologically indistinguishable, but they become so
inside a cluster, for instance, as a consequence of a chemical reaction that adds a
radicle to that cluster.

Though the explanation of the loss of identity of molecules due to chemi-
cal reaction is in agreement with the finding § 23, as discussed in Section 6.3, it
is in conflict with the interpretation currently given to the relations (5.4)-(5.5)
by the uncertainty principle. As showed in Section 5.8, the classical degrees of
freedom, position and momentum are constrained by Planck’s constant in (5.13),
and replaced, respectively in (5.14), by a new description, expressed in terms
of quantum operators coupled indistinctly by the Hamiltonian of the system in
Schrödinger’s partial differential equation.

In its creation in (transference to) the cluster Q(ψ`), position and momentum
become coupled (conjugated, in the jargon of quantum theory formalism) to the
other radicles inside the same cluster.

Once these corpuscular attributes are lost, according to Section 5.8, the system
formed by the conjugated radicles become described by a single wave function.

B.4 Automorphism and equilibrium
Eadem mutata resurgo.

Epitaph to Jakob Bernoulli I

It is well known from thermodynamics that no meaning can be assigned to
the entropy of a gas, unless every transient internal dynamic process has been
consummated. In the Boltzmann principle approach to equilibrium, entropy is
described by the average values of the occupancy numbers of the quantum states
of the gas, as prescribed by its wave function. While large scale variations of these
numbers are still occurring, one cannot speak of average values, and therefore
no meaning can be assigned to Boltzmann entropy. Correspondingly, the wave
function of a many body system, that ultimately specifies the population of its
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quantum states, cannot be adopted to describe this system if it has been removed
from equilibrium.

To decide upon these two opposing understandings, viz. equilibrium versus
necessary conditions, we need to recognize that the wave function of a system of
particles, as much as it happens with entropy, is defined only in the equilibrium
state. Since indistinguishability has been interpreted as imposed by the symmetric
or anti-symmetric character of the wave functions, we must reconsider the scope
of these functions, specially of a system of Bose particles, to become in agreement
with the equilibrium character of Planck’s radiation law.

Recall that wave functions are the way Schrödinger equation specifies those
stationary states previewed by Bohr in his first postulate. In Schrödinger’s equa-
tion, however, stationary states are not postulated, but are, instead, consequences
of its definition as an automorphism, Ĥψ = Eψ .

From its algebraic definition, an automorphism can be adopted as a rigorous
definition of equilibrium. In fact, as much as Jakob Bernoulli’s epitaph, that prop-
erly describes the logarithmic spiral curve which, after transformed (undergoing
its characteristic rotation and homothety), results in itself, any system defined by
an automorphism, after undergoing its characteristic transformation, continues in
the same state it was before the change. Each quantum system has its own charac-
teristic transformation, expressed in terms of its Hamiltonian operator, of which
the equilibrium state gives physical meaning to its mathematical eigen-states4.

We are then suggested to assume that “to be indistinguishable” is not an intrin-
sic character of the particles of a gas, but, instead, the result of a certain general
faculty of which the gas is endowed, namely, that of becoming, under certain cir-
cumstances, susceptible to radiation. It is the persistent interaction between the
gas and radiation that leads the particles to become indistinguishable in its final
state of equilibrium.

Let us recall the meaning to the automorphism equation given by Dirac in his
statement,5:

If the dynamical system is in an eigenstate of a real dynamic variable ξ ,
belonging to the eigenvalue ξ ′, then a measurement of ξ will certainly give
as result the eigenvalue ξ ′ to which this eigenstate belongs.

By recognizing that an automorphism defines a condition of equilibrium, one
can give a new meaning to the same equation, by maintaining the same premise.
We can rewrite the statement above in the following terms:

4If the system is already in the equilibrium state, after undergoing its characteristic Hamiltonian
transformation, it remains there.

5Equation (10) of Section 9 of Chapter II of Dirac’s Principles of Quantum Mechanics
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If the dynamical system is in an eigenstate of a real dynamic variable ξ , then
the eigenvalue ξ ′, corresponds to the state of equilibrium of the dynamical
system.

