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Abstract                                                                                                      

 This paper was written to graduate and postgraduate students of 

Physics and Mathematics. Was done a brief analysis of the mathematical 

modeling of the epidemic spreading using stochastic and deterministic 

approaches. We have shown, taking into account the Master Equation and 

Fokker-Planck Equation, that the deterministic approach gives a good 

description of the epidemic time evolution.                                                             
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(I)Introduction.                                                                                         

 Motivated by the current covid19 pandemic, this paper was written 

addressed to graduate and postgraduate students of Physics and 

Mathematics. Are briefly analyzed mathematical models proposed to 

describe the time evolution of the epidemic spreading. Only main aspects 

of these models have been discussed. Detailed analysis can be found in 

references mentioned in the text. Throughout human history, there have 

been a number of pandemics 
[1]

 of diseases like, for instance, Smallpox, 

Tuberculosis, Black Death, that killed an estimated 75-200 million people 

in the 14th century; 1918 Influenza (Spanish Flu) that killed an estimated 

50-100 million people in the 19th century, Cholera and Infantile Paralysis. 

We have now the covid19 plague originated in China, in late December 

2019.According to media reports, more than 200 countries and territories 

have been affected. Until 22july2020 the number of people infected had 

reach ~15,000,000 worldwide, of whom ~9,400,000 have recovered. The 

death toll is ~630.000. 
[1]

 In Brazil, we have ~2.200,000 infected,~100,000 

deaths and ~1.500,000 recovered. In Section 1 are seen general aspects 

about the mathematical modeling of infection diseases. In Section 2 we 

present the stochastic approach. In Section 3, the epidemic outbreak. In 

Section 4, are presented examples of stochastic models . In Section 5 are 

shown estimations done with stochastic and deterministic models and 

conclusions. Finally, in Section 6 are presented some deterministic models.  

(1)Mathematical modeling of epidemic spreading.

 Mathematical models can project how in infectious diseases progress 
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to show the likely outcome of an epidemic and help inform public health 

interventions. Models use basic assumptions or collected statistics along 

with mathematics to find parameters for various infectious diseases and use 

those parameters to calculate the effects of different interventions necessary 

to help the infected population.
[2-4]

                                                                           

 The earliest account of mathematical modeling of spread of disease 

was carried out in 1760 by Daniel Bernoulli
.[2]

 He created a mathematical 

model to defend the practice of inoculating against smallpox.                                                

 In the 20th century, William Hamer
[2] 

and Ronal Ross
[2]

 applied the 

law of mass action to explain the epidemic behavior. The 1920s saw the 

emergence of compartmental models. The Kermack-McKendrick
[2]

 

epidemic model(1927) and the Reed-Frost
[2]

 epidemic model (1928) both 

describe the relationship between Susceptible(S), Infected(I) and 

Recovered(R) individuals in a population. The predicted behavior of 

outbreaks are very similar to that observed in many recorded 

epidemics.
.[2]

.These theoretical studies of the epidemic spreading
[3,4] 

started 

with the employment of ordinary differential-equations of the first order in 

time, which became known as the deterministic approach. This approach 

however, does not describe, in a explicit manner ,the random fluctuations 

occurring in a real epidemic spreading. These fluctuations are seen in 

Figure 1 which shows, for instance, the infected number I(t), as a function 

of time, due to the covid19 plague at São Paulo (Brazil-2020) 

 

Figure 1.Time evolution of the infected number I(t) by the covid19at São Paulo.                      

From March up to August. Are clearly seen the random fluctuations in the I(t) number. 

 To take into account random fluctuations, Bartlett
[2,5]

 in 1949 treat 

the numbers of individuals of each class( S, I, and R) as stochastic 

variables as will be seen in Section 2. He developed a time evolution 
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equation taking into account probability distributions on the number of 

individuals of each class.  

