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Abstract.  

 Are analyzed properties of Black Holes and Wormholes obtained by 

Einstein Theory of Gravitation (TGE) using  the Schwarzschild, Eddington 

and Kruskal metrics. This article was written for undergraduate and 

graduate students of Physics. 
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Resumo.  

São analisadas propriedades dos Buracos Negros e dos Buracos de 

Minhocas obtidas pela Teoria de Gravitação de Einstein (TGE) usando as 

métricas de Schwarzschild, Eddington e Kruskal. Esse artigo foi escrito 

para alunos de graduação e pós-graduação de Física. 

 

 

I. Introduction 
 Following the procedure adopted in our previous articles

[1] 
we 

mention only a small number of articles and books. The calculations are 

performed with sufficient precision, leaving aside some refinements that 

can be found in articles. The predictions are compared with experimental 

results without the excessive concern of analyzing in detail the techniques 

used and their limitations. These aspects can be found in the references that 

will cited. In a previous article
[1]

 using Einstein's Theory of Gravitation 

(EGT) we showed how to calculate the space-time metric generated in a 

vacuum around a spherically symmetrical distribution of mass M, without 

charge, at rest and not in rotation. This metric defines Schwarschild's 

geometry. In polar coordinates, xo = x4 = ct, x1 = r, x2 = θ and x3 = φ, this 

metric, which is defined through the invariant, ds
2
 = c

2
dτ

2
  (τ = proper 

time), is given by 

 

             ds
2
 = (1− 2κ/r)c

2
dt

2
 − 

 
dr

2 
/(1 −2κ/r) − r

2
dθ

2
 − r

2
sin

2
θ dφ

2
         (I.1), 

 

where κ = GM/c
2
, is called the Schwarschild metric (SM). Thus, according 

to (I.1) we have goo(r) = g
44

(r) = Z = (1-2κ/r) = N(r),  g
11

(r) = 1/Z = M(r), 

g
22

(r) = r
  
and g

33
(r,θ) = r

2
sin

2
θ.   
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 The dimensionless quantity κ/r = GM /c
2
r can be seen as a measure 

of the intensity of the gravitational field.
[2].

 We have studied in previous 

articles
[3] 

several gravitational effects when GM/c
2
r << 1 such as light 

deflection, luminous Doppler effect, time dilation, perihelion precession of 

planets and time delay of radar echoes.
[3]

 In the solar system the relativistic 

gravitational effects are very small. Just note that on the surface of the Sun 

GMsun/c
2
Rsun~10

−6
 since G/c

2
 = 7,414 10

−28
 m/kg, the sun mass Msun = 2.3 

10
30

 kg an radius Rsun= 6.96 10
5
 km. These effects start to become large in 

the vicinity of a very massive and very compact star when 2GM/c
2
r 

approaches the unit.
[4]

 For example, when r = 3GM/c
2
 the deflection of 

light begins to become so large that the light signal may move in a closed 

circular orbit
[2]

 around the star (see Appendix A). 

J. Mitchell
[5]

 in 1784 was the first to report the spectacular effect 

produced by the gravitational potential GM/r when it becomes very large. 

Using Newton's theory of gravitation (NGT) he showed that the escape 

velocity Ve of a body of mass m must be Vs ≥ (2GM/R)
1/2

 where R is the 

radius of the planet. As Ve is independent of the mass of the body, he 

argued that not even light could escape the gravitational attraction if R 

were less than the limit value r* given by 

 

                              r* = 2GM/c
2
                                                    (I.2). 

                                           

In terms of rs given by (I.2) the MS (I.1) can be re-written in the form 

 

               ds
2
 = (1− rs/r)c

2
dt

2
 − 

 
dr

2 
/(1 − rs/r) − r

2
dθ

2
 − r

2
sin

2
θ dφ

2
          (I.3). 

 

 It can be shown (see Appendix B) using (I.3) that the curvature of 

space -time Rαβμν presents divergences at the limit of r → rs. As the 

component Ro1o1 = rs/[r(1- rs/ r)] we see that Ro1o1 → ∞ at the limit r → rs. 

Since the tidal forces 
[2]

 are proportional to the Rαβμν curvature, they would 

be immensely large as r → rs. The non-escape radius rs = 2GM/ c
2
 is called 

Schwarzschild radius or gravitational radius of mass M. The calculation 

made using NGT, which gives the correct value of rs, but leads us to 

misinterpret what happens: light or particle emitted radially out of the 

region with r ≤ rs does not rise, stop and then descend. In fact, as we will 

see below, according to TGE's previsions it falls immediately and never 

begins to move radially outward. The region of space-time into which a 

signal can enter, but from which no signal can exit, is called Schwarzschild 

Black Hole or, simply, BH. For an outside observer, the spherical surface 

of radius rs constitutes what we call the event horizon (HE), Schwarzschild 

horizon or, simply, horizon. Everything below HE remains invisible to that 

observer. For a BH with a Sun mass we have rs = 2GMsun/c
2
 = 3.41 km. 
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Taking into account (I.3), it appears that the points r = rs and r = 0 are 

singularities of the SM. When r → rs we have goo = (1− rs/r) → 0 and        

g11 = 1/(1− rs/ r) → - ∞.  When r → 0 we have goo = (1− rs /r) → - ∞ and     

g11 = 1/(1− rs/r) → 0. As seen in Appendix B and as will be shown in 

Section 2, the singularities of the metric coefficients gμν and the curvature 

Rαβμν at point rs can be eliminated with an appropriate choice of the 

coordinates where tidal forces
[2]

 would be finite at r = rs. As the physical 

effects, which are the tidal forces, remain finite, well behaved, we can 

conclude that r = rs is a mathematical, an spurious singularity, or, still, a 

pseudo-singularity. It is not a physical singularity. However, the point r = 0 

appears to be a physical singularity, since it cannot be removed by any 

transformation of coordinates within the context of the EGT (Appendix B). 

