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Abstract. We study the motion of spherical metallic particles in a fluid 

submitted to viscous, random, electric and gravitational forces. Are 

determined conditions for the average quadratic displacement" δ(t)
2 

between particles be given by δ(t)
2 

= < x
2
> - < x >

2
 = 2Dt, where D is the 

diffusion coefficient.    
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(I)Introduction.                                                                                                              

 This is a didactical paper written to postgraduate students of Physics 

and Engineering. Taking into account the Langevin equation within the 

stochastic context
[1-3]

 we analyze the motion of spherical metallic particles 

in a viscous medium. These particles are submitted to viscous Fvisc(t), 

stochastic Fa(t), gravitational and electric forces. Are determined necessary 

conditions for the "average" quadratic displacement" δ(t)
2 
between particles 

be given by δ(t)
2 

= < x
2
> - < x >

2
 = 2Dt, where D is the diffusion 

coefficient. In Section 1 is written the Langevin equation
[1-3]

 for a particle 

with mass m submitted simultaneously to a viscous Fvisc(t), a stochastic 

Fa(t) and a generic static force F. We first study the case when Fvisc(t ) ≠ 0, 

Fa(t) ≠ 0 and F = 0; after when Fvisc(t) ≠ 0, Fa(t) = 0 and F ≠ 0. In Section 2 

is seen the case when the fluid is in gravitational field and F= Fb is the 

buoyancy force. In Section 3 is studied the case when the viscous force 

Fvisc(t) = γ(dx/dt), where γ = (α/m), is very large, the mass is very small and 

F/γ = f(x) ≠ 0. In Section 4 is analyzed the case when the medium is 

submitted to an uniform electric field.   
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(1) Diffusion of particles in a viscous medium. 

 According to the stochastic theory,
[1-3]

 the motion of a particle with 

mass m in a viscous medium is governed, by the Langevin equation, 

 

                            md
2
x/dt

2
 = - α(dx/dt) + F + Fa(t)                          (1.1), 

 

where α is the viscosity coefficient, Fvisc(t) = α(dx/dt), Fa(t) the stochastic 

force and F an static applied force. This equation can also be written as, 

  

                                        dv/dt = - γv + f + ζ(t)                                    (1.2), 

where γ = α/m, f = F/m and the noise function ζ(t) = Fa(t)/m obeys the 

following properties                                                                                                           

      < ζ(t) > = 0,                                                 (1.3) 

and                                     < ζ(t) ζ(t´) > = Γδ(t - t´)                              (1.4). 

 

(1.a)Diffusion coefficient D when F = 0 (Brownian diffusion).                                                                 

 When f = 0 Eq.(1.2) becomes, 

                                              dv/dt = - γv + ζ(t)                                   (1.a.1).  

Solving (1.a.1), in the stationary regime, we get ,
[1,2]

< v
2 
> = Γ/2γ. Since 

m<v
2
>/2 = kBT/2 it is shown that Γ = 2γkBT/m. We verify that the "average 

quadratic displacement" δ
2 
=  < x

2
>- < x >

2
 is given by

[1,2]
   

                                     δ
2
 = < x

2
>  -  <x>

2
  = 2Dt                               (1.a.2), 

If the viscous coefficient α = 6πηa the "diffusion coefficient" D becomes,  

                                      D = kBT/α = kBT/6πηa                                    (1.a.3). 

 Note that to obtain these results it is assumed that in the stationary 

regime the particles are in thermal equilibrium with the fluid, that is, 

m<v
2
>/2 = kBT/2. So, the average viscous force< Fviscous >  on the particles 

is given by < Fviscous > = α < v > = 6πηa(kBT/m)
1/2

. 
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(1.b) F ≠ 0 and noise force Fa(t) = 0.                                                                             

 In these conditions Eq.(1.1) is given by                                            

                                          mdv/dt = - αv + F                                      (1.b.1), 

which is studied in basic text books.
[4] 

When the initial velocity is zero 

Eq.(1.b.1) gives,                                                                                                                        

                                 v(t) = (F/α) (1 - e
-αt/m

 )                                (1.b.2). 

