Diffusion of spherical metallic particles in a viscous fluid submitted to electric and gravitational fields.

M.Cattani (mcattani@if.usp.br)

Instituto de Física da Universidade de São Paulo.Brasil.

Abstract. We study the motion of spherical metallic particles in a fluid submitted to viscous, random, electric and gravitational forces. Are determined conditions for the average quadratic displacement" $\delta(t)^2$ between particles be given by $\delta(t)^2 = \langle x^2 \rangle - \langle x \rangle^2 = 2Dt$, where D is the diffusion coefficient.

Key words: diffusion of metallic particles; viscous fluids; electric and gravitational fields.

(I)Introduction.

This is a didactical paper written to postgraduate students of Physics and Engineering. Taking into account the Langevin equation within the stochastic context^[1-3] we analyze the motion of spherical metallic particles in a viscous medium. These particles are submitted to viscous $F_{visc}(t)$, stochastic F_a(t), gravitational and electric forces. Are determined necessary conditions for the "average" quadratic displacement" $\delta(t)^2$ between particles be given by $\delta(t)^2 = \langle x^2 \rangle - \langle x \rangle^2 = 2Dt$, where D is the diffusion coefficient. In Section 1 is written the Langevin equation^[1-3] for a particle with mass m submitted simultaneously to a viscous $F_{visc}(t)$, a stochastic $F_a(t)$ and a generic static force F. We first study the case when $F_{visc}(t) \neq 0$, $F_a(t) \neq 0$ and F = 0; after when $F_{visc}(t) \neq 0$, $F_a(t) = 0$ and $F \neq 0$. In Section 2 is seen the case when the fluid is in gravitational field and $F = F_b$ is the buoyancy force. In Section 3 is studied the case when the viscous force $F_{visc}(t) = \gamma(dx/dt)$, where $\gamma = (\alpha/m)$, is very large, the mass is very small and $F/\gamma = f(x) \neq 0$. In Section 4 is analyzed the case when the medium is submitted to an uniform electric field.

(1) Diffusion of particles in a viscous medium.

According to the stochastic theory,^[1-3] the motion of a particle with mass m in a viscous medium is governed, by the Langevin equation,</sup>

$$md^{2}x/dt^{2} = -\alpha(dx/dt) + F + F_{a}(t)$$
 (1.1),

where α is the viscosity coefficient, $F_{visc}(t) = \alpha(dx/dt)$, $F_a(t)$ the stochastic force and F an static applied force. This equation can also be written as,

$$dv/dt = -\gamma v + f + \zeta(t)$$
(1.2),

where $\gamma = \alpha/m$, f = F/m and the noise function $\zeta(t) = F_a(t)/m$ obeys the following properties

$$\langle \zeta(t) \rangle = 0, \tag{1.3}$$

and

$<\zeta(t)\,\zeta(t')>=\Gamma\delta(t-t') \tag{1.4}.$

(1.a)Diffusion coefficient D when F = 0 (Brownian diffusion).

When f = 0 Eq.(1.2) becomes,

$$dv/dt = -\gamma v + \zeta(t)$$
(1.a.1).

Solving (1.a.1), in the stationary regime, we get ${}^{[1,2]} < v^2 > = \Gamma/2\gamma$. Since $m < v^2 > /2 = k_B T/2$ it is shown that $\Gamma = 2\gamma k_B T/m$. We verify that the "average quadratic displacement" $\delta^2 = < x^2 > - < x >^2$ is given by^[1,2]

$$\delta^2 = \langle x^2 \rangle - \langle x \rangle^2 = 2Dt$$
 (1.a.2),

If the viscous coefficient $\alpha = 6\pi\eta a$ the "diffusion coefficient" D becomes,

$$\mathbf{D} = \mathbf{k}_{\mathrm{B}} \mathbf{T} / \alpha = \mathbf{k}_{\mathrm{B}} \mathbf{T} / 6\pi \eta \mathbf{a}$$
(1.a.3).

Note that to obtain these results it is assumed that in the stationary regime the particles are in thermal equilibrium with the fluid, that is, $m < v^2 > /2 = k_B T/2$. So, the average viscous force $< F_{viscous} >$ on the particles is given by $< F_{viscous} > = \alpha < v > = 6\pi\eta a (k_B T/m)^{1/2}$.

(1.b) $F \neq 0$ and noise force $F_a(t) = 0$.

In these conditions Eq.(1.1) is given by

$$mdv/dt = -\alpha v + F \tag{1.b.1},$$

which is studied in basic text books.^[4] When the initial velocity is zero Eq.(1.b.1) gives,

$$v(t) = (F/\alpha) (1 - e^{-\alpha t/m})$$
 (1.b.2).

In the stationary regime, that is, for $t \rightarrow \infty$, we see that $v_{stat} = F/\alpha$ and that there is no Brownian diffusion.

(1.c) $F_{visc} \neq 0$, $F \neq 0$ and $F_a(t) \neq 0$.