In the vicinity of r = 0, infinite tidal forces should appear, indicating that r 

= 0 is a real physical singularity. Perhaps quantum gravitational effects 

may inhibit the appearance of this singularity.
[6,11]

 

Another important fact is that the singularity at the point r = rs 

generates a critical difference in space-time outside and inside BH.                     

For r > rs we have goo > 0 and g11 <0; for r <rs, we have the opposite, goo <0 

and g11> 0. Thus, if in the region r > rs a small change in t is made keeping 

with r = constant we will have ds
2
/c

2
 = dτ

2
 = goodt

2 
> 0 → separation in the 

temporal coordinate it is timelike. Within BH, that is, for r < rs we will 

have, ds
2
/c

2 
= dτ

2
 = goo dt

2
 < 0 → separation in the temporal coordinate is 

spacelike. Similarly, if in the region r > rs a small change in r is made while 

maintaining t = constant we will have ds
2
/c

2
 = dr

2
 = g

11
 dr

2
 > 0 → 

separation in the spatial coordinate is timelike and for r < rs, ds
2
/c

2
 = dr

2
 = 

g11 dr
2
 < 0 → separation in the spatial coordinate is spacelike. 

In Section 1 we will calculate the travel times of a light signal and a 

space probe when describing a radial trajectory in space-time described by 

the SM given by (I.3). In Section 2 we will show how SM (I.3) is 

transformed adopting the coordinates proposed by Eddington in 1924 
[6,7]

 

and by Kruskal.
[10]

  With these new coordinates, the singularities of g
μν

 and 

Rαβμν in r = rs disappear, however, the singularity remains at r = 0. We will 

calculate the light path times in radial paths in the case of Eddington 

coordinates and see how from the Schwarzschild geometry emerges 

"wormholes" (WH).  

 

(1)Travel times of radial paths of the light and probe. 
 The event horizon (HE) at r = rs plays a fundamental role in the BH. 

The region within that horizon is strictly isolated from the rest of the 

Universe. Let's see how HE affects physical phenomena. 

 The first important result was obtained
[3]

 using the SM, taking into 

account (I.1), the time dilation dτ of a clock with coordinate r measured by 

an observer far from BH: 
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                                             dτ = (1- rs/r) dt                                            (1.1). 

Thus, a clock in r ≈rs travels infinitely slower than a clock in infinity. This 

means that if a space probe in the vicinity of a black hole, with r ≈ rs, sends 

light signals separated by time intervals of 1 s (measured on your watch) an 

observer very distant from him will receive these pulses of light separated 

by time intervals much greater than 1s (measured on the observer's watch). 

 Eq.(1.1) shows an infinite time delay (infinite “redshift”) for a clock 

at r= rs. Indeed, as we will see below, a clock (a material body) cannot 

remain at rest on the surface of events. Only a light signal can remain at 

rest at r = rs. 

 

(1.1) Light travel time. 
 Let us consider a light ray traveling radially in a region described by 

the SM. Putting ds
2 
= dθ

2
 = dφ

2 
= 0 in (I.3) we get: 

 

                              0 = (1− rs/r) c
2
dt

2
 - dr

2
 / (1- rs/r)                              (1.2), 

 

obtaining the speed coordinate (or velocity) dr/dt, measured by an observer 

very far from the black hole, 

  

                                            r/dt = ± c (1- rs/r)                                         (1.3), 

 

where the ± sign of dr/dt means that the light is moving, respectively, in the 

positive radial direction (S+) or in the negative radial direction (S-). Note 

that according to (1.3), dr/dt = 0 in HE, that is, at r = rs.                                          

  

(1.1a) Light motion towards the BH center (S-).                                                                      

 The time t1(r) that the light takes (measured by an observer away 

from BH) starting from a point with initial coordinate r = R >> rs and 

approaching the BH, arriving at a point r ≥ rs is, given by (1.3): 

t1(r) = − 
r

R

dr/c(1 − rs/r) =  (R− r)/c + (rs/c) ln[(R − rs)/(r − rs)]          (1.4), 

where T = (R − r)/c would be the light path time of R → r in the absence of 

a gravitational field. According to (1.4) the light would take an infinite time 

to reach the point r = rs. For a very distant observer the speed of the light 

dr/dt → 0 (see 1.3) when r → rs ; consequently, the light signal would take 

an infinite time to reach r = rs. 

 On the other hand, the travel time t2(r) that the light takes to go from 

a point r ≤ rs to r = 0 is given by, using  (1.3): 

               t2(r) = − 
0

r

dr/c(1 − rs/r) =  r/c + (rs/c) ln[(rs/(rs−r)]          (1.5). 
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 According to (1.5) the travel time t2(r) of a light signal departing 

from a point with rs > r is finite. However, it would never reach r = 0 if it 

started from r = rs, because at that point the light would have zero speed. 