While a variety of algorithms to derive the eigenvectors of an operator and
their corresponding eigenvalues can be conceived by mathematicians, physicists
must ask: what is the “algorithm” followed by a natural system to move it towards
the equilibrium state? From fluctuation phenomena revealed by thermodynamics
we conclude that the quantum state occupancy numbers are random numbers, so
that their values vary according to the persistent stochastic iteration of the same
invariable agents throughout the relaxation time, until the eigenstate (equilibrium
value) is achieved, i.e., until each state contains the equilibrium random number
of particles given by the automorphism. An appropriate description of this ki-
netic process is obtained by the Markovian birth-and-death stochastic process, as
reviewed in Appendix C.

B.5 The uncertainty principle and indistinguishabil-
ity

Let us recall Landau’s analysis of the gedanken experiment designed to local-
ize two electrons in space [29]. Although conceived to justify the indistinguisha-
bility principle in many-body theory, by considering special relativity, as I have
shown [7], that this experiment provides, instead, a sensible argument to under-
stand indistinguishability as the result of a finite process during which two ob-
served particles, originally distinguishable, become indistinguishable as a conse-
quence of the certain force-like agents on their motion, i.e., it asserts the epis-
temological precedence of the taut constraint (5.4) over the indistinguishability
principle. If the word principle is understood as synonymous for axiom, i.e., as
something primary, requiring no explanation, then indistinguishability should not
be taken as a principle in itself, but instead, as a corollary of the symmetric and
anti-symmetric characters of wave functions, which hold only in equilibrium.

If each of the two inelastic collisions of the experiment just discussed give
rise to indeterminacy, we are naturally led to believe that the same effect occurs
as a consequence of a single inelastic collision between two systems of particles.
With this assumption, we can think of an objective indeterminacy, as intrinsic
to inelastic collisions, that eliminates the need of a measurement process as an
explanatory element of the theory. It then allows one to conclude:

That the inelastic collision of two identical particles is a transient, non-
reversible process is evident, for it is impossible to restore the individuali-
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ties of two particles that, as a consequence of this process, have lost their
identities.

If we read either Heisenberg’s considerations about the localization of an elec-
tron in space [40], or § 61 in Landau’s [29], we conclude that there is an intermedi-
ate irreversible phenomenon, namely, the interaction of a photon with an electron.
This process, described by the transitions (5.14), destroys the degrees of freedom
of the electrons, thus erasing its identifying characters (position and momentum).

Recall that, as stated in § 23, Dalton’s and Avogadro’s laws revealed that clas-
sical degrees of freedom are non essential, but accidental attributes of molecules:
they are created or annihilated during a chemical reaction. Besides, according to
quantum theory, the values of the degrees of freedom of the products that arise are
unpredictable random variables.

B.6 Further comments on the uncertainty principle
As Kragh reports,

“Dirac (. . . ) did not see any point in all the talk about complementarity. It
did not result in new equations and could not be used to for the calculations
that Dirac tended to identify with physics.” [10].

A similar critics, made by L. Landau, applies to the uncertainty principle, that is
devoid of the faculties to produce equations to be used for calculations:

“In that it rejects the ordinary ideas of classical mechanics, the uncertainty
principle might be said to be negative in content. Of course, this principle
in itself does not suffice as a basis on which to construct a new mechan-
ics of particles. Such a theory must naturally be founded on some positive
assertions (. . . )” [29].

Hence, the meaning of the quantity θ is not necessarily given by the interpre-
tations proposed by Heisenberg in his uncertainty principle. As in natural lan-
guages, they can be treated as homograph words6.

B.6.1 Critics of the uncertainty principle
It is generally accepted that all the mentioned interpretations formulated during
the OQTE, namely, the description of the photo-electric effect by Einstein, the

6Homograph words are spelled the same with different meanings, in our case it is the operator
∆ that describes different effects it causes on the entities on which it acts.
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derivation of the entropy of a monatomic gas by Sackur and Tetrode based on
Sommerfeld’s conjecture § 18, or the formulation of Bohr’s postulates, are en-
dowed both with explanatory power, and with empirical substance. As we have
seen above, the meaning of mechanical action stated in § 19 can be derived from
the definition of the volume of the phase space of a system of particles.

It is expected that any posterior interpretation of the relations (5.4)-(5.5),
would supersede its predecessors, enlightening their meaning, extending their ex-
planatory power, and giving more rigor and precision to the derivation of the for-
mulas they provide. However, if reinterpreted according to the uncertainty princi-
ple, the opposite happens: all the previous explanations given, cogently or not so,
to all those phenomena are refuted, and replaced by . . . nothing.