(2)Stochastic approach.                                                                                         

 It will be assumed from the beginning that the disease propagation is, 

directly or indirectly, due to interactions between individuals of the 

population. This implies that stochastic effects would be responsible for the 

epidemic spreading. In this way the number n of individuals can be taken 

as the primary stochastic variables to build a theoretical approach in order 

to explain the plague evolution. Thus, let us assume that the population has 

a very large number N of individuals formed by three different classes of 

persons: n1(susceptible ), n2(infected ) and n3 (recovered) and that 

n1+n2+n3 = N = constant. These hypothesis are valid when the epidemic 

duration is relatively short so that one can neglect the population 

modification due to births or to deaths with diseases different from the 

epidemic.                                                                                                       

(2.a) Master equation.                                                                                                          

 In a recent paper
[6]

, analyzing the infected number n(t) by the 

covid19 in Italy, using Langevin equation, we verified that stochastic 

effects plays a significant role in the plague propagation. Stochastic effects 

now will be investigated using the Master Equation.
[7,8]

                                                                                                   

 So, let us indicate by P(n,t) the probability to find at a time t, persons 

of kind n. Due to recovering and infections, the time evolution of P(n,t) 

will be described by the Master Equation:
[7,8]

(see Appendix A) 

                dP(n,t)/dt = ΣrΣn´{Wr(n|n´)P(n´,t) - Wr(n´|n)P(n,t)}               (2.1), 

where Wr(n|n´) are the transition rates between the different classes, that is, 

between the state n and the states n´, where n´= n1, n2 and n3.                                                                                                                      

 For infecting transition S → I (n1→n2), when n1 decreases by one 

unit and n2 remains invariant, we have                                                                                         

    Winf  = W12 = -b N(n1/N)(n2/N),                     (2.2)  

where b is the infection rate constant.                                                                              

 For recovering transition I→R (n2→n3), when the infected number 

n2 decreases by one unit and the recovered n3 increases by one unit we have                                                                                                                                       

      Wrec = W23 = c N(n2/N)                                (2.3), 

where c is the recovery rate constant.                                                                  

 As  n1 + n2 + n3 = N,                                                                                                                     
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                                dn1/dt + dn2/dt + dn3/dt = 0,                                           

and consequently, 

                     (S→I)          dn1/dt = -b N(n1/N)(n2/N),                                                                        

               dn2/dt = b N(n1/N)(n2/N) - c N(n2/N)    (2.4)   and           

            (I→R) .......  dn3/dt = c N(n2/N).                                                                                          

(2.b) Fokker-Planck equation.
[8,9]                                                                                      

 Taking into account that N >> ni transitions rates in the Master 

Equation (2.1), that were estimated in terms of the differences n´- n = ± 1 

or  0, can be now calculated in terms of very small differences x - x´≈ 1/N 

= ε << 1. This allows us to expand the quantities on the right-hand side of 

Eq.(2.1) around x getting, 

           dP(x,t)/dt =  NΣrΣx´{ωr(x|x´)P(x´,t) - ωr(x´|x)P(x,t)}         (2.5), 

where x ≡ (x1,x2,x3), ωr =Wr/N;  ω1= - bx1x2, ω2 = bx1x2 - cx2  and  ω3 = cx2.                                                        

 Note that in this context Eqs.(2.4) becomes written as                                                                                                           

                           dx1/dt + dx2/dt + dx3/dt = 0,                                                                                                                                                                       

   (S→I)     dx1/dt = -bx1x2,                                                                    

                   dx2/dt =  bNx1x2 - cx2    and                      (2.6),                             

            (I→R)     dx3/dt =  cNx2 .                                                                                                                                                                                             

 Noting that the transition probabilities ωr involve only two 

independent variables at each time, like (x1, x2) and (x3,x2), performing
[4] 

the expansion of the second member of Eq.(2.5) up to second order in ε we 

obtain (see Appendix B) the Fokker-Planck
[7]

 equation:                                                                                    