 These results show that a light signal sent from outside BH towards 

the center of BH takes an infinite time to reach HE. If the signal is sent 

towards r = 0 from a point r < rs it will take a finite time to reach the point   

r = 0. It will never reach the center if it is sent from a point with r = rs. 

 

(1.1b) Light signal with positive radial motion (S+).                                                                            

 Integrating (1.3), with the + sign, from 0 → rs one can see that the 

travel time from 0 → rs would be infinite, because the speed of the signal 

tends to zero in the HE, that is, at r = rs. The light would never exceed the 

distance r = rs. However, integrating (1.3), with the + sign, of r → R with     

r > rs, we have a finite travel time, that is, the light would always reach the 

observer who is at point R. 

 Thus, if light is sent (S +) from inside BH in the direction 0 → rs it 

would never exceed HE. However, if it is sent (S+)from outside the BH it 

would always arrive at an external point R. 

 
(1.2) Probe fall time in a radial path. 

 Let us now calculate the proper travel time measured by a clock 

placed on a space probe that moves radially towards the black hole (S-). 

According to the calculations shown in Appendix C the equation (B.5) that 

gives the radial path of a particle in an SM is given by 

 

                                   (dr/cdτ)
2
 = rs/r + 1 - B

2
                                       (1.6), 

 

where B is a constant of motion. If in the initial state the particle has zero 

velocity, very far from the BH and falls towards it (S-), from (1.6) we have 

(see Appendix A)                                                                                                                            

    dτ = - c(r/rs)
1/2

 dr                                         (1.7). 

 

Integrating (1.7) from a generic point r to r = 0, we have, 

 

                                   τ(r) = τo - (2/3) (rs/c) (r/rs)
3/2

                                 (1.8). 

 

where τo = τ(r = 0) is the proper time that probe takes to reach r = 0. Note 

that the proper time measured by a clock on the probe varies uniformly 

when crossing the horizon at r = rs. Once the probe reaches the horizon, it 

takes a time τ = τ(rs) - τo = (2/3)(rs /c) to reach the center of BH. In the case 

of a BH with a mass of 10 Msun we would have ∆τ ~ 10
−4

 s. 
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 Let us now calculate the time t, which the probe would take, 

measured by an observer far from BH, to go from a very distant point to the 

event horizon r = rs. Now, from (1.1) and (1.7) we obtain
[6]

 

 

                                 dt = −r
3/2

dr / (r - rs) rs
1/2 

                                       (1.9). 

 

 Integrating (1.9): 

 

t(r) = to + (rs/c) [- (2/3) (r/rs)
3/2

 -2(r/rs)
1/2

 + ln|((r/rs)
1/2

+1)/((r/rs)
1/2

−1)| (1.10). 

 

For long distances r >> rs  we have, 

 

                          t(r) ≈ to - (2/3) (rs/c) (r/rs)
3/2

 −2 (rs/c)(r/rs)
1/2

              (1.11). 

 

As for long distances t(r) and τ(r) must coincide (see 1.7 and 1.9), that is,                         

dτ  ≈ -dt ≈ c (r/rs)
1/2

 dr, the constant to must be chosen accordingly, that is, 

to ≡ τo + 2(rs/c)(r/rs)
1/2

. With this choice we obtain 

 

                   t(r) ≈ τo - (rs/c)(2/3)(r/rs)
3/2

                              (1.12). 

 

 In Figure 1are shown 
[6]

 the times t(r) and τ(r) as functions of r, 

represented by dashed and continuous lines, respectively. Remembering 

that t(rs) = τo - (2/3)(rs/c)
3/2

 and t(r =0) = τo we have Δt = Δτ = (2/3) (rs/c).  

 

   
Figura 1. The proper time τ (continuous line) and the coordinate time t(r) 

(dashed line) plotted as functions of r and t, for a probe falling radially into 

a BH.
[6] 

 

It is important to note that the probe takes an infinite time t to reach 

the horizon. On the contrary, the proper time τ measured by a clock on the 

probe takes a finite time passing through the horizon and reaching r = 0. In 
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practice, the instruments on the probe would not survive this trip, as they 

would be destroyed by the immense gravitational tidal forces. 

The behaviors of t(r) and τ(r) as a function of r are completely 

different when the probe approaches and crosses the horizon, clearly 

illustrating how the curvature of the space-time with SM makes it 

impossible to cover all space-time with a single set of Cartesian 

coordinates.  

                                                                                                                

(1.3)Light signal emitted by a probe escaping from the BH. 
In Section (1.2) we calculated the falling time of a probe. Now 

suppose that a light source on the probe, escaping from the BH, emits a 

light signal with a proper frequency fo. The energy emitted by the source, 

per unit of proper time, is the luminance given Lo α fo/∆τ. For an observer 

at a point r, the luminance L α f/∆t is given, taking into account that                                 

f = fo(1- rs/r)
1/2

 and that ∆t = ∆τ/(1 - rs/r)
1/2

: 

 

                               L(r) α (1- rs/r)fo                                      (1.12). 

 

Considering that the arrival time of the signal at an observer located 

at point r = R as the time t = 0, the light would be emitted by the probe at 

the time T(r) = - t1(r) calculated with a (1.4). Now, according to (1.4) 

taking into account that the light is sent in r ≈ rs we will have 

  

                             T(r) ≈ - (rs/c) ln(r - rs)                                     (1.13). 