The uncertainty principle therefore does not convey to the relations (5.4)-(5.5)
a realistic meaning; instead, it is an equivocal connotation that might lead to con-
fusion. It can be used, however, as a speculative diagnostic of a symptom, a
warning about the imminence of the occurrence of an elementary processes of
quantum exchange, which will cause, on the radicles and clusters involved, a rad-
ical change of their structures. It might be possibly helpful in the explanation
of the yet enigmatic transformations (5.14), thus suggesting some heuristic idea
about the conditions that trigger a chemical reaction.

Due to its incapacity to explain, specially in the most critical and representa-
tive situation that characterizes the uncertainty principle, namely, a chemical re-
action, when an interaction of matter with radiation is consummated, we remove
that principle, together with the notion of “measurement” from the formulation of
the present theory.

If we restore the interpretations proposed during the OQTE, then chemical re-
actions can be understood according to its meaning already established by chem-
istry, namely, as a transient phenomenon during which the classical degrees of
freedom of the reactants collapse, giving rise to the quantum description of the
products characterized by other degrees of freedom, with unpredictable values.
These products, in their turn, are described in quantum mechanics as many-body
quantum systems (atoms and molecules) whose internal state is characterized, not
by classical degrees of freedom but, instead, by the quantum numbers determined
by their wave functions.



Appendix C

The Kinetics of the Perfect Vapor

Summary

This Chapter presents a summary of the results obtained by the author [7] in
the treatment of a gas whose state is given by the population of particles in
its enumerable set of quantum states. These numbers are treated as random
variables, whose PDFs are the solutions of the general difference-differential
equation of Markovian birth-and-death stochastic processes, whose laws
of change are deduced from the reciprocal theorem of many-body theory,
where from the indistinguishability and Pauli’s exclusion principles have
been hitherto derived.

These solutions describe the transient evolution of the gas towards the ther-
modynamic equilibrium, that reproduce the results already obtained for the
equilibrium state of the gases of Bose and Fermi particles, that can be ex-
tended to a gas of Boltzmann particles.

Besides predicting the time asymmetry previewed by second law, it reveals
that the indistinguishability of identical particles and Pauli’s exclusion rule
are not conditions of necessity, but of equilibrium. Hence, the particles of a
gas removed from equilibrium are not said to be indistinguishable, but rather
to become statistically indistinguishable in the state of equilibrium.

Introduction
It is known that for high temperatures and low densities the gases of Bose particles
(the black-body radiation) behave as a perfect gas, characteristic of its G-phase.
For lower temperatures and higher densities (smaller frequencies), the quantum
phenomena become increasingly relevant. The purpose of this Chapter is to study
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the influence of the L-phase on the formation of thermodynamic equilibrium. We
will then focus on the time evolution of the random occupation numbers,

R(t) = {r0(t),r1(t),r2(t), · · · ,r`(t), · · ·}

of the corresponding enumerable set of wave functions,

Ψ = {ψ0,ψ1,ψ2, · · · ,ψ`, . . .}

that characterize the clusters ` = 0,1, · · · that comppose the L-phase of the gases
of Boltzmann, Bose and Fermi particles, as described by the Second Quantization
formalism.

Recall that, according to the Axiom 4 of quantum theory that, amended by this
approach, the average values,

r̄` = lim
t→∞

r`(t), `= 0,1,2, · · ·

are given by the eigen-values of the dynamic variables under the persistent action
of the ladder operators. Here the time variable t is the same where the Markovian
processes are defined.

The current interpretation of Axiom 4 evokes a whimsical comment of Szent
Györgyi when he joined the Institute for Advanced Study in Princeton about
the behavior of more than two electrons1:

“I did this in the hope that by rubbing elbows with those great atomic physi-
cists and mathematicians I would learn something about living matters. But
as soon as I revealed that in any living system there are more than two elec-
trons, the physicists would not speak to me. With all their computers they
could not say what the third electron might do. So that little electron knows
something that the wise men of Princeton don’t, and this can only be some-
thing very simple.”

While talented humans can devise algorithms to calculate with all their com-
puters the eigen-values and eigen-vectors specified in Axiom 4, photons can not.
Since the a and a† act independently in nature, we can neither assume that a is
the inverse of a†, for it is not, nor are we allowed to conclude that photons are
endowed with the algorithmic faculties to calculate those eigen-stuff.

