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Abstract. We study the semi classical motion of a non relativistic linear 

electric dipole oscillator in the quantum vacuum. Taking into account the 

energy vacuum-fluctuations and the stochastic effects in this motion can be 

interpreted within the context of the Fluctuation-Dissipation Theorem. This 

paper was written to young researchers in Physics. The process was 

didactically analyzed using simple physical models but in a way as 

rigorously as possible.                                                                                                                       
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(I) Introduction.                                                                                                        

 In quantum field theory
[1,2]

 (QFT) the empty space is visualized as 

consisting of fields, with the field at every point in space and time being a 

quantum harmonic oscillator, with neighboring oscillators interacting with 

each other. In our particular electromagnetic case the matter field is made 

up of fermions and the force field is made up of  photons. All these fields 

have zero-point energy (ZPE).
[2] 

Unlike classical mechanics, quantum 

systems constantly fluctuate in their lowest energy state due to the 

Heisenberg uncertainty principle.
[3,4] 

As well atoms and molecules, the 

empty space (vacuum) has these properties. A related term to ZPE is zero-

point field (ZPF), which is the lowest energy state of the particular field.
[5]

 

The vacuum can be viewed not as an empty space, but a combination of the 

zero-point fields.
[5]

  Each point in this space makes a contribution of energy 

E = hν/2, resulting in a contribution of infinite ZPE in any finite volume; 

this is one reason renormalization is needed to make sense of QFT.                              

 The electromagnetic field is the oldest and best known quantized 

force field. Maxwell´s equations have been superseded by the quantum 

electrodynamics (QED). The QED, that can be seen in many basic text 

books
[3,4 ] 

was the starting point to begin to better understand all quantum 

field theories. In QED the vector potential A(r,t), for a plane wave mode of 

the field, is given by  
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  A(r,t) = Σ kλ[2πħc
2
/ωkV]

1/2
 [akλ(0)e

-i(ω
k

t - k.r)
 + a

+
kλ(0)e

i(ω
k

t - k.r)
] ekλ      (I.1), 

where akλ and a
+

kλ are the photon annihilation and creation operators, 

respectively, for the wave vector k and polarization λ and ekλ  are the unit 

vector polarization of the field; akλ and a
+

kλ obey the bosonic commutation 

relations:
[3,4] 

 

[akλ(t), a
+

k´λ´(t)] = δ
3

k,k´ δλ,λ´ and   [akλ(t), ak´λ´(t)] = [a
+

kλ(t),a
+

k´λ´(t)] = 0  (I.2), 

and the "free" field Hamiltonian is given by  

                                HF = Σ kλ ħωk (a
+

kλakλ + 1/2)                                  (I.3). 

The least eigenvalue for HF is  HF = Σ kλ(1/2) ħωk. This state describes the 

zero-point energy of the vacuum which clearly is highly divergent.                                

 In Section 1 will be analyzed, in the non relativistic limit, the motion 

of linear oscillator in vacuum remembering that from Maxwell´s equations, 

the electromagnetic energy of the "free” field", i.e. one with no sources, is 

described by
[1,2] 

                                                                                                

         HF = (1/8π) ∫d3
r (E

2
 + B

2
)                           (I.4), 

where E = grad(Φ) - (1/c)∂A/∂t  and  B = rot(A). Finally, in Section 2 the 

effect of the vacuum interaction with the oscillator can interpreted within 

the context of the Fluctuation-Dissipation Theorem.   

(1) Non Relativistic Linear Dipole Oscillator in Vacuum.                                         

 According to Classical Electrodynamics (CE),
[6,7]

 accelerated charge 

emits radiation and then appears on the charge, in non relativistic limit, a 

reaction force named "Abraham-Lorentz Force" given by 

                          Frad = (2e
2
/3c

3
)(da/dt) =  mτ (da/dt)     (1.1), 

where m and e are its mass and charge, a = dv/dt is the charge acceleration 

and τ = (2e
2
/3mc

3
). A charge submitted to an harmonic motion with 

frequency  ωo
  
it will obey the following equation of motion, 

                       m (d
2
x/dt

2
) = - m ωo

2
 x

2
 + m τ (d

3
x/dt

3
)                   (1.2). 