 

From (1.12) and (1.13) we obtain, 

 

                            L(T) α fo exp (- cT/rs)                                     (1.14). 

 

This shows that the luminous signal emitted by the probe decays 

exponentially as it approaches the HE, that is, when r → rs. In the case of a 

BH with a mass of 10 Msun the time constant rs/c is of the order of 10
−4

 s. 

So, a white light emitted from the surface of a collapsing star, turning into 

the HE, quickly turns red and disappears in a rs/c time scale. 

 

(2) Eddington and Kruskal coordinates. 
(2.a) Eddington coordinates. 

 In order to eliminate the singularities that appear in the SM (I.1) or 

(I.3) when using the polar coordinates xo = x4 = ct, x1 = r, x2 = θ and x3 = φ, 

Eddington 
[7]

 proposed in 1924 a set of coordinates that would be more 

appropriate to study a BH defining a time t*: 

 

                                    t* = t + (rs/c) ln|(r/rs - 1)|                                     (2.1). 
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With this change in variables, the SM (I.3) is replaced by 

 

            ds
2
 = (1− rs/r) c

2
dt*

2
 − 2c(rs/r)drdt* − (1+ rs/r)dr

2 
+ r

2
dΩ

2
          (2.2). 

 

Now, the new metric coefficients gμν of (2.2) have no singularities at r = rs. 

They also present singularities at r = 0. The Eddington coordinates that 

were rediscovered by Finkelstein
[8]

 in 1958 are also called Eddington -

Finkelstein coordinates. These coordinates allow for a physically clearer 

interpretation of what occurs in the vicinity of a White Hole (WH) (see 

Section 3), but, not so obvious for regions further away from a BH. It can 

be shown (Appendix B) that with the new coordinates there are no 

singularities in the curvature Rαβμν at r = rs and, consequently, the tidal 

forces are finite at this point. They tend to infinity when r → 0 (see 

Appendix B). In these new coordinates, the radial trajectory of a light 

signal is determined from 

 

             0 = (1− rs/r) c
2
dt*

2
 − 2c(rs/r)drdt* − (1+ rs/r)dr

2
     

 

that has as solutions 

 

              dr/dt * = - c         and     dr/dt * = c (1− rs/r)/(1+ rs/r)             (2.3). 

 

In the absence of a BH, (2.3) are given by dr/dt * = - c and dr/dt * = c, 

respectively. The first equation would describe a light signal going towards 

r = 0(S-) and the second one going in the opposite direction to r =0 (S+) 

Thus, in the general case, the first equation of (2.3) would describe a light 

signal that moves towards r = 0 with a constant speed −c for any value of r, 

that is, 0 ≤ r <∞. In other words, the light that comes from outside will 

always enter BH. The second solution that would describe the path of light 

in S + shows that for 0 ≤ r < rs the speed is negative, for r = rs the speed is 

zero and that from r > rs it becomes positive and grows until it reaches the 

maximum value + c at infinity. Thus, if the probe is within the horizon 

(HE), the light it emits will always have a speed turned to r = 0 or S-. In 

this way the light that comes from outside (S-) or the one that is emitted 

from inside BH, either in the positive + or negative direction - always goes 

inexorably towards r = 0. 

 There is an alternative form of Eddington coordinates, that is, instead 

of (2.1), defining 

                                  t* = t − (rs/c) ln |(r/rs − 1)|                                 (2.4). 

 

With this choice, (2.3) are replaced by 

 

            dr/dt* = c        and            dr/dt * = -c(1− rs/r)/(1+ rs/r)           (2.5). 
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 In these conditions, it can be seen that the light will always leave the 

horizon and instead of a BH we have a White Hole (WH). In this way, 

matter will always be ejected from the singularity r = 0. According to 

current theories of stellar evolution 
[2,6,9] 

only BH must exist and never a 

white hole, although mathematically this was possible according to (2.5). 

This shows that coordinate choices in a space-time described by the SM 

can generate very subtle properties, as we will see below analyzing 

Kruskal's coordinates.
[10] 

 

(2.b) Kruskal coordinates. 

 Another coordinate system (u, v, θ, φ) convenient for studying BH 

was proposed by Kruskal.
[10].

 For (a) r < rs and (b) r > rs we have, 

 

(a) r < rs 

                        u = (1− r/rs)
1/2

 exp(r/2rs) sinh(ct/2rs)                                              

                                                                                                            (2.6) 

                        v = (1− r/rs)
1/2

 exp(r/2rs) cosh(ct/2rs)     

                                          

(b) r > rs            

                         u = ( r/rs
 
−1)

1/2
 exp(r/2rs) cosh(ct/2rs)                                               

                                                                                                              (2.7).          

                         v = ( r/rs
 
−1)

1/2
  exp(r/2rs) sinh(ct/2rs)                                              

 

 The inverse transformations of (a) are given by  

 

           (r/rs
 
−1) exp(r/rs) = u

2
 − v

2
  and         ct = 2rs tanh

−1
(u/v)            (2.8), 

 

and the inverse of (b) by, 

 

           (r/rs
 
−1) exp(r/rs) = u

2
 − v

2
     and       ct = 2rs tanh

−1
(v/u)            (2.9). 

 

 With these Kruskal coordinates ds
2
 defined by (I.3) is given by 

 

      ds
2
 = (4rs 

3
/r) exp(−r/rs) (dv

2
 − 

 
du

2 
) − r

2
dθ

2
 − r

2
sin

2
θ dφ

2
              (2.10),  

 

where the coordinate r is a function of u and v, according to (2.8) or (2.9). 