What is required here is to prove that the eigen (equilibrium) state of a dynam-
ical variable is attained by the recurrent action of the conditional probabilities of
the elementary quantum state transitions, described by the ladder operators, that

1Cited by von Bertalanffy [43].
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are mutually time independent. This process is neither deterministic, nor asymp-
totic in the sense of regular convergence, but instead, stochastic2. This approach
supersedes the Principle of Molecular Chaos § 43 adopted in statistical mechan-
ics:

To derive the probability distribution functions of the occupancy numbers
of the quantum states that characterize the L-phase of the perfect vapor,
from the laws of change described by the conditional probabilities laws of
creation and annihilation.

Hence, it is reasonable to assume that the evolution of these transitions in time
must be described as conceived in probability theory,

A “conceptually (. . . ) analogue of the processes of classical mechanics,
where the future development is completely determined by the present state
and is independent of the way in which the present state has developed.”3.

Such analogue is the Markovian birth-and-death processes, whose laws of change
— that correspond to the laws of force of Newtonian mechanics — are given by
the creation and annihilation operators.

The difference of the present approach from the current tenets of statistical
mechanics is subtle. While in the former, time is intrinsic to the Markov equation,
in the latter it is assumed to derive from Schrödinger’s time equation. The main
consequences of this difference are that (a) the former previews time asymmetry,
while the latter does not, and (b) in the former, indistinguishability and Pauli’s
exclusion principles are interpreted as conditions of equilibrium imparted to the
system of particles by the way they are shuffled, while in the latter these principles
assume that the behavior of these particles are due to their ontological nature.

We have then to face the following dilemma:

§ 45 Whether we assign to the creation–annihilation operators a secondary and
passive role in quantum theory, as a mere mathematical curiosity designed to help
us in our resignation to accept the bizarre behavior of these particles, or we recog-
nize in them a primary active role in the shuffling process, as the elementary chaos
that cause that behavior. In the words of the philosophers of Ancient Greece, they
are to be seen as the unchanging principles of change, that gives physical meaning
to the clinamen (swerve) of Atomistic doctrine [44].

A brief review of the alternative derivation of Maxwell-Boltzmann, Fermi-
Dirac, and Bose-Einstein statistics from these operators proposed by the author [7]
is described in Appendix C.

2Or, if preferred, a Monte-Carlo algorithm.
3p. 420, [30]
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C.1 On being and becoming
Far away from saying that the object precedes the point of view,
we would say that it is the point of view that creates the object.

F. Saussure, Cours de Linguistique Générale (1916).

Being unconcerned with the accidental circumstances of an actual experiment, the
sample space approach to random phenomena considers neither the initial config-
uration of its moving parts (balls, dice, coins, cards or particles), nor the changes
they undergo during the trial. These considerations suggest that the replacement
of the kinetic theoretical methods by those of statistics of sample space, resulted in
what might be a misleading epistemological shift that can be described by Saus-
sure’s aphorism reproduced in the heading of this Section: by focusing on the
outcomes of the irreversible processes instead of on the processes themselves,
one might be subtly persuaded to interpret indistinguishability and exclusivity as
essential characters of the particles, instead of a mere effect of shuffling on their
outcomes.

While Saussure’s approach to Linguistics is a conscious epistemological deci-
sion, the choice of the sample space approach to the statistical mechanics of gases
is a convenient, although misleading, simplification.

In fact, any attempt to derive the properties of a phenomenon that depends
on the process of shuffling from the statistical analysis of its outcomes, might be
illusive, as evidenced by the following abstract example.

C.1.1 Sample space mirages
Let us consider the random placement of r balls in n cells4.

Suppose that the balls are made of ice, each one with the same mass m and
frozen into a different mold, so that they can be numbered, thereby being
distinguishable by any observer. Let us suppose also that n = 26, and that
each cell is labeled with one letter of the alphabet, so that any point in the
sample space of such experiment can be uniquely identified with a word of
length r: the first letter denotes the cell in which ball 1 was placed, the
second, the cell containing ball 2, and so on5. Let us also suppose, as it
happens with the particles in a gas, that the shuffling is non observable and
performed below the fusion temperature of water. Hence, any observer can

4This is an imaginary shuffling process. It should not be taken as a model for the molecular
chaos in a gas.