 According to extensive analysis found in the literature,
[6,7]

this 

equation is useful only in the domain where the reactive term is a small 
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correction. This is the case, for instance, of the small damping 

approximation when d
2
x/dt

2
 ≈ - ωo

2
 x

2
, that is,  d

3
x/dt

3
≈ - ωo

2
 dx/dt. In these 

conditions Eq.(1.2) becomes: 

                         d
2
x/dt

2
 +  τ ωo

2
 (dx/dt) + ωo

2
 x

2
   ≈ 0                        (1.3), 

showing that x(t) would be exponentially dampened.                                                          

 Now, let us analyze using a semiclassical approach, the motion of a 

non relativistic dipole oscillator interacting with the vacuum field described 

by the Hamiltonian:
[1,2,5] 

                                                                                 

                     H = (1/2m)(p - eA/c)
2
 + (1/2)mωo

2
 x

2
 + HF                             (1.4),                                                                      

where the linear dipole is given by d = ex, ωo is its harmonic vibration 

frequency and the charge has a mass m. It has the same form as the 

corresponding classical Hamiltonian and the Heisenberg equations of 

motion for the oscillator and the field are formally the same as their 

classical counterparts. For instance the Heisenberg equations for the 

coordinates x and the canonical momentum p = m (dx/dt) + eA/c of the 

oscillator are given by, 

                   dx/dt = (iħ)
-1

[x, H]   and    dp/dt = (iħ)
-1

[p, H]             (1.5). 

Taking into account (1.5) it can be shown that:
[5]

 

                     m (d
2
x/dt

2
) = dp/dt - (e/c)dA/dt =  

                                   = eE + (e/c)(dx/dt) x B - mωo
2
 x

2
              (1.6), 

since the convective derivative  dA/dt = ∂A/∂t + [(dx/dt)•grad]A
3
.                                      

 For non relativistic motion we may neglect the magnetic force in 

Eq.(1.6)  obtaining: 

                                    d
2
x/dt

2
 + ωo

2
 x

2
  ≈ (e/m)E(t)                           (1.7). 

Since Φ = 0 we get  E(t) = -(1/c)∂A/∂t, using Eq.(I.1). Neglecting the 

spatial dependence of the field in the dipole approximation results
[5]

  

                           E(t) ≈ Σ kλ[2πħωk /V]
1/2

 [akλ(t) + a
+

kλ(t)] ekλ           (1.8).  

Similarly, using the Heisenberg equations dakλ(t)/dt = (iħ)
-1

[akλ(t), H] we 

have                                                                                                                                

                dakλ/dt = iωkakλ + ie[2π/ħωkV]
1/2

 v • ekλ                                 (1.9), 
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where v = dx/dt.                                                                                                             

 Note that in deriving the equations for x, p and akλ it was assumed 

the fact that equal-time particle and field operators commute at all times t 

that was valid at t = 0 when the matter-field interpretation is presumed to 

begin.
[5]

                                                                                                    

 The formal solution of the field equation (1.9) is: 

     akλ(t) = akλ(0) e
-iω

k
t
 + ie[2π/ħωkV]

1/2 ∫o
t 
dt´ ekλ •v(t´) e

-iω
k

(t - t´)
         (1.10). 

Substituting Eq.(1.10) into Eq.(1.8) results E(t) = Eo(t) + ERR(t), where                                                                                                                                

   Eo(t) = i Σ kλ[2πħωk /V]
1/2

 [akλ(0) e
-iω

k
t
 - a

+
kλ(0) e

iω
k

t
] ekλ                                    

and                                                                                                                                     

        ERR(t) = -(4πe/V) Σ kλ  ∫o
t 
dt´[ ekλ•v(t´)] cos ωk(t -t´)     (1.11). 