 As in the case of the Eddington metric, in the Kruskal metric (2.10) 

there is only the inevitable singularity r = 0. Eq.(2.10) is also known as the 

“maximal extension of the Schwarzschild metric”. The variety defined by 

the Kruskal metric is said maximal because the geodesics have an infinite 

length in both directions of a singularity; they do not begin or end in a 

singularity. In the book of Misner,Thorne and Wheeler 
[10]

 we see in detail 

how to obtain the radial geodesics of massive particles and photons using 
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Kruskal's (u, v) plane compared to those obtained using Schwarzschild's 

coordinates (ct, r) (see Ohanian
[2]

). The photon radial geodesics 

(“lightlike”) are obtained from (2.10) making ds
2
 = 0, θ = π/22 and φ = 

constant, obtaining dv
2
 = du

2
. Showing that the geodesics of the photons 

are straight lines u = v in the plane (u,v). Differentiating (2.6) and (2.7) it 

appears that along the geodesics we have dr/dt = ± c. In Figure 2 we show 

one of the representations of the plane (u,v) seen in Ohanian's book 
[2]

 [Fig. 

(9.4), pag.319]. In the plane (u, v) appear the regions I and IV of  the space-

time (u,v) that represent, respectively, BH and WH, which have the point u 

= v = 0 in common. Regions I and III are outside the light cone: 

communication between them is impossible. 

 

 
Figure 2. The "maximal geometry"

[6]
 of Schwarzschild in the (u,v) Kruskal 

coordinates.  

 

(2.c)Wormholes (WoH). 

 It is fascinating to analyze the geometry of space-time involved with 

physical phenomena. We suggest that students read section 23.8 of the 

book Gravitation
[11]

and the articles by Fuller, Misner and Wheeler 
[16,17]

 on 

this topic, “Geometrodynamics”. For very relativistic static stars, the 

geometry of space-time deviates strongly from plane Lorentz -Euclidean 

geometry. Indeed, taking into account (I.3), with t = constant, that the radial 

distance ℓ(r) of a coordinate point r measured from r = rs is given by 
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                                      ℓ(r) = 
r

rs

dr/(1− rs/r)
1/2

. 

 The area A(r) of a sphere with radius r is given by A(r) = 4πr
2
 and 

the length s(r) of the circumference of radius r measured in the equatorial 

plane, where θ = π/2, is given by s(r) = 2πr. Since (1− rs/r)
1/2

 <1 we find 

that dℓ(r)/dr varies very quickly for r around rs and remains constant at the 

limit of r >> rs. This “strange” behavior can be visualized more easily 

using a process called “geometric immersion” as follows.                                          

 Doing θ = π/2 in (I.3) we will have an arc element dl
2
 in the 

equatorial plane given by 

       

                                     dl
2
 = dr

2
/(1− rs/r) + r

2
dφ

2
                             (2.11), 

 

which obeys a geometry of a curved 2-dim space (r, φ). What is done is to 

emerge this curved space in a flat 3-dim space (r, φ, z). In this space, the z 

coordinate is an “artificial coordinate” that has nothing to do with the z 

coordinate of real space. The distances dl in the flat 3-dim space with 

cylindrical coordinates (r, φ, z) where we will emerge the 2-dim curve 

described by (2.11) are given by 

 

                    dl
2
 = dr

2
 + r

2
dφ

2
 + dz

2
  = dr

2
 [1 + (dz/dr)

2
] + r

2
dφ

2
        (2.12). 

 

The immersion is done in such a way that the distances dl along the surface 

described by (2.12) coincide with the distances dl given by (2.11). With 

this condition, from (2.11) and (2.12), we obtain 

 

                                (dz/dr)
2
 = 1/(1− rs/r) − 1                              (2.13). 

 

Integrating (2.13), for z > 0 results,  

 

                                         z(r) = 2rs(r/rs − 1)
1/2

 + C                          (2.14). 

 

Assuming that at z = 0 we have r = rs we obtain the surface of a paraboloid 

of revolution given by 

 

                                       z(r) = 2rs (r/rs − 1)
1/2

                                    (2.15). 

 

 The bottom part of the surface, that is, the part with z < 0, can be 

thought of as a deformation similar to that of a “second universe”. 
[2,11,16,17]

 

In Figure 3 (see fig.9.5 (a) of Ohanian
[2]

,pag.322) we see the parabolic 

surface z(r) connecting the "two Euclidean universes” (two "flat spaces"). It 

widens, opening at both ends like a funnel and narrowing in the middle at   

z = 0. This surface is called “wormhole" (WoH).
[2,11,16,17]

 The top and 
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bottom parts of the funnel are flat surfaces that represent two Euclidean flat 

spaces that are very far from the BH with center in z = 0, at the neck of the 

funnel. At this narrower point r = s, in the vicinity of the BH, the greatest 

space-time deformation occurs. 

 
Figure 3. Wormhole Geometry (WoH). The surface z(r, φ) was calculated for 

the case t = 0 and θ = π/2 (in Kruskal's metric we have v = 0 and θ = π/2). The r 

coordinate is measured in units of rs and the parameter u is given, putting t = 0 in (2.7), 

by u = ± (r/rs-1)
1/2 

exp (r/2rs). 