                    ∂P(x,t)/∂t = -Σi
 
∂(fiP)/∂xi + (ε/2) Σij

 
∂

2
(fiP)/∂xi∂xj                   (2.7). 

where fi = Σr ωr (r =1,2,3), with ω1= - bx1x2, ω2 = bx1x2 - cx2  and ω3 = c x2.                                                                                                                            

(2.c)Evolution of the averages.                                                                                                                     

 Solving Fokker-Planck equation (2.5), taking into account that in the 

transitions x → x´, x - x´~ ε, we obtain P(x,t) that is centered around x ≡ 

(x1,x2). With P(x,t) we calculate the averages: 

                                                                                                             

                           < xi(t) > = ∫∫ xi P(x) dx                            (2.8). 

 Now, multiplying both sides of the Fokker-Planck Eq.(2.7) by xi and 

integrating in x results
[4]

:
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                                         d< xi >/dt   = < fi > = < ωi >                        (2.9), 

where ω1 = -bx1x2,  ω2 = bNx1x2 - cx2
, 
and  ω3 = cx2.                                                       

 To get Eq.(2.9) we have performed appropriate integration by parts 

and considered that P(x,t) vanishes quickly as the limits of integral is 

approached.
[4]                                                                                                                                                                

 
For ε → 0 the probability distribution P(x,t) becomes sharped 

Gaussians centered in xi.
[4]

 In this way, we have  <xi xj> ≈  < xi >< xj >. 

Defining, x(t) = < x1(t) > , y(t) = < x2(t) >, z(t) = < x3(t) > and remembering 

that and x(t) + y(t) + z(t)  = N = constant,  Eqs.(2.6) becomes written as:
[4]                                                                     

             dx/dt +dy/dt +dz/dt = 0,                                                                 

        dx/dt = -bNxy,                                                                        

                  dy/dt =  bNxy - cy            and                (2.10),                             

                           dz/dt =  cNy  

                                                                                    

(3)Epidemic outbreak.                                                                 

 The outbreak of an epidemic phenomenon is characterized being a 

critical event. If the number of infective individuals is small there is no 

spread of the disease. But if this number increases it will reach a critical 

value above which the epidemic spreads, the increase of the infectious 

persons being exponential in time. This fundamental idea was used by 

Ross
[2]

 in his studies on the transmission of malaria and was introduced by 

Kermack and McKendrick
[2]

 in a clear form as the threshold theorem. 

According to Mario and Tania
[4]

 analysis, in the epidemic outbreak regime 

the evolution equations (2.10) are satisfied. 

 

(4) Examples of epidemic models.                                                        

 Remembering:                                                                                          

S(t) = number of individuals not yet infected with disease at time t, or those 

susceptible to the disease of the population.                                                               

I(t) = number of individuals of the population infected with the disease and 

that are capable of spreading the disease to those in the S category.                                    

R(t) = number of individuals of the population that have been infected and 

them removed from S(t), either due to immunization or due to death. They 

are not able to be infected again or to transmit the infection to others.                               
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 Many models have been proposed
[2,4]

 to describe epidemics. They are 

known, for instance, by the names SIR,SIS, SEIR and SIRS.  

(4.a) SIR model.                                                                                                           

 In this model, indicated by S →I →R the time epidemic evolution is 

described by the Eqs.(2.4), remembering that x+y+z = 1:  

                                      (S→I) dx/dt = -bNxy                                                                        

                      dy/dt =  bNxy - cy            and             (4.1),                             

                    (R→I) dz/dt = cNy 

where x(t) = S(t), y(t)= I(t) and z(t) = R(t). In the reaction S →I the number 

S decreases by one unit and I remains invariant. In the reaction R → I, the 

number I decreases by one unit and R increases by one unit, according to 

Eqs(2.4).                                                                                                                  

(4.b) SIS model.                                                                                                               

 In this model the flux is indicated by S → I and I → S and the time 

evolution disease obeys the differential equations, where x + y = 1: 

                        (S → I )      dx/dt = -bxy + cy 

                         (I → S)       dy/dt  =  bxy - cy                                   (4.2).  

