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Abstract.  This theoretical paper was written motivated by measurements 

of diffusion of metals (Pt, Ag and Au) in polymers performed  in the Thin 

Films Laboratory (LFF) of the IFUSP. This is a didactical article about  

diffusion laws of particles in a material medium. It was written to graduate 

and postgraduate students of physics and engineering. The calculations are 

performed in a simple way, but, as rigorously as possible.                                      
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(I)Introduction.                                                                                                
 Today at the LFF of the IFUSP we are investigating diffusion of 

metals like Pt, Ag and Au in PMMA. "While metal diffusion in polymers is 

very interesting from the fundamental point of view, research into the fields 

has been triggered off by technologically important applications of 

polymers in microelectronics.
 
Large-scale integration of devices 

necessitates the use of multilayer metallization structures on the chip level 

and for packing. In these structures, which are mainly made up of alternate 

metal and insulating layers, ceramics are increasingly replaced by high-

temperature polymers".
[1]

 Since this paper was written to graduate and 

postgraduate students of Physics we intend to explain as simple as possible, 

didactically, the diffusion of metals in PMMA. In this way, as processes of 

diffusion of particles and heat conduction are mathematically described by 

the Diffusion Equation we present in Section 1 a brief review about the 

main aspects of this equation. In Section 2 is seen the diffusion of particles 

or Brownian Motion. In Section 3 is obtained the Diffusion Equation using 

the Stochastic Approach and the Statistical Approach. In Section 4, is used 

Langevin´s Equation. In Section 5 is analyzed the diffusion due to the 

osmotic pressure. In Section 6 is shown the Smoluchowsky model. Finally, 

in Section 7 are analyzed the diffusion of particles in an homogeneous 

medium using the basic diffusion equations presented in Sections 3 and 4. 
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(1) Diffusion of Heat.                                                                                                                                                                      
 According to basic texts

[2]
of Physics the flux of heat J per unit of  

time and area that passes by an infinitesimal slab of matter with thickness 

ds maintained at a difference of temperature dθ is given by 

  

                                 J = - κ (dθ/ds)n = -κ grad(θ)                             (1.a.1), 

 

where κ is the thermal conductivity of the matter and n the unit vector 

normal to the slab surface. If a body has volume V, specific heat  capacity c 

and density ρ one can show that the quantity of heat dQ/dt changed per unit 

of time by this body with the environment is given by  

 

                              dQ/dt = ∫(s) J.dA  =  ∫(v) cρ(∂θ/∂t)dV                      (1.a.2), 

 

where S and V are, respectively, the surface and volume of the body. As, 

by the Stokes theorem,  ∫(s) grad(f).dA  =  ∫(v) lapl(f) dV  we verify that 

from (1.a.2) we conclude that                     

 

                                         ∂θ(r,t)/∂t = D lapl[θ(r,t)]                             (1.a.3), 

 

called heat diffusion equation and D = κ/cρ is the diffusion coefficient. 

 

(2)Diffusion of Particles or Brownian Motion.                                                                                     
 As will be shown in what follows, the motion of a dissolved solute or  

suspension  in gases or liquids obeys a diffusion equation similar to (1.a.3). 

This motion is historically known as Brownian Motion. In Figure 1 are 

reproduced from the book of Jean Baptiste Perrin, Les Atomes,
[3,4]

three 

tracings of the motion of colloidal particles of radius 0.53 µm, as seen 

under the microscope, are displayed. Successive positions every 30 seconds 

are joined by straight line segments (the mesh size is 3.2 µm).
[4]

 
 

  

                 Figure 1. Three tracings of the motion of colloidal particles
.[4] 

https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin
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 This random phenomenon, however, is intrinsically different from 

the heat diffusion; it obeys, from the mathematical point of view, to 

stochastic laws.
[5]

 This phenomenon was described in verses
[4]

 by the 

Roman poet Lucretius(~ 60 BC). He uses this as a proof of the existence of 

atoms:   

"Observe what happens when sunbeams are admitted into a building and shed light on 

its shadowy places. You will see a multitude of tiny particles mingling in a multitude of 

ways... their dancing is an actual indication of underlying movements of matter that are 

hidden from our sight... It originates with the atoms which move of themselves [i.e., 

spontaneously]. Then those small compound bodies that are least removed from the 

impetus of the atoms are set in motion by the impact of their invisible blows and in turn 

cannon against slightly larger bodies. So the movement mounts up from the atoms and 

gradually emerges to the level of our senses, so that those bodies are in motion that we 

see in sunbeams, moved by blows that remain invisible." 