5Think of the sequential placement of balls in the cells as the sequence of the keys (cells) you
stroke (put the ball) in a keyboard to produce a word.
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read, in the outcome of each trial, a word of r letters. He then concludes
that the ice balls are distinguishable.

Let us suppose now another shuffling performed at a higher temperature
and lengthy enough to allow the balls to melt during the relaxation process.
As the time goes on, the shuffling process will, as it were, act no longer on
solid balls, but instead on melted balls. The balls, originally distinguishable,
become indistinguishable. In fact, looking at the outcome of the shuffling,
the observer will be unable to read, in the configuration he sees, a word of
length r, i.e., he cannot identify the balls in the cells. Instead, the only infor-
mation he can draw from his observation — by weighting each cell to know
the mass of water it contains — is given by the occupancy numbers, i.e., the
number of balls he finds in each cell. Misled by the “external aspects” of the
experiments (their phenotypes), instead of recognizing that the balls became
indistinguishable during the shuffling process, he concludes incorrectly that,
since they are indistinguishable at the moment of the observation, they have
always been so.

A privileged observer of this game (knowing its genotypes) knows, as op-
posed, that he cannot blame the balls for their indistinguishability, for it is
the shuffling process itself that imparts to the balls such bizarre behavior. In-
stead, he knows that shuffling engenders a sort of “indistinguishabilization”
process, so that the ice balls, originally distinguishable, become indistin-
guishable.

The paradox raised in confronting Einstein’s (1917) “kinetic” against Bose’s “com-
binatorial” derivation of Planck’s radiation law disappears when examined in
terms of the elementary processes that, as in the example above, lead a system
of Bose particles to its final state of equilibrium.

Hence, indistinguishability need not be understood as a ontological permanent
characteristic of a system of identical particles. It can, instead, be seen as the
consequence of the way its particles are shuffled, i.e., as the way they interact
with radiation. In fact, when the gas is removed from equilibrium by a finite
thermodynamic transformation6, Einstein’s equilibrium equation no longer holds,
i.e., the symmetry of its wave function is necessarily broken7.

As a corollary of Einstein’s kinetic derivation of Planck’s radiation formula,
we can state:

§ 46 (Indistinguishability and equilibrium)
Indistinguishability is not a condition of necessity, but of equilibrium.

6A thermodynamic transformation is understood as a large scale departure from equilibrium
that removes the system far away from the statistical fluctuation domain.

7Einstein’s equilibrium equation can be obtained as the asymptotic form of the kinetic equation
of gases [7].
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The same holds for Pauli’s exclusion principle.

C.2 Transient processes in the perfect vapor
Differently from the ideal gas, the perfect vapor is a two phase system. While the
behavior of the G-phase has been satisfactorily described in kinetic theory8, the
description of the L-phase requires a quantum approach. Hence, to give a kinetic
approach to condensation phenomena we shall extend the theoretical definition of
a many-body quantum system to fit the elementary processes of quantum exchange
that conduct the particles of the perfect vapor to its thermodynamic equilibrium.

Recall that a many-body quantum system is composed by a number n > 1 of
particles entangled with each other by their Hamiltonian, that merge them into a
single wave function. According to the current tenets, every wave function is sub-
ject to the symmetric and anti-symmetric constraints, known as the indistinguisha-
bility and Pauli exclusion principles. Such definition imposes indistinguishability
and exclusivity at the outset.

Nevertheless, quantum axioms allow predict the existence of state transition
phenomena, assigning conditional probabilities to their occurrence. As shown in
Appendix B, once transition probabilities are assigned to the occupancy numbers,
the values of such numbers cannot be prescribed; they must, instead, be treated
as random variables, thereby allowed to acquire arbitrary values not necessarily
equal to the value r̄`, imparted by the symmetric or anti-symmetric constraints.

The way out this contradiction is merely a matter of choice between the two
interpretations of the indistinguishability and Pauli exclusion principles expressed
in § 45, whether we assume with the current tenets that these rules reveal the
ontological character of every many-body system of identical particles, or that
they merely describe the condition of thermodynamic equilibrium.