(4.c) SEIR model.                                                                                                  

 Some S individuals that have been infected takes a certain time to be 

infective. These individuals E ("exposed") are not able to infect others. The 

flow S → E→ I→ R  is governed by the equations 

                      (S → I)       dx/dt = -bxy   

                                                 de/dt =  bxy - ke.                                               (4.3) 

                                                  dy/dt  = ke - cy 

                           (R → I)         dz/dt = cy 

where the constant k is responsible for the process E →I and Eqs.(4.3) are 

not all independent because x + e + y+ z = 1.                                                                                              

(4.d) SIRS model.                                                                                                          

 The flux is given by S→ I →R →S and the rate equations are                                                                                                         

    dx/dt = -bxy  + az                                                                        



 

7 
 

    dy/dt =  bxy  -  cy                                         (4.4),                                       

    dz/dt =  cy - az 

that are not all independent because x + y + z = 1. 

(4.e) Estimations of Spreading evolution and Conclusions.                                                           

 Spreading evolution is obtained determining the functions x(t),y(t) 

and z(t), integrating numerically the linear differential functions defined by 

the Eqs.(2.10) or from simulations of the Master Equation (2.1).                                                                                            

 This was done, for instance, by Tânia and Mario.
[4]

 They shown  that 

the stochastic predictions obtained with the numerical integrations of the 

linear differential equations involving  x(t)= S(t), y(t) = I(t) and z(t) = R(t). 

are very similar to that obtained with the Master Equation simulations.

 From this one can conclude that a good estimation of the epidemic 

spreading can be performed with the employment of ordinary differential-

equations of the first order in time, according to the deterministic models.  

 

(5)Deterministic models                                                                                     

 Till 1949 many epidemic models have been proposed employing 

ordinary differential-equations of the first order in time, to describe the 

relationship between Susceptible(S), Infected(I) and Recovered(R) 

individuals in a population.
[2]

These theoretical studies became known as 

the deterministic approach of the epidemic spreading
[3] 

 However, this 

approach did not describe, in a explicit manner, the random fluctuations 

occurring in a real epidemic spreading. In order to take into account 

random fluctuations, Bartlett
[2,4]

 in 1949 treat the numbers of individuals of 

each class( S, I, and R) as stochastic variables as seen in Sections 2-4.                                                                                              

 According to the Section (5.c) we concluded that the deterministic 

approach gives a good description of the epidemic spreading. Many 

deterministic models SIR, SIS,SISR,SIRI,SIRS and SEIR are analyzed, for 

example, in reference[3].We show here only the SIR and SIS models. 

 

(5.a)SIR model.                                                                                                          

   The disease flow of this model is indicated by S → I → R. In 

this model, dS/dt, dI/dt and dR/dt are given by 
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                                          dS/dt = -βSI/N   

                                           dI/dt =  βSI/N - γI.                               (5.1) 

                                           dR/dt = γI. 

 In the reactions S→I the number S decreases by one unit and I 

remains invariant. In the reactions R → I, the number I decreases by one 

unit and R increases by one unit. The population number N =constant =  

S+I+R, that is ,the rate of infections and recovery is much faster than time 

scale of births and deaths. The parameters β and γ are constant transmission 

probability factors per unit of time.
[2]

                                                                  

 In this case S(t)+I(t)+R(t) = N = constant. Solving numerically 

Eqs.(5.1) we get the time evolution of S(t), I(t) and R(t). In Figure 2
[2] 

these functions are shown for the initial values S(0) = 997, I(0) = 3,           

R(0) = 0, β = 0.4 and γ = 0.04. 

 

 

Figure 2. Functions S(t), I(t) and R(t) for the SIR model. Time t is measured in days. 

 

 This SIR case, shown in Fig.2, should have an ideal epidemic 

evolution: the infected individuals decreases quickly tending to zero. The 

disease does not become endemic. 