 Although the mingling motion of dust particles is caused largely by 

air currents, the glittering, tumbling motion of small dust particles (or 

pollen grains) is, indeed, caused chiefly by true Brownian dynamics.                                                                     

 While Jan Ingenhousz described in 1785 the irregular motion of coal 

dust particles on the surface of alcohol, the discovery of this phenomenon 

is often credited to the botanist Robert Brown  (botanist, born 1773) in 

1827. Brown was studying pollen grains of the plant Clarkia pulchella 

suspended in water under a microscope when he observed minute particles, 

ejected by the pollen grains, executing a jittery motion. By repeating the 

experiment with particles of inorganic matter he was able to rule out that 

the motion was life-related, although its origin was yet to be explained. The 

first person to describe the mathematics behind Brownian motion was 

Thorvald N. Thiele in a paper on the method of least squares published in 

1880. This was followed independently by Louis Bachelier in 1900 in his 

PhD thesis "The theory of speculation", in which he presented a stochastic 

analysis of the stock and option markets. Brown in1827, while looking 

through a microscope at particles trapped in cavities inside pollen grains in 

water, noted that the particles moved through the water; but he was not able 

to determine the mechanisms that caused this motion. Atoms and molecules 

had long been theorized as the constituents of matter, and Albert Einstein 

published a paper in 1905 that explained in precise detail how the motion 

that Brown had observed was a result of the pollen being moved by 

individual water molecules, making one of his first big contributions to 

science. This explanation of Brownian motion served as convincing 

evidence that atoms and molecules exist, and was further verified 

experimentally by Jean Perrin in 1908. Perrin was awarded the Nobel Prize 

in Physics in 1926 "for his work on the discontinuous structure of matter". 

The direction of the force of atomic bombardment is constantly changing, 

https://en.wikipedia.org/wiki/Jan_Ingenhousz
https://en.wikipedia.org/wiki/Coal
https://en.wikipedia.org/wiki/Dust
https://en.wikipedia.org/wiki/Ethanol
https://en.wikipedia.org/wiki/Robert_Brown_(botanist,_born_1773)
https://en.wikipedia.org/wiki/Robert_Brown_(botanist,_born_1773)
https://en.wikipedia.org/wiki/Pollen
https://en.wikipedia.org/wiki/Clarkia_pulchella
https://en.wikipedia.org/wiki/Thorvald_N._Thiele
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Louis_Bachelier
https://en.wikipedia.org/wiki/Atomic_theory
https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/Über_die_von_der_molekularkinetischen_Theorie_der_Wärme_geforderte_Bewegung_von_in_ruhe
https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
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and at different times the particle is hit more on one side than another, 

leading to the seemingly random nature of the motion.
.[4]

 

(3) Diffusion Equation.                                                                                         
 Liquid and gases are composed by particles - atoms and molecules -

that are free to move. Let us consider a subset of particles, such as a 

dissolved solute or a suspension, characterized by a number density
[3]

  

                                        n(x,y,z,t)  = ΔN/ΔV                               (3.1). 

 Suppose that these (Brownian) particles of mass M are surrounded 

by lighter particles of mass m which are traveling at a speed u. Then, in any 

collision between a surrounding and Brownian particles, the velocity 

transmitted to the latter will be mu/M. This ratio is of the order of 

10
−7

 cm/s. But we also have to take into consideration that in a gas there 

will be more than 10
16

 collisions in a second, and even greater in a liquid 

where we expect that there will be 10
20

 collision in one second. Some of 

these collisions will tend to accelerate the Brownian particle; others will 

tend to decelerate it. If there is a mean excess of one kind of collision or the 

other to be of the order of 10
8
 to 10

10
 collisions in one second. Thus, even 

though there are equal probabilities for forward and backward collisions 

there will be a net tendency to keep the Brownian particle in a random, 

chaotic, motion. The direction of the force of atomic bombardment is 

constantly changing, and at different times the particle is hit more on one 

side than another, leading to the seemingly random nature of the motion. 