In the following it will be shown that, by assuming that the ladder operators
describe the agents that cause the changes the occupancy numbers of quantum
states undergo, it is possible to obtain the time evolution of the quantum states
that starts from an arbitrary initial PDF until it attains the PDF characteristic of
thermodynamic equilibrium.

The r`’s are random variables whose behavior can be likened to the placement
of balls (particles) in cells (quantum states).

The replacement of the ideal gas by the perfect vapor to represent real gases,
that recognizes the existence of a random number of components, as opposed to

8While some authors assume that the translation of a molecule in a fixed volume is quantized,
its supposedly discrete energy levels have not yet been measured by spectroscopy. In the domain
(5.9) of the phase space, the particles do not interact with radiation and therefore, cannot be
supposed to exhibit quantum behavior.
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the misleading mirage just discussed, leads to a far reaching approach to its “laws
of motion”, that are described, not in terms of the trajectories of its particles, but
in terms of the time evolution of the PDF of the occupancy random numbers of the
quantum states of the many-body system in question.

C.3 The kinetics of the perfect vapor

To represent the motion of the gas it is more realistic to assume that during a short
interval of time, not all, but only a small number of particles change their positions
(whether in the G-phase, or in the L-phase), most of them remaining in the same
phase they were in the beginning of the interval. We are therefore justified to state
the continuity hypothesis9:

§ 47 (Continuity)
The smaller the time interval considered, the smaller the number of particles
changing their states.

It is known from statistical mechanics that the values of both the expectation
and the variance of the random variables r`(t) in the equilibrium, are negligible
when compared with the extremely large numbers of particles and quantum states
in the perfect vapor. Hence, we are allowed to state the independence hypothe-
sis10:

§ 48 (Independence)
The removal of any cluster (together with the radicles it contains) from the perfect
vapor, will not modify the flow processes that take place in the remaining clusters.
In other words, the flow of radicles in a given cluster is independent of the flow
that occurs in any other cluster11.

With these assumptions, the investigation of the laws of motion of the perfect
vapor is therefore reduced to find the laws that rule the arrival and departure rates,
to and from, a single cluster.

9Since this hypothesis does not refer to equilibrium, it is superfluous to statistical mechanics.
10Statement § 48 is here treated as a proposition, in spite of being tacitly stated as true in the

method of most probable distribution of statistical mechanics, where from its preamble derives. It
is not possible to decide, at this point, whether it describes the general behavior of molecules, or
merely represents a complement to the definition of ideal gases, as expressed in (C3).

11In fact, this flow depends exclusively on the population of the state and on the properties of
radiation.
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To describe this flow let us denote by A`(∆t) and D`(∆t), respectively, the
number of particles arriving to, and departing from, the state ψ` during the time
interval ∆t. Let us consider their time power series expansion,

A`(∆t) = A`(0)+ Ȧ`∆t + . . .

D`(∆t) = D`(0)+ Ḋ`∆t + . . .

where Ȧ`(t) and Ḋ`(t) are, respectively, the arrivals and departure rates of state
ψ`. According to hypothesis § 47, we have A`(0) = D`(0) = 0. Therefore the
first-order equilibrium condition of the flow is given by,

Ȧ`(t) = Ḋ`(t). (C1)

It can be easily verified that both the hypotheses § 47 and § 48 are subsumed in
the following axiom that determines the law of motion of the PDF of the occupancy
number of a given state:

The flow of particles in a quantum state is a Markovian birth-and-death
process.

Recall that the master equation for Pr`(t) of a Markovian birth-and-death pro-
cess is given by the difference-differential equation [30],

∂Pr`(t)
∂ t

= λr`−1 Pr`−1(t)− (λr` +µr`)Pr`(t)+µr`+1 Pr`+1(t), (C2)

where λr` and µr` are, respectively, the arrival and departure rates that describe the
laws that rule the shuffling processes. To complete the description of the motion
of the gas, the knowledge of the laws that determine these rates are required.

In this approach, Planck’s constant acknowledged as an imaginary entity,
ıh̄, thus assigning a correspondingly different meaning to time, derived from
the Minkowski space-time description of special relativity. The time partial
operator ∂

∂ t is then detached from Schrödinger’s equation, and superseded
by the Markov difference-differential equation, treated independently from
Schrödinger’s amplitude equation, that, according to §B.4, is understood
as descriptor of the thermodynamic equilibrium condition.