(5.b)SIS model.                                                                                                              

 For this model the flow is represented by S →I →S and the time 

disease evolution are governed by the equations  

                                             dS/dt = -βSI/N + γI 

                                              dI/dt =  βSI/N  -  γI.                               (5.2). 
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 Also in this case S +I + R = constant= N. 

(5.c) SEIR model.                                                                                                  

 Some S individuals that have been infected takes a certain time to be 

infective. These individuals E ("exposed") are not able to infect others. The 

flow S → E→ I→ R  is governed by the equations 

                                           dS/dt = -βSI/N   

                                                  dE/dt =  βSI/N - kE.                                            (5.3), 

                                                  dI/dt  = kE - γI. 

                                                  dR/dt = γI 

where the constant k is responsible for the process E →I and the Eqs.(5.3) 

are not all independent because S + E + I+ R = N. 

(6.d) SIRS model.                                                                                                        

 The flux is given by S→ I →R →S and the rate equations are                                                                                                         

    dS/dt = -βSI/N  + αR                                                                        

    dI/dt  =  βSI/N  -  γI                                         (5.4),                                       

    dR/dt =  γI - αR                                                                                

that are not all independent because S + I + R = N.                                                      

 Figures showing S(t), I(t) and R(t) as functions of t can be seen, for 

instance, in references [3] and [4].   

APPENDIX A. Master Equation.
[7]

                                                                    

 Master equation is applied, for example, to describe chemical 

reactions when molecules of different kinds are transformed due to 

interactions between them. Let us assume that Pj (t) is the probability to 

find a molecule j at time t. Usually, the transition rates describing these 

chemical reactions are represented by a matrix A. In this way, the transition 

rate (transition per unit of time) dPk/dt of a molecule k to be appear in the 

reactions with molecules j would be given by the Master Equation(ME)                                                                                     

                                   dPk/dt = Σj Akj Pj                             (A.1), 

where Pk is the probability to find a molecule of j kind and the matrix A is 

filled with parameters that describe the j→k transitions. The ME can be 

simplified so that the terms with j = k do not appear in the summation: 

                             dPk/dt = Σj≠k {Akj Pj - Ajk Pk}                 (A.2) 
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APPENDIX B.  Fokker-Planck Equation
.[8,9]                                                                     

 The Fokker-Planck (FP) equation is a partial differential equation 

that describes the time evolution of the probability density functions that 

can obtained by adequate transformations of the Master Equation. For 

instance, by the Kramers-Moyal expansion.                                                              

 In our case the Fokker-Planck equation will be obtained from the 

Master Equation (2.5)
[4] 

by a Taylor series
[10]

 expansion in a second order 

of  ε = x´- x.  Since ωr = f(xi,xj) , Eq.(2.5) is written as, 

       dP(x)/dt = NΣrΣx´{ωr(xi,xj|xi
´
, xj

´ 
)P(x´) - ωr(xi

´
, xj

´
 |xi,x2)P(x)}     (B.1)   

             First, let us remember that a function of two variables f(x,y) 

expanded around two points x + εx a and y + εy is given by,
[10]

 

f(x +εx, y +εy) ≈ f(x,y) +fx(x,y)εx +fy(a,b)εy +fxx(a,b)εx
2
/2 + fyy(a,b)εy

2
/2 +fxy(a,b)εxεy   (B.2). 

Defining  f(xi´,xj´) = ωr(xi´,xj´|xi, ,xj)P(x)  and  f(xi, xj)= ωr(xi, xj|xi
´
, xj

´
)P(x

´
),                

putting xi´= xi+ εi , xj´ =  xj + εj and εi = εj = ε =1/N, Eq.(B.1) becomes 

given by                                                                                                                

            ∂P(x,t)/∂t = -Σi
 
∂(fiP)/∂xi + (ε/2) Σijr

 
∂

2
(fiP)/∂xi∂xj                  (B.3). 
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