The many-body interactions that yield the Brownian pattern cannot be 

solved by a model accounting for every involved molecule. In other words, 

Classical Mechanics is unable to determine this displacement because of 

the enormous number of these bombardments. In consequence only 

probabilistic models applied to molecular populations can be employed to 

describe it. Two such models of the statistical mechanics, due to Einstein 

and Smoluchowski are presented elsewhere.
[4] 

Another, pure probabilistic 

class of models is the class of the stochastic process models that can be 

seen, for instance, in references.
[5]

 

(3.1)Stochastic Approach.                                                                           

 As these particles are moving randomly, one model used to describe 

such a process is the random walk
.[4,5]  

also called "drunkard´s walk". In one 

dimension it looks like this:  a clock ticks at intervals δt; at each tick, the 

particle moves one step to the left ( with probability α), one step to the right 

(with probability β) or remains where it is x (with probability 1-α-β). Thus, 

the probability to find the particle in the interval x+δx at time t+δt is  

 

               p(x, t+δt) = α p(x+δx,t) + β p(x-δx,t) + (1-α-β) p(x,t)        (3.1.1). 

https://en.wikipedia.org/wiki/Many-body_problem
https://en.wikipedia.org/wiki/Statistical_ensemble
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikipedia.org/wiki/Stochastic_process
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Supposing that left and right dislocations are equally probable, putting       

α = β we obtain from (3.1.1), for δx << 1 and δt << 1, since the first order 

terms  ∂p/∂x
 
 given a null contribution and taking only terms up to the 

second order ∂
2
p/∂x

2
 : 

 

                     ∂p/∂t = α (∂
2
p/∂x

2
) (δx)

2
/δt  ≡  D (∂

2
p/∂x

2
) ,                  (3.1.2) 

 

where the diffusion constant D is defined by D = α (δx)
2
/δt. Extending the 

same idea to 3-dimension we derive the diffusion equation 

 

                                           ∂p(r,t)/∂t =  D lapl[p(r,t)]                      (3.1.3). 

 

 Since p(r,t) = n(r,t)/N we see that (3.1.3) can written as 

 

                                           ∂n(r,t)/∂t =  D lapl[n(r,t)]                      (3.1.4). 

 

 Taking into account that the number of particles is conserved, that is, 

∂n(r,t)/∂t  + div(j) = 0 we see that the flux of particles j = nv is given by 

 

                                              j = - D grad(n)                                      (3.1.5).    

                           

 

 (3.2)Statistical Approach. 

 In the statistical approach, Einstein
[4]

 in one unrestricted dimensional 

domain (x) assumed that, in a time interval τ, the increment of particle 

positions as a random variable Δ with some probability density function 

φ(Δ), so that 

 

                            n(x, t + τ)  =   ∫-∞ 
+∞  

   n(x + Δ, t) φ(Δ) dΔ               (3.2.1). 

 

For small time intervals τ the left side of (3.2.1) becomes, 

 

                                 n(x, t + τ) = n(x, t) + τ ∂n(x,t)/∂t + ....                 (3.2.2). 

 

The right side of (3.2.1), for small increments Δ becomes given by, 

 

∫-∞ 
+∞   

n(x + Δ, t) φ(Δ) dΔ  = n(x,t) ∫-∞ 
+∞  

φ(Δ) dΔ  +              

 

              (∂n/∂x) ∫-∞ 
+∞  

Δ φ(Δ) dΔ  + (∂
2
n/∂x

2
) ∫-∞ 

+∞  
(Δ

2
/2) φ(Δ) dΔ  +  ...                        

                        

     = n(x,t).1 + 0 + (∂
2
n/∂x

2
) ∫-∞ 

+∞  
(Δ

2
/2) φ(Δ) dΔ  +.....         (3.2.3) 
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substituting (3.2.2) and (3.2.3) into (3.2.1) we get, for Δ <<1 and τ << 1, 

 

                                     ∂n(x,t)/∂t = D (∂
2
n/∂x

2
)                          (3.2.4), 

 

where        D ≡ ∫-∞ 
+∞  

(Δ
2
/2τ) φ(Δ) dΔ.              