 

 On the 2-dim z(r) surface the measured distances dℓ between any 

two nearby points (r, φ) and (r + dr, φ + dφ) are correctly reproduced. The 

circles of radii r have their own circumferences s(r) equal to 2πr. Distances 

measured off the surface have no physical significance; points outside the 

surface have no physical significance; the 3-dim Euclidean space has no 

physical meaning. Only the 2-dim curved surface has meaning. The 3-dim 

regions inside and outside the funnel have no physical meaning, that is, the 

Euclidean “immersor” space (r, φ, z) has no physical meaning. It only 

allows you to view the geometry of the space around the star in a 

convenient way: with it we can see how quickly the distances ℓ increase as 

a function of the coordinates (r, φ) and how the circumferences (straight 

sections of the funnel) s(r) vary with r. 

 WoH is also interpreted as being a connection between two flat 

Euclidean spaces
[10,11,16]

 in the limit case in which the mouths of the funnels 

are very distant from each other compared to the dimensions of the 

bottlenecks of the WoH. 

 Kruskal's metric depends on the time t that appears in the functions u 

and v as we see in (2.6)-(2.9). In Figure 3 we show the case of WoH for 

the time t = 0 or v = 0 (v > 0 when t > 0 and v < 0 when t < 0). The 
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coordinate v plays the role of “time” in the Kruskal metric.
[2]

 If t changes, u 

and v also change. It can be shown
[17]

 that the WoH geometry the varies 

with v (or t), as schematized
[2]

 in Figure.3. For v < −1 there is no WoH, 

only two Euclidean spaces, upper and lower, disconnected, each with a 

cusp: the WoH is collapsed. 

 
Figura 3. Schematic

[2]
 temporal evolution of the WoH geometry.  

 

 For v = −1 the WoH comes into existence, but the bottleneck is 

closed. For 0 > v> −1 the neck is open and for v = 0, which is the case seen 

in Figure 4, it has a maximum diameter. For positive times 1> v> 0 the 

neck begins to close, closing at v = 1. For v > 1 the WoH collapses leaving 

the lower and upper Euclidean spaces disconnected, each one with a cusp. 

When the bottleneck is open it is presumed that matter absorbed by the BH 

in "our Universe" passing by the bottleneck, is captured by the WH in the 

"other Universe".  

 Finally, it is important to remember that the Schwarzschild and 

Kruskal metrics are valid in a region where there is no matter, that is, they 

are solutions of the TGE equations in a region where Tνμ = 0. Thus, they 

are not relevant to the problem of gravitational collapse that should give 

rise to BH. The interpretations deduced using these metrics, including 

WoH, could be applied only to the case of BH already existing in the 

Universe. 

 

(3)Comments.  
 Probably the observed BHs have little or no resemblance to those 

predicted by SC and Kerr.
[2] 

However, their mathematical descriptions are 

beautiful: "Se non è vero, é bene trovato". 

 

Acknowledgements. The author thanks the librarian Virginia de Paiva for his 

invaluable assistance in the pursuit of various texts used as references in this article.     
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APPENDIX A.                                                                                                      
Circular orbit of light around a very massive and compact star. 

According to previous article
[1,3]

 to calculate the trajectory (geodesic) 

of a particle that moves in a vacuum we have to take into account the 

following equations 

 

                     ds
2 
= gμν dx

μ
 dx

ν
     

and                                                                                                (A.1) 

                               d
2
x

α
/ds

2 
  +  Γτ ν

α
 (dx

ν
/ds) (dx

τ
/ds)  = 0, 

 

where the symbols Christoffel Γμν
α 
= {μ

α
 ν} are defined by   

                     

                   Γμν
α 
= {μ

α
 ν} = (g

αλ
/2)( ∂ν gλμ + ∂μ gλν− ∂λ gμν )           (A.2)  

 

and the tensors gμν  are defined, according to the Schwarzschild metric, 

 

                  ds
2
 = e

N(r)
 c

2
dt

2 
 − (e

M(r)
dr

2 
+ r

2
dθ

2
 + r

2
sin

2
θ dφ

2
)     (A.3), 

 

where  e
N(r)

 = goo(r) = g44(r) = Z = (1− 2κ/r), e
M (r) 

= g11(r) = 1/Z, 

g22(r) = r
2
 and g33 (4) = r

2
sin

2
θ, taking into account that xo = x4 = ct, x1 = r, 

x2 = θ and x3 = φ. With these values we can calculate Christoffel's symbols. 

Remembering
4
 that g

μν
 = Mμν/|g| where |g| is the determinant of gμν and Mμν 

is the minor determinant of gμν in g. Since the elements of g are diagonal, 

we have |g|= |g11 g22 g33 g44 | = c
2
e

2(N + M) 
r

4
sin

2
θ.Thus, g

oo
 = c

−2
e

-N
, g

11
= e

-M
 , 

g
22

 = r
-2

 and g
33

 = r
-2

sin
-2

θ. As gμν only depend on r = x1 in (A.2), there are 

only derivatives of the type ∂rgμν. =  ∂x1gμν. Indicating by N´= ∂N/∂ r and 

M´= ∂M/∂r we obtain Γμν
α
 = {μ

α 
ν}, following the same procedure seen in 

detail in a previous article.
[1,3,12,13]

 

 In the particular case of the trajectory of a light signal, we have a 

“null geodesic”
[13,14]