The values of the arrival and departure rates for the gases of Fermi, Bose, and
Newtonian particles are given by [7],

λr` = λ (1+βr`) and µr` = µr`. (C3)
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where λ = ξ e−ε`/kT ,µ = ξ e−η/kT , and ξ is an unknown frequency rate. From the
creation-annihilation operators of second quantization, we have β = 1 for Bose,
β = −1 for Fermi particles. The value β = 0 results in the Maxwell-Boltzmann
PDF.

Let us denote by Π`(z, t)=∑r` Pr`(t)z
r`, the generating function (GF) of Pr`(t).

After substituting the laws of change (C3) in (C2), we arrive at,

λ (z−1)Π` =
∂Π`

∂ t
− (z−1)(β z−µ)

∂Π`

∂ z
, (C4)

whose solutions can be written in the general form,

Π`(z, t) = ϕ`(z) ·Φ`(z, t),

where ϕ`(z) is the GF of the average occupancy numbers r̄` of the state ` in the
equilibrium, and Φ`(z, t), is the GF of the transient population y`(t) in that state,
at time t. According to the convolution theorem, the population of state ` at time
t is r`(t) = r̄`+y`(t).

C.4 Probabilistic dynamics of particles
A parallel between the equation (C2) and Newton’s second law can help elucidate
the nature of the former. The Newtonian differential equation ṗ = f remains inde-
terminate until a law of force f (r) that is independent of the postulates and axioms
of mechanics, is provided. The mathematically indeterminate role played by the
law of force in Newtonian mechanics, is played by the correspondingly indeter-
minate laws of change (the arrivals and departures rates) in quantum mechanics.
Both lead to the laws of evolution: the former giving the trajectory of the particle,
the latter, the time evolution of the PDF of the occupancy numbers of the states of
the quantum state. Both require the specification of initial conditions.

C.5 Further Comments on Indistinguishability
Equation (C2) is abstract enough to be in the foundations of a General Theory of
Change, that can be applied to non-thermodynamic phenomena. Equation (C4)
is a confirmation that indistinguishability can be legitimately interpreted as a sta-
tistical phenomenon that can be represented by the random placement of balls
of whatever nature (billiard balls, for instance) in cells, provided the shuffling is
performed according to appropriate laws of change that “indistinguishabilize” the
balls. Indistinguishabilization can therefore be seen as a random process whose
effect is to induce a particular partition on an set. As a mere consequence of the
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shuffling in a birth and death process, indistinguishability is therefore expected to
be found not only in quantum phenomena but also in the population dynamics of
systems of elements whose nature might be quite unlike the physical elementary
particles dealt with in quantum physics and statistical mechanics.

It is worthwhile to note that most of the requirements that, in the view of
Huang, a “satisfactory” derivation of statistical mechanics should fulfill [14], are
satisfied by the present approach to the gas dynamics described in Section C.3:

1. a non-ad hoc assumption of the molecular chaos by reducing
it to a first-principles representation, given in terms of natural
laws of change;

2. a detailed description, at least for the case of ideal gases, of the
approach to equilibrium;

3. a master equation (C2) expressed, not in terms of wave function,
but of the PDFs of occupancy numbers of the states of the ideal
gases.



Appendix D

Thermodynamic Properties of
Steam

Summary

This Appendix confronts the pV T data of steam against the equation of state
of the perfect vapor, and its departure from the ideal gas law. The remarkable
symmetry observed in the graphisc here presented deserves further inquire.

Introduction
While the indeterminacy of the function f (θ) endows the perfect vapor with gen-
erality, its universality cannot be claimed until an extensive confrontation with
experiment is fulfilled, an endeavor that is beyond the scope of this paper.

Since z and θ are both dimensionless quantities, the plot of the pV T data of
any substance in the θ × z plane is meaningful for both a thermodynamic and a
quantum reading. The closer these data are to a single curve1, the better the sub-
stance can be represented by equation (3.4), where f (θ) represents the departure
of the perfect vapor from the Clapeyron equation.

D.1 The departure of steam from the ideal gas
To form a rough idea of the functional form of f (θ), the graphic of θ × z of the
steam pV T data2 is exhibited in fig. D.1.

1The quotient obtained by dividing the area occupied by the pV T data, by the total area deter-
mined by the selected intervals of z and θ , gives a rough measure of how close the substance is to
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Figure D.1: pV T data for steam in the θ × z plane.