  Extending the same idea to 3-dimension systems we obtain the 

diffusion equation (3.1.3). 

 
Estimation of  < x >  and < (x - < x >)

2
 >. 

   If  N is the number of independently moving particles and n(r,t) 

density of these particles the probability to find a particle in the element of 

volume δV = δxδyδz is given by  

                                                      

                                           p(x,y,z,t) = n(r,t)/N                                  (3.2.5). 

 

 Defining  q(x,t) = ∫∫ dy dz p(x,y,z,t) we see that  

 

                                   < x(t) > = ∫-∞ 
+∞ 

dx x q(x,t) 

  

and that, according to (3.1.2), ∂q(x,t)/∂t =  D (∂
2
q/∂x

2
). Consequently, 

  

    d< x>/dt = D ∫-∞ 
+∞ 

dx x (∂
2
q/∂x

2
) = 0,   an so,   < x > = constant   (3.2.6), 

that is, the average position of a diffusion particle does not change.                   

 Let us estimate dVar(x)/dt of the variance Var[x(t)] defined by  

  

         Var[x(t)] ≡ < (x - < x >)
2
>  = ∫-∞ 

+∞ 
dx x  (x - < x >)

2
  q(x,t)       (3.2.7). 

 

So, using (4.3) and ∂q(x,t)/∂t = D (∂
2
q/∂x

2
) and that < x > = constant we 

get, 

 

                 dVar(x)/dt  ≡
  
D ∫-∞ 

+∞ 
dx (x - < x >)

2
(∂

2
q/∂x

2
) = 

 
2D         (3.2.8), 

 

or  

                                             Var(x) = 2Dt
            

                                    (3.2.9). 

 

 So, the diffusive distance d =√<x
2
> =√2D√t

 
 increases proportionally to √t.
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(4)Stochastic Differential Equation or Langevin Equation.                                                   
 Let us see another approach, proposed by Langevin,

[5]
to the random 

walk by analyzing the motion of a particle subjected to a time-dependent 

random force f(t). According to Langevin a particle that performs a random 

motion, called Brownian motion, is submitted to two kinds of forces. One 

dissipative admitted to be proportional to its velocity (Stokes force), and 

another f(t) which has a random (or stochastic) character due to myriads 

impacts of the particles with molecules of medium. Supposing the simplest 

case of the motion of a particle with mass m along the x axis we have 

            

                             m (d
2
x/dt

2
) = - α(dx/dt) + f(t)                            (4.1). 

 

The first term of (4.1) is a dissipative force being α the dissipative 

coefficient and f(t) is the stochastic force, impossible to be represented 

analytically, characterized by the following time average properties 

 

                                              < f(t) > = 0                                           (4.2) 

                                                         

because in average the value of the stochastic forces due to collisions is 

expected to be zero and 

                                            < f(t)f(t´) > =  B δ(t - t´)                       (4.3), 

 

supposing that the molecular impacts are independents, where B is a 

constant. Eq.(4.1) supplemented by properties (4.2) and (4.3) is named 

Langevin Equation. Dividing (4.1) by m results, 

 

                                            dv/dt = - γv + ζ(t)                                (4.4), 

 

where γ = α/m and ζ(t) = f(t)/m. The noise function ζ(t) is a stochastic 

variable, that is, a time dependent random variable with the properties, 

putting  Γ = B/m
2
, 

  

                                                < ζ(t) > = 0                                         (4.5), 

and 

 

                                       < ζ(t) ζ(t´)  > = Γ δ(t - t´)                              (4.6). 

 

(4.1)Quadratic Average Velocity < v
2
 >.                                                                  

 To obtain the generic solution of (4.4) we begin writing                           

v(t)  =  u(t)exp(-γt)  where u(t) is a function of t to be determined. 

Substituting this in (4.4) we verify that it satisfy the following equation  

(du/dt) = exp(γt) ζ(t) whose solution is  
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                                      u(t) = uo + ∫o
t
 exp(γt´) ζ(t´)dt´                          (4.7). 

Consequently, 

 

                          v(t) = vo exp(-γt) + exp(-γt) ∫o
t
 exp(γt´) ζ(t´)dt´           (4.8), 

 

where vo is the particle velocity at t = 0. Taking into account (4.5) we get  

 

                                              < v(t) > = vo exp(-γt)                               (4.9). 

