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Abstract.                                                                                                            

 We used the Langevin stochastic equation to show the contribution 

of stochastic effects in the time evolution of the covid19 plague. It was 

shown that stochastic effects play a predominant role at the beginning of 

the plague evolution and cannot be ignored for later times.                                                                                           
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(1) Introduction.                                                                                                

 Our paper was inspired by the work published by Enrico Fermi in 

1949
[1]

 "On the Origin of the Cosmic Radiation". He showed how charged 

cosmic rays are accelerated by interstellar stochastically fluctuating 

electromagnetic fields, reaching extremely high kinetic energies ε = mv
2
/2. 

Using subtle arguments, Fermi concluded that the energy variation per unit 

of time dε/dt was proportional to ε, that is, dε/dt ~ ε. Thus showed that, 

after a time t expended by the charge trip in the interstellar space, its energy 

increases exponentially like ε(t) = moc
2
exp(θ t), where mo is rest mass of 

the charge, c the light velocity and θ is a constant.
[1]

                                                               

 The pandemic propagation of virus or bacterial infections depend on 

many factors like, for example, hygienic and economic conditions, genetic, 

transmission dynamics, climatic, geographic and immigrations. That is, the 

number of infections ni(t) per unit of time are functions of many variables 

and interrelations between them. So, mathematical predictions of the time 

evolution of a plague is extremely difficult. Many attempts have been done 

involving long analytic and numerical calculations.
[2-4] 

Some papers, for 

instance, have been written inspired by the Lotka -Volterra and nonlinear 

models of interacting populations.
[5-7]

                                                        

 Analyzing recent papers of Ciufolini and Paolozzi
[8] 

one can see, 

from their Figures 1 and 3, that the infected number ni(t) with the covid19 

in China and Italy, initially seems to increase exponentially with t. Thus, 

we suspected that, as occurs with the cosmic rays, the temporal evolution 
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of ni(t) could also be governed, at the beginning, by stochastic laws. To 

investigate this we assumed that ni(t) could be described by the stochastic 

Langevin equation
[9,10]

 which has a factor ni(t)/dt ~ ni(t), similar to dε/dt ~ 

ε, obtained by Fermi.
[1]

 

(2) Stochastic Langevin equation.                                                       

 Let us assume that the number of infected persons, per unit of time, 

dni(t)/dt, obeys the stochastic Langevin equation:
[9]                                                                                                                             

  

                         dni/dt = λi ni    +    ξ(t)                            (2.1), 

where λi = constant = gives the probability of infections per unit of time 

and ξ(t) is a "noise function". Putting ni(t) = ui(t)exp(λi t), where ui(t) is a 

function to be determined and replacing ni(t) in the Eq.(2.1) we get  

                                            dui(t)/dt = exp(λi t)ξ(t)                           (2.2).  

Integrating Eq.(2.2): 

                                   ui(t) =   uio +         
     

 

                             (2.3), 

where uio is a constant of integration.  Consequently, with Eqs.(2.1) and 

(2.3) we obtain: 

         ni(t) =  nio exp(λi t) + exp(λi t)               
     

 

 
             (2.4), 

where nio is the number of infected at t = 0. Averaging ni(t), given by 

Eq.(2.4), over all stochastic processes involved in the plague at a time t  

and taking into account that the average < ξ(t) > = 0 we get, 

                                   < ni(t) > = < nio > exp(λi t)                                    (2.5), 

where < ni(t) > is the average number of infected and < nio > is the initial 

average number.                                                                                                           

 We do not intend to determine the complex infectious processes 

responsible for the probabilities λi .We only want, using Eq.(2.5), to obtain  

λi values able to explain the diagnosed cases ni(t).                                                                                                           

 According to Eq.(2.5), < ni(t) > is proportional to < nio > and 

increases exponentially from < nio > up to infinite. However, as is known, 

in a population with N persons only N
+
 persons would be infected by some 

kinds of virus or bacteria. From Figures 1and 3 of Ciufolini and Paolozzi
[8]

 

we see that ni(t) increases with t, from 0 up to a time t*. For t > t*, ni(t) = 
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N* =  constant. In general, due to quarantines and lockouts  N
+
 > N*.                                                                                                                       

 In  Appendix are seen figures published by Ciufolini and Paolozzi
[8]

 

showing the diagnosed cases ni(t) of the covid19 plague in China and Italy, 

respectively. We have N* = 80.000 for China and N* = 200.000 for Italy.                                                                                     

 Note that Eq.(2.5), ni(t) is proportional to the initial number of 

infected nio . This means, for example, that if nio sick immigrants enter a  

country the number of infections will be amplified by a factor nio.                                                                                                                        

 To simplify our calculations, putting < nio > = 1 and using Eq.(2.5),                                                                                                                                 

it was verified that for λi
 
= 0.37± 0.01 there is a fair agreement between our 

predictions and diagnosed cases in Italy
[8]

 in the interval 0 ≤ t < 30 days. 

Our predictions and the diagnosed cases are seen in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1. The diagnosed cases in Italy (red circles) and our predictions ( black dots). 

There is a fair agreement only for t < 30 days. 

 From Figure 1, we note that only for t < 30 days there is a good 

agreement between our predictions and the diagnosed cases. For t > 30 

days the ni(t) evolution cannot be only explained by the stochastic 

Langevin equation. For times t > 30 days, according to Section 1, 

mathematical predictions for ni(t) involve long analytic, nonlinear models 

of interacting populations and numerical calculations.
[2-4,5-7] 

                                                           

  We were not able to perform a similar analysis for the ni(t) results 

for China because the ni(t) values for the initial times of the infection are                                                       

not clearly shown in reference.
[8]

                                                                                  

 The number of deaths(fatalities) nd(t) can be estimated by                                                                                                           

nd(t) = Pd ni(t) where Pd is the probability of deaths. These numbers, for 

China and Italy, are given by of Ciufolini and Paolozzi.
[8]
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(3)CONCLUSIONS.                                                                                                        

 Langevin approach gives for Italy a fair description of the ni(t) 

evolution only for times 0 ≤ t  < 30 days. That is, stochastic effects seem to 

be predominant for initial times. For t > 30 days only stochastic Langevin 

effects are not sufficient to describe ni(t). More complex, long analytic and 

numerical calculations
[2-4,5-7]

 must be used to describe ni(t).                                                  

 As the plague propagation depends on the interaction between 

infected and non infected persons let us assume that the population is a gas 

composed by N
+
 white molecules and by ni(t) black molecules. Collisions 

between molecules of the same color do not alter their colors. However, 

when a black molecule collides with a white one this molecule becomes 

black. Thus, as the time increases the number of black molecules (ni(t)) 

increases and the number of white molecules (N
+
) decreases. In this way, 

the infection probability per unit of time λi must decrease as time increases. 

Since for times 0 ≤ t < 30 days we have N
+ 

>> ni the parameter λi can be 

taken constant, that is, λi ≈ constant = 0.37.                                           

 Finally, as interactions are stochastic we believe that stochastic 

effects would be important in the ni(t) evolution for all instants of time.
[2] 
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APPENDIX. Figures showing the temporal evolution of the covid19 

plague in Italy and China from the Ciufolini and Paolozzo paper
.[8] 

 

Italy(Figure 3 of reference 8)                                                                                                         

The red dots are diagnosed cases. The continuous line was obtained by a best fit with 

the diagnosed cases and extending  the curve up to the saturation value N*≈ 150.000.  

 

  

China(Figure 1 of reference 8).                                                                                                  

The red dots are diagnosed cases and the continuous line was obtained by a best fit with 

the diagnosed cases. In this case N* ≈ 80.000.  