, that is, we must assume that ds
2
=0. In this case, is 

defined a non-zero scalar parameter λ that varies along this geodesic. Thus, 

the equations shown in (A.1) and (A.3) are replaced, respectively, by 

 

gμν(dx
μ
/dλ)(dx

ν
/dλ) = 0                                                                         (A.4) 

                                                                                                                               

d
2
x

α
/dλ

2 
  +  Γτ ν

α
 (dx

ν
/dλ) (dx

τ
/dλ)  = 0,                                                (A.5) 

 

 0  = Z c
2 
(dt/dλ)

2 
 − [Z

−1 
(dr/dλ)

 2 
+ r

2 
(dθ/dλ)

2
 + r

2
sin

2
θ (dφ/dλ)

2
].       (A.6) 

 

Using (A.5) and the Γμν
α 

calculated according to was mentioned above, we 

obtain the following equations 
[12]
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d{Z(dt/dλ)}/dλ = 0,                                                                                (A.7) 

 

d{r
2 
(dθ/dλ)}/dλ − r

2
sinθ cosθ (dφ/ dλ)

2
 = 0                                           (A.8) 

 

d{r
2
sin

2
θ (dφ/ dλ)}/dλ = 0                                                                      (A.9). 

 

Supposing that the light moves in a plane,
3
 putting dθ/dλ = 0  and θ = π/2 in  

(A.7) and (A.9), we obtain, respectively, 

 

                     dt/dλ = β*/Z               e         r
2
 (dφ/dλ) = h β*              (A.10), 

 

where h e β* are integration constants.
[3]

 Substituting (A.10) into (A.6) we 

get, putting u = 1/r, 

 

                                 (du/dφ)
2
 = 1/h

2
 − u

2
 + 2κu

3                                                   
(A.11). 

 

Thus, from (A.11) we obtain,
[2,6]

  

 

                                  d
2
u/dφ

2
 + u  =  3κu

2    
                                         (A.12). 

 

Eq.(A.12) admits as a solution r = constant = 3κ = 3GM/c
2
. This implies 

that the light has a circular orbit with a radius = 3GM/c
2 

around the star. If 

u is slightly larger (smaller) than (3GM/c
2
)

−1
 the orbit is unstable. 

 

APPENDIX B. 

Schwarzschild metric singularities and the tidal forces. 

The curvature R
α

βμν of the Riemann space-time or Riemann-

Christoffel tensor, is defined by
 [1,2,6,12,13] 

 

                       R
σ

λμν = ∂
μ 

Γλν
σ 

 − ∂
ν 
Γλμ

σ  
+  Γλν

τ
 Γμτ

σ
 − Γλμ

τ
 Γτν

σ
             (B.1), 

 

where Γμν
α 
= {μ

α
 ν} are the Christoffel symbols given by   

                     

                           Γμν
α 
= {μ

α
 ν} = (g

αλ
/2)( ∂ν gλμ + ∂μ gλν− ∂λ gμν )           (B.2).  

 

The EGT field-equations of the are,
[2,6,12,13]

   

 

                                Rμν − (1/2)gμν R = κ Tμν
(m) 

                                   (B.3), 

 

where κ = 8πG/c
4
,  Rμν is the Ricci curvature tensor:  

 

              Rμν  =  Rνμ = ∂μ Γνσ
σ
  -  ∂σ Γνμ

σ
  + Γμσ 

τ 
Γνμ

σ
  -  Γνμ

τ
 Γτσ

σ
              (B.4), 
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and the scalar R = g
λσ

 R
σλ

 is known as scalar curvature or space-time 

curvature invariant. It can be shown 
[2]

 that the tidal forces, which are 

physical effects, are directly proportional to R
σ

λμν.. Suppose that in a given 

coordinate system there are singular points at which R
σ

λμν → ∞. If there is 

an adequate transformation of coordinates that allows to eliminate these 

singularities, that is, in such a way that the physical effects, which are the 

tidal forces, remain finite, well behaved, we can conclude that the 

singularities are spurious, mathematical or, still, pseudo -singularities. 

 For example, it appears that in SM (I.3) the component R
o

101 is given 

by R
o

101 = (rs/r)/(1 - rs/r) which tends to infinity at the limit r → rs. Using, 

for example, Eddington-Filkenstein coordinates (see Chapter 2) and (B.1) - 

(B.4), it can be shown that the tidal forces are finite at the point r = rs. Only 

at point r = 0 they diverge. Another coordinate system for analyzing the BH 

would be the “geodesic coordinates” (see Ohanian,
[2]

 pag.309) which are 

those that present at a certain point P a space-plane metric. It is always 

possible
[1,2]

 to find a coordinate system that obeys this condition. This can 

be seen, for example, in the Ohanian book
[2]

 (pag. 231−233). In other 

words, given the coordinates x
μ
 with a metric g

μν
 (x) we can always find a 

linear transformation for new coordinates x´
μ
 = b

μ
ν x

ν
, where b

μ
ν are 

constants, such that at a certain point P we have g´μν(P) = ημν, where ημν, = 

(−1,1,1,1), characteristic of a Minkowski plane space. In the vicinity of 

point P the space is locally flat where we have a local inertial frame. For a 

particle at point P we have d
2
x´

μ
/dτ = 0, that is, it moves with constant 

velocity or remains at rest observed in the system of geodesic coordinates, 

which would be instantaneously in free fall with the same acceleration of 

the particle. Point P is taken as the origin of the geodesic referential or in 

free fall. We emphasize that the coordinates are geodesic only for a certain 

instant of timer. The derivatives of g´μν(P) are zero only at a point P of the 

space-time. That is, in a given place and at a given time. If we want to 

obtain geodesic coordinates at another point P´, it is necessary to perform a 

new transformation of coordinates for this point P´of the space-time. 