In this way, 

                                v(t) - < v >  =  exp(-γt) ∫o
t
 exp(γt´) ζ(t´)dt´          (4.10). 

From (4.10) we have 

                                         

   (v(t) - < v >)
2
  =  exp(-2γt) ∫o

t ∫o
t
 ζ(t´) ζ(t´´) exp[γ(t´+ t´´)] dt´dt´´  (4.11). 

 

Taking into account (4.6) the above equation becomes 

 

                   < (v(t) - < v >)
2
 >  =  exp(-2γt) ∫o

t
 Γ exp(2γt´) dt´             (4.12). 

So, 

 

                         <v
2
(t)>  - < v >

2  
 =  ( Γ/2γ)[1 - exp(-2γt)]                    (4.13), 

 

that, for long times, that is, in the stationary regime, < v > = 0 gives, 

 

                                      

                                    < v
2
(t) >  =  < v

2
 >    =   ( Γ/2γ)                         (4.14). 

 

 Remembering that  m < v
2
 >/2 = kBT/2  from (4.14) we obtain, 

 

                                           Γ = γ kBT/m                                                (4.15).                           

                          

(4.2)Average Quadratic Displacement or Variance.                                                                                            

 Now, let us determinate the average quadratic displacement or 

variance of the particle position defined by   < ( x - < x >)
2
 >. To this, we 

begin calculating x(t), using (4.8), given by 

  

 x(t) = xo + ∫o
t
 v(t´) dt´ = xo + vo exp(-γt) + exp(-γt) ∫o

t
 exp(γt´) ζ(t´)dt´ (4.16). 

 

Performing similar calculations seen in Section (4.1) one can see that
[5]

 

 

                                     < x
2
 > - < x > = 2Dt                                         (4.17), 

 

where D = Γ/2γ
2
 , that is, as γ = α/m and Γ = γ kBT/m, according to (4.15) 
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                                           D =  kBT/α                                                 (4.18), 

 

 obtained first by Einstein.
[4] 

According to (4.17) (see also Eq.(3.2.9)) 

 

                                            Var(x) = 2Dt
            

                                          

 

that is, the diffusive distance d increases proportionally to √t .
 
In spite of 

equation (4.17) been deduced to the 1-dimensional case it is also valid to 2 

and 3 dimensions.                                                                                                                             

 To spherical particles with radius a, immersed in a liquid with 

viscosity η, at a temperature T, the coefficient α is given by α = 6πηa.
[6-8]  

 

In this case (4.18) becomes  

 

                                              D = kBT/6πηa                                         (4.19). 

 

 The  observation of the Brownian motion of a particle (dust, 

colloid,...) is possible because they are much larger than the liquid 

molecules with which they collide. The estimation of D by measuring the 

variance and the parameters a and η permit us to determine the Boltzmann 

constant kB. This was done by Perrin in 1913.
[3,4]   

 

 

(5)Osmotic Pressure or Thermal Force Approach.                                             
 Einstein´s starting point for derivation

[3,4] 
of (5.3) was somewhat 

different from that given in Section 5.
 
He used the fact that the osmotic 

pressure P of a solute in a dilute solution is given by empirical van´t Hoff 

law (1887), where n(x) is density of the solute: 

 

                                          P(x) = n(x) kBT                                          (5.1). 

 

 To show how osmotic pressure is measured let us consider a semi-

permeable membrane separating two parts of a solution (see Figure 2).This 

is a membrane that permits the passage of solvent molecules from one side 

to another but blocks the passage of the solute molecules. 

 

 
Figure 2. Semi-permeable membrane.  
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 Suppose that n(x) and n(x+dx) are the solute densities in two sides of 

a thin membrane slab with area A and thickness dx. Einstein proposed that 

the net thermodynamic force acting Fx on the thin slab would be given by 

 

Fx = A P(x) - A P(x+dx) = A kBT [n(x) - n(x+dx)] = - kBT(∂n/∂x)Adx (5.2), 

 

that is,   

                                           Fx = - kBT(∂n/∂x)  dV                                 (5.3). 