In this case Eq.(1.2) is written as,

$$dv/dt = -\gamma v + f + \zeta(t) \qquad (1.c.1).$$

So, if $f \neq 0$ the particle would be always accelerated. Thus, taking into account Section (1.a), to have Brownian diffusion described by Eqs.(1.a.1) and (1.a.2) it would be necessary that $\gamma v >> f$, that is, $\alpha v >> F$. Since $\langle v \rangle = (k_B T/m)^{1/2}$ a good estimation to get this condition is that

$$6\pi\eta a (k_B T/m)^{1/2} >> F$$
 (1.c.2),

that is, when $\langle F_{viscous} \rangle \rangle > F$.

(2)Particles in a gravitational field.

Now, let us consider particles with density ρ_p , immersed in medium with density ρ_m , submitted to a gravitational field g. In this case F would be the buoyancy force F_b :

$$F_{\rm b} = (4\pi a^3/3) \{\rho_{\rm p} - \rho_{\rm m}\}g \qquad (2.1).$$

So, according to Section (1.c), to have particles diffusion it would be necessary that $\langle F_{viscous} \rangle \gg F_b$, that is,

$$6\pi\eta a (k_B T/m)^{1/2} >> F_b$$
 (2.2).

That is, the viscosity coefficient η must be obey the condition;

$$\eta >> (m/k_BT)^{1/2}(F_b/6\pi a)$$
 (2.3).

(3)Fokker- Planck equation: diffusion and drift.

An illustrative case is when the viscous force γ (dx/dt) is very large, the mass is very small and $F/\gamma = f(x) \neq 0$. In this case Eq.(1.2) becomes,

$$dx/dt \approx f(x) + \zeta(t)$$
 (3.1),

remembering that v = dx/dt and f(x) = F(x)/m.

According to reference[1], associated with Eq.(3.1), we have the **Fokker-Planck equation**,

$$\partial P(\mathbf{x},t)/\partial t = -\partial [f(\mathbf{x})P(\mathbf{x},t)]/\partial \mathbf{x} + (\Gamma/2)\partial^2 P(\mathbf{x},t)/\partial t^2 \qquad (3.2),$$

that gives the temporal evolution of the probability density P(x,t) that represents the distribution probabilities of the stochastic variable x obtained solving Eq.(3.1). In Eq.(3.1), $\langle \zeta(t) \rangle = 0$ and Γ is defined by the equation $\langle \zeta(t) \zeta(t') \rangle = \Gamma \delta(t - t')$.

When f(x) = constant = c, solving Eq.(3.2), we obtain^[1]

$$P(x,t) = (1/2\pi\Gamma t)^{1/2} \exp\{-(x - x_o - ct)^2/2\Gamma t\}$$
(3.3)

Figure 1. P(x,t) as a function of x and t to the Brownian motion. (a)Symmetric (c = 0) and (b) asymmetric with "drift" at right (c > 0). These figures shown that when c = 0 there is **only** diffusion described by $\delta = (2\Gamma t)^{1/2}$. On the other hand when c $\neq 0$ there is, simultaneously, diffusion and "drift" of the particles, with velocity c, induced by the external force F.

(4) Spherical metallic particles in uniform electric field E₀.

If the viscous medium, where are immersed metallic spheres, with thickness **d** is submitted to an electrical potential difference V the average electric uniform field E_o in the medium would be given by $E_o = V/d$.

This electric field E_0 (see Figure 2) would create on the metallic spherical surfaces an induced charge density $\sigma(\theta)$ given by^[5]

Figure 2. Spherical metallic particle in an uniform electric field E₀.

For the spherical metallic particle with radius a the induced charge Q is,

$$Q = 2\pi a^2 < \sigma(\theta) > \sim 3\pi a^2 \varepsilon_0 E_0$$
(4.2).

As the electron charge is 10^{-19} C and $\epsilon_o = 8.85 \ 10^{-12}$ SI, the number of induced electrons is given by

$$N \sim 8.3 \ 10^7 \ a^2 \ E_o \tag{4.3}$$

When N<< 1 the multipolar electric interactions between metallic particles can be neglected. Consequently, in the viscous medium there would be no electric forces beyond that created by the applied field E_0 . For sufficiently small E_0 values electrostriction effects can also be neglected.^[6]

REFERENCES

[1]T.Tânia and M.J.de Oliveira. "Stochastic Dynamics and Irreversibility." Springer(2015).
[2] M.Cattani and M.C.Salvadori "Diffusion Process and Brownian Motion" <u>http://publica-sbi.if.usp.br/PDFs/pd1714.pdf</u> <u>https://zenodo.org/record/3435003</u>
[3] Brownian Motion. <u>https://en.wikipedia.org/wiki/Brownian_motion</u>
[4]K.R.Symon."Classical Mechanics".Addison-Wesley Publishing Company(1953).
[5] <u>https://courses.cit.cornell.edu/ece303/Lectures/lecture8.pdf</u> [6]https://en.wikipedia.org/wiki/Electrostriction