 The space-time becomes flat in an infinitesimal neighborhood of 

point P when the first derivatives of g´μν(x´) becomes equal to zero. On the 

other hand, the second derivatives of g´μν(x´) cannot all be canceled by no 

one transformation of coordinates.
[2]

 This implies that the tidal forces do 

not cancel each other in the neighborhood of P. These forces could be 

measured which would allow to discriminate between the effect created by 

a gravitational field and the effect generated by a pseudo force of an 

acceleration field. In this respect, the effects of a gravitation field are not 

indistinguishable from the effects observed in an accelerated framework. 

This could occur only when the gravitational field is uniform where we 

have a null tidal force. See comments about this (which involves the 

Equivalence Principle),for instance, in Ohanian´s book
[2]

( pgs.38-41). 
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To be sure that in a given point there is physical singularity it is 

necessary to quantitatively verify their values in different coordinate 

systems. Para podermos afirmar que um ponto é uma singularidade física 

precisamos verificar quantitativamente os seus valores em diferentes 

coordenadas. However, according to the Kretschmann invariant 
[18] 

that for 

a Schwarschild BH is given by 

 

                                R
αβγδ

 Rαβγδ  = 12 rs
2
/r

6
                                  (B.5), 

 

the singularity at r = 0 must always exist independently of the adopted 

coordinate system. Perhaps quantum gravitational effects could inhibit this 

singularity.
[6,11]

 

 In many respects the singularity r = rs that appears in the SM (I.3) is 

similar
[2,13]

 to that found in a rotating coordinate system in the case of a flat 

space-time. Let us consider a Lorentz plane space defined by the line 

element ds
2
 written, respectively, in Cartesian coordinates (xo = x4 = ct, x1 

= x, x2 = y, x3 = z) or in polar cylindrical coordinates (xo = x4 = ct, x1 = r, x2 

= φ and x3 = z): 

 

               ds
2
 = c

2
 dt

2
- dx

2
 - dy

2
 - dz

2
 = c

2
 dt

2
 - dr

2
 -  r

2
 dφ

2
 - dz

2
          (B.6). 

 

In the Cartesian case goo = g44 = 1 and g11 = g22 = g33 = −1 and in the polar 

case goo = g44 = 1, g11 = -1, g22(r) = - r
2
 and g

33 
= -1. Thus, in Cartesian 

coordinates we have R
σ

λμν = 0 and, consequently, also in polar coordinates, 

this tensor is null because the polar reference is obtained from the Cartesian 

through a transformation defined by ct = ct, x = r cosφ, y = r sinφ and z = z. 

 One can pass from an inertial to a non-inertial frame in rotation with 

constant angular velocity ω around the z axis using (B.6) with the 

coordinate transformation: x4 = ct, x1 = r, x2 = φ + ωt and x3 = z , obtaining: 

 

          ds
2
 = (1 - ω

2
r

2
/c

2
) c

2
dt

2
 - dr

2
 - r

2
dφ

2
 - dz

2 
- 2ωr

2
dφ dt                (B.7), 

 

where goo= (1 - ω
2
r

2
/c

2
), g11 = g33 = -1, g13 = g31 = - r

2
 and g02 = g20 = - 2ωr

2
. 

Obviously goo is singular at r = c/ω which defines a surface with infinite 

“redshift”. However, the curvature tensor R
σ

λμν= 0 also in the case of a 

rotating frame, since (B.7) was obtained by a coordinate transformation 

from (B.6). 

 

APPENDIX C. 

Trajectory of a Massive Particle in a Gravitational Field. 

 Taking into account that in the SM(I.1) we have goo(r) = g44(r) = Z =                          

(1− 2κ / r), g11(r) = 1/Z, g22(r) = r
2
 and g

33
(r) = r

2
sin

2
θ the invariant 

[14,15]
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                                      gμν (dx
μ
/ds) (dx

ν 
/ds) = 1                                 (C.1) 

 

which is associated with the equation of the trajectory (geodesic) of a 

particle with mass ≠ 0 is written as, 

          

 Z(dt/cdτ)
2
 - (dr/cdτ) 

2
/Z - r

2
 (dθ/cdτ) 

2 
- r

2
sin

2
θ (dφ/cdτ) 

2
 = 1    (C.2). 

 

Performing calculations analogous to those used to obtain the trajectory of                                                        

a planet around the Sun we can show,
3
 for a movement that takes place in a                        

plane with θ = π / 2 = constant, that 

 

                           r
2
dφ/dτ = A            and         dt/dτ = B/Z                    (C.3), 

 

where A = aerial velocity and B are integration constants. Under these  

conditions (C.2) is written as 

 

                                     B
2
/Z

2
 - (dr/cdτ)

2
/Z

2
 - A

2
/r

2
 = 1                          (C.4). 

 

When the particle moves radially A = 0, (C.4) gives 

 

                                      (dr/cdτ) 
2
 = (rs/ r) - 1 + B

2
                                 (C.5). 

 

When the particle initially is very distant, r >> rs  and at rest, from (C.5), 

we verify that B = 1. 
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