 

In this slab there are dN particles, that is, dN = n(x)dV; each particle is 

submitted to a dissipative  fx = -α vx , so Fx = dN fx = n(x)dV fx. This 

implies that  Fx/dV= n(x) fx. In this way (5.3) becomes written as 

 

                                          n(x) fx = - kBT(∂n/∂x)                                  (5.4), 

or more generically 

                                            n f =  - kBT grad(n)                                     (5.5). 

 

As,  f = - α < v > the corresponding particle flux j ,using (6.5), is given by 

 

                            j = n < v > = n f /α = - (kBT/α) grad(n)                      (5.6), 

 

in agreement with (3.15) and (4.18) with D = kBT/α.   

                                     

 

(6)Smoluchowsky Model.                                                                           
 Smoluchowsky estimated

[4]
 Var(x)  assumed that the Brownian 

particles suffer random displacements along the x-direction due to the 

molecular collisions. Supposing that rear and forward directions are equally 

probable (which is not rigorously valid) he found that Var(x) = (64/27) Dt                                          

where D is given by (4.18). 

 

 

(7)Basic Equations for Diffusion of Brownian Particles.                             
 According to Sections (3)-(5) the diffusion of particles in an 

homogeneous medium is described by the equations 

 

                                 ∂c(r,t)/∂t =  D lapl[c(r,t)]                                  (7.1), 

and                                                                                                                                                                    

                    j(r,t) = c(r,t) < v > = - D grad[c(r,t)], 

 

where  c(r,t) ≡ ρ(r,t) ≡ n(x,t) is the concentration or density of particles 

(number of particles per unit of volume) and < v > is the average velocity 
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of the particles. The diffusion coefficient D depends of the Brownian 

particle and of the medium but is independent of the concentration c(r,t). 

 In  a typical diffusion experiment
[F]

 a thin layer of the diffusant is 

deposited onto the surface of semi-infinite sample prior to the diffusion 

run. Subsequently the sample is quickly heated or chilled up to the 

diffusion temperature and kept at this temperature for a certain time t. If  

the initial deposited layer is thin enough to be approximated by a Dirac δ-

function the resulting concentration profile is a Gaussian
[1] 

(Appendix A): 

 

                               c(x,t) = (C/√πDt) exp(-x
2
/4Dt)                              (7.2), 

 

where C is the initial concentration of particles deposited on the surface. 

 If the tracer is deposited onto the hot sample at the beginning of the 

diffusion run at a constant deposition during a certain deposition time tdep 

which is a fraction of the total annealing time t, Eq.(7.2)has to be replaced 

by 
[1]

                                    

          

              c(x,t) = (C/tdep√πD) ∫o
tdep 

 (1/√t-τ)exp[-x
2
/4D(t-τ)] dτ             (7.3). 

In the case of solubility limited diffusion the concentration profile is 

described by the complete error function 

       c(x,t) = co erfc{x/2√Dt} = co{1-(2/√π) ∫o
x/2√Dt

 exp(-u
2
)du}    (7.4),  

where co is the constant surface concentration given by the solubility limit. 

                                                                             

 

 

APPENDIX A.  Solution of the Diffusion Equation. 
 Let us first solve the diffusion equation (1.a.3) in 1- dimension case 

x in the finite interval (-ℓ, ℓ), that is, ∂F(x,t)/∂t = D ∂
2
F(x,t)/∂t

2
. Using the 

separation of variables method
[9] 

 we know that the general solution of this 

equation, for a given parameter ω, is given by 

 

                         F(x,t) = [a cos(ωx) + b sin(ωx)] exp[-Dω
2
t]        (A.1), 

 

where A,D and ω will be determined using initial and boundary conditions. 

Supposing that for any time F(0,t) = F(ℓ,t) = 0 we see that ωℓ = nπ             

(n = 0,1,2,...) which implies that ωn = nπ/ℓ and, consequently, 

 

                       F(x,t) =  ∑∞
 n =1 bn sin (ωn x)] exp(-Dωn

2
t)        (A.2).  
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If  at t = 0  F(x,0) = f(x)  from (A.2) we get  

 

                                    f(x) = ∑∞
 n =1bn sin(nπx/ℓ)                         (A.3),      

from which bn can be determined using the orthogonality property of the 

Fourier series.
[9]

 On the other hand, if for any time F(0, t) = F1 and F(ℓ,t) = 

F2 the general solution of linear diffusion equation will be written as 

 

  F(x,t)  = ∑∞
 n =1bn sin(ωnx)] exp(-Dωn

2
t) + x(F2-F1)/ℓ + F1      (A.4). 