 That is, the total electric field E(t) acting on the dipole has two parts: 

Eo(t) is the free "zero-point field" or "vacuum field" and ERR(t) is the 

source field, the field generated by the dipole and acting on the dipole. In 

quantum theory there is always an "external" field, the source-free or 

vacuum field Eo(t). One can see
[1,2]

 that the expectation value of the free 

field is < Eo(t) > = 0 and that the energy density associated with the free 

field is infinite: (1/4π) < Eo
2
(t) > = (1/V) Σ kλ(1/2) ħωk.                                                                                                      

 As the radiation reaction field is given by
[5]

ERR(t) = (2e/3c
3
) d

3
x/dt

3
, 

we verify that Eq.(1.4) becomes written as,  

                          d
2
x/dt

2
 + ωo

2
 x

2
 - τ (d

3
x/dt

3
)  ≈ (e/m)Eo(t)                   (1.12), 

where τ = 2e
2
/3mc

3
.                                                                                   

 According to Eq.(1.2), classically the dipole in the vacuum is not 

acted upon by any "external" field if there are no sources other than the 

dipole itself. However, according to Eq.(1.12), in the quantum mechanical 

approach, the dipole is acted by an "external" field or vacuum field Eo(t).                                                                                                                  

 For small damping  d
2
x/dt

2
 ≈ - ωo

2
 x

2
, that is, d

2
x/dt

2
 ~ - ωo

2
 (dx/dt), 

Eq.(1.12) becomes,                                                                                                       

                      d
2
x/dt

2
 + τ ωo

2
(dx/dt) + ωo

2
 x

2
  ≈ (e/m)Eo(t)                 (1.13), 

showing that without the free field Eo(t) this equation is equal to Eq(1.3).            
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 (2)Fluctuation-Dissipation Theorem.                                                            

 Let us remember now the classical "Brownian motion" when a 

particle perform a random motion.
.[8]

 According to Langevin a particle that 

performs a random motion is submitted to two kinds of forces. One 

dissipative proportional to its velocity (Stokes force), and another f(t) 

which has a random (or stochastic) character due to myriads impacts of the 

particles with molecules of medium. Supposing the simplest case of the 

motion of a particle with mass m along the x axis we have 

            

                                m (d
2
x/dt

2
) = - α(dx/dt) + f(t)                              (2.1). 

 

The first term of (2.1), - α(dx/dt), is a dissipative force being α the 

dissipative coefficient and f(t) a stochastic force, impossible to be 

represented analytically, characterized by the following time average 

properties 

                                              < f(t) > = 0                                             (2.2), 

                                                         

because in average the value of the stochastic forces due to collisions is 

expected to be zero and 

                                            < f(t)f(t´) > =  B δ(t - t´)                            (2.3), 

 

supposing that the molecular impacts are independent , where B is a 

constant. Eq.(2.1) supplemented by properties (2.2) and (2.3) is named 

Langevin Equation. Dividing (2.1) by m results, 

 

                                            dv/dt = - v/τr + ζ(t)                                    (2.4), 

 

where τr = m/α is the " relaxation time" and ζ(t) = f(t)/m.  

 This case can be generalized involving all processes where there are 

simultaneously dissipative and stochastic effects. This was clarified by the 

Fluctuation-Dissipation Theorem (FDT)
[9]

 proven by H. Callen and T. 

Welton
[10]

 and expanded by R. Kubo.
[9] 

The FDT applies both to classical 

systems and quantum mechanical fluctuations.
[11]

  Generally speaking if a 

system is coupled to a bath that can take energy from the system in an 

effectively irreversible way, then the bath must also cause fluctuations. 

Fluctuations and dissipations cannot exist one without the other.  

 Eq.(1.13) can be written as 

                                     

                        d
2
x/dt

2
 + ωo

2
 x

2
  ≈ - (dx/dt)/τr + (e/m)Eo(t)                   (2.5), 
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where  - (dx/dt)/τr is the dissipative term, τr = 1/τωo
2 
the relaxation time and 

(e/m)Eo(t)  the stochastic term. In this way, the energy dissipated in the 

form of radiation by the charge is absorbed by the field ("bath") and vice 

versa, that is, the fluctuations of the field are absorbed by the charge that 

being accelerated emits radiation. See illustration in Figure 1.
[5]

 

 

 
Figure 1. Zero-point radiation from the vacuum continually imparts random 

impulses on the oscillating charge, so that it never comes to a complete stop. 
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