While the isobaric curves of steam do not meet in a single curve, they form
a family of isomorphic shapes, regularly displaced in the vertical direction, I was
suggested to believe that the departure of the steam pV T data from the ideal gas
law is due to the composition of at least two phenomena: on one hand, the dis-
placements explained by the perfect vapor, and on the other hand, the contribution
of an independent phenomenon that causes the departure of the isobaric curves
from the perfect vapor.

Considerations about the causes of the formation of the entropy of steam led
me to assume that steam is described by the superposition of the Clapeyron-
Clausius entropy variation during a phase transition to the perfect vapor behavior,

the perfect vapor.
2Figures D.1 and D.2 were introduced here for illustration purposes only. The data there ex-

hibited were obtained from an old steam table I had at hand [45], when I programmed and used
the algorithms to obtain the value of the parameter p`, required to produce fig. D.2. Since its
determination was based on a low accuracy visual trial and error procedure, higher accuracy in the
approximation (D1) would be of little value.
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supposedly described by the clustering of water molecules3. I therefore propose
the following conjecture:

The departure of the isobaric curves from the perfect vapor are due to nu-
cleation processes, and that nucleation and clustering are independent pro-
cesses.

D.2 The departure of steam from the perfect vapor

To form a clearer idea of the functional form of f (θ), it would be necessary to
eliminate the influence of the unknown cause of the departure of the steam from
the perfect vapor.

It is here conjectured that such departure is due to the nucleation phenomenon,
by assuming that the vapor pressure p of a substance is given by the equation,

p
p`

= e−
∆H
RT ,

where ∆H is the variation of the enthalpy of the system during a vaporization/condensation
process, and p` is a constant pressure, characteristic of the liquid state.

For small values of ∆H/RT , we can write exp(−∆H/RT ) ≈ 1−∆H/RT to
express the energy equation,

p
p`

RT +∆H ≈ RT =
p
p`

RT +∆U + p∆V ≈ RT.

Since in a change of state p∆V = V −V` where V is the volume of gas and V` of
the liquid, we can write p∆V ≈ pV , thus obtaining,

pV +
p
p`

RT +∆U ≈ RT, (D1)

Comparing the quantities RT − pV obtained from equations (3.4) and (D1),
we conclude that they represent different departures from the Clapeyron equation,
due to distinct phenomena. By assuming that the behavior of steam is the result
of their combined action, we obtain its equation of state in the following form,

z+ f (θ)+
p
p`
≈ 1. (D2)

3This hypothesis is justified by its consequences.
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Figure D.2: pV T data for steam in the θ ×ζ plane.

Fig. D.2 represents the steam data in the θ ×ζ plane4, where,

ζ = z− p/p`. (D3)

Without the influence of nucleation on the properties of steam, the pressure dis-
persion becomes largely attenuated, so that all isobaric curves inside the vapor
region become confined in a remarkably narrow belt upper-bounded by a single,
sharp limiting curve.

The determination of the values of θ ∗, z∗, and p`, that requires further knowl-
edge about steam, were merely guessed for the construction of fig. D.2. Hence,
this graphic cannot be considered as conclusive, but as merely suggestive of the
potential of the present approach.

4The value of pl ≈ 2341 bar in equation (D2) was obtained by a low-accuracy visual trial and
error method, that made the consideration L/RT superfluous for a reliable estimation of p`.
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D.3 Remarkable symmetries in steam
Some aspects of the upper-bound curve in this graphic are noteworthy. The ex-
perimental data closely adheres to a single curve in the whole vapor region. As
opposed to the small deviations observed under it, this curve is extraordinarily
sharp.

Let us denote the maximum and minimum of the curve, respectively, by A and
B, whose coordinates in the θ×ζ plane are A= [0,1], and B= [θ ∗,ζ ∗]. These two
points delimit the vapor region5. It can be clearly seen that around the mid-point
of the segment AB the curve exhibits a remarkable half-turn symmetry. It can be
seen that, the greater the value of θ in the vapor region, the more degenerate is the
gas and the closer it is to its liquid state. It is interesting to confront these sym-
metries against those that arise in the quasi-particles representation of collective
phenomena.

5It can be seen that the value of θ at B separates the vapor from the liquid phase of water.
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