 

 When ℓ → ∞ the ωn = nπ/ℓ values becomes closer and closer, that is,  

∆ω = ωn+1 - ωn = π/ℓ → 0, ω becoming a continuous variable.  So, in the 

general case of a continuous summation over wave numbers we have 

 ∑∞
 n =1u(ωn) = (ℓ/π) ∑∞

 n =1 (π/ℓ) u(ωn) = (ℓ/π) ∑∞
 n =1∆ω u(ωn),   

 

that is, when ℓ → ∞  we get   ∑∞
 n =1 u(ωn) =  (ℓ/π) ∫o

∞ u(ω) dω. 

 Thus, for continuous ω values the solution of the diffusion equation 

we have F(x,t), instead of (A.1), according to the Fourier Integral method
[9]

 

 

         F(x,t) = ∫o
+∞

[a(ω) cos(ωx) + b(ω) sin(ωx)] exp(-Dω
2
t) dω       (A.5). 

 

If for  t = 0 → F(x,0) = f(x) = ∫o
+∞

[a(ω) cos(ωx) + b(ω) sin(ωx)] dω  

where
[9]

 

 

a(ω) = (1/π) ∫-∞ 
+∞

f(ξ) cos(ωξ)dξ      

and                                                                                                       (A.6),                   

b(ω) = (1/π) ∫-∞ 
+∞

f(ξ) sin(ωξ)dξ      

 

supposing that f(x) → 0 when |x| → ∞.                                                       

 Substituting (A.6) in (A.5) we obtain   

 

            F(x,t) = (1/π) ∫-∞ 
+∞

f(ξ) dξ  ∫o
+∞

 cos[ω(x-ξ)] exp(-Dω
2
t) dω       

(A.7). 

Now, it is possible to integrate in ω obtaining,
[9]

 

 

                   F(x,t) = (1/2√πDt) ∫-∞ 
+∞

f(ξ) exp[-(x-ξ)
2
/4Dt] dξ               (A.8). 

 

In the limit t → 0 we can show that
[9]

 F(x,0) = f(x) which was assumed to 

be  the initial condition of F(x,t). 
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(A.1)Particular Solution for f(x) = Foδ(x-b).                                                         

 In this case putting f(ξ) = Foδ(ξ-b) in (A.8) we have, 
 

            F(x,t) = (1/2√πDt) ∫-∞
 +∞

 Foδ(ξ-b)  exp[-(x-ξ)
2
/4Dt] dξ  

 

=   (Fo/2√πDt) exp[ -(x-b)
2
/4Dt]                                    (A.9),  

 

shown in Figure 3 for times t1 ≈ 0, t1 > t2 > t3 >  

 

 
 

 
Figure 3. Temporal diffusion between the physical quantity F along the x-axis. 

 

 Note that the areas between x and the curves 1,2,3,.. are equal since  

  

           ∫-∞ 
+∞

F(x,t) dx  = (Fo/2√πDt) ∫-∞ 
+∞

 exp[ -(x-b)
2
/4Dt] dx =  Fo , 

 

that is, the "physical quantity" diffused along the x-axis is constant. 

 

Heat Conduction along a Bar.                                                                                 
 We know

[9]
 that the heat conduction along a solid with heat 

conductivity χ obeys a diffusion equation  ∂θ(r,t)/∂t =  D lapl[θ(r,t)], where 

θ(x,t) is the temperature, the diffusion coefficient D = χ/cρ, χ the heat 

conductivity, ρ the density and c the specific heat of the solid, respectively. 

The heat flux J(r,t) is given by J = -χ grad[θ(r,t)].  

 In the particular case of an infinite bar with cross section A 

supposing, for instance, that θ(x) = θoδ(x-b), verify that the total quantity of 

heat diffused along this bar is constant given by                                                           

 

              Q = ∫-∞ 
+∞ 

Q(x,t) dx = ∫-∞ 
+∞ 

cρ θ(x,t) A dx = cρAθo = constant, 

as it must be.  
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