In the stationary regime, that is, for  t →∞, we see that vstat = F/α and that 

there is no Brownian diffusion. 

(1.c) Fvisc ≠ 0, F ≠ 0 and Fa(t) ≠ 0.                                                                                                         

 In this case Eq.(1.2) is written as, 

                                           dv/dt = - γv + f + ζ(t)                                (1.c.1). 

 So, if f ≠ 0 the particle would be always accelerated. Thus, taking 

into account Section (1.a), to have Brownian diffusion described by 

Eqs.(1.a.1) and (1.a.2) it would be necessary that γ v >> f , that is,  αv >> F. 

Since  < v > = (kBT/m)
1/2

 a good estimation to get this condition is that 

                                             6πηa(kBT/m)
1/2

 >> F                                (1.c.2),                                             

 that is, when < Fviscous > >> F. 

 

(2)Particles in a gravitational field.                                                              

 Now, let us consider particles with density ρp, immersed in medium 

with density ρm, submitted to a gravitational field g. In this case F would be 

the buoyancy force Fb:  

                                         Fb = (4πa
3
/3){ρp - ρm}g                                  (2.1). 

 So, according to Section (1.c), to have particles diffusion it would be 

necessary that  < Fviscous >  >> Fb , that is,                                        

                                             6πηa(kBT/m)
1/2

>> Fb                                  (2.2). 

That is, the viscosity coefficient η must be obey the condition; 

                                             η >> (m/kBT)
1/2

(Fb/6πa)                             (2.3). 
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(3)Fokker- Planck equation: diffusion and drift.                                                                                        

 An illustrative case is when the viscous force γ (dx/dt) is very large, 

the mass is very small and F/γ = f(x) ≠ 0. In this case Eq.(1.2) becomes,                                                                                 

                                                                                 

                                         dx/dt ≈ f(x) + ζ(t)                                  (3.1), 

remembering that v = dx/dt and f(x) = F(x)/m.                                                                                           

 According to reference[1], 
 
associated with Eq.(3.1), we have the 

Fokker-Planck equation, 

                        ∂P(x,t)/∂t = -∂[f(x)P(x,t)]/∂x + (Γ/2)∂
2
P(x,t)/∂t

2
           (3.2), 

that gives the temporal evolution of the probability density P(x,t) that 

represents the distribution probabilities of the stochastic variable x obtained 

solving Eq.(3.1). In Eq.(3.1), < ζ(t) > = 0 and Γ is defined by the equation    

< ζ(t) ζ (t´) > = Γ δ(t - t´).                                                                                                                                         

 When f(x) = constant = c, solving Eq.(3.2), we obtain
[1]

 

                       P(x,t) = (1/2πΓt)
1/2

 exp{-(x - xo - ct)
2
/2Γt}                 (3.3). 

 

Figure 1. P(x,t) as a function of x and t to the Brownian motion. (a)Symmetric (c = 0) and 

(b) asymmetric with "drift" at right (c > 0). These figures shown that when  c = o there is only 

diffusion described by δ = (2Γt)
1/2

. On the other hand when c ≠ 0 there is, simultaneously, 

diffusion and "drift" of the particles, with velocity c, induced by the external force F. 
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(4) Spherical metallic particles in uniform electric field Eo.                                                                            

 If the viscous medium, where are immersed metallic spheres, with 

thickness d is submitted to an electrical potential difference V the average 

electric uniform field Eo in the medium would be given by Eo= V/d.                                                                                                               

 This electric field Eo (see Figure 2) would create on the metallic 

spherical surfaces an induced charge density σ(θ) given by
[5]

                                                                                         

        σ(θ) = 3εo Eo cosθ                                  (4.1). 

 

Figure 2. Spherical metallic particle in an uniform electric field Eo.  

For the spherical metallic particle with radius a the induced charge Q is,                                                                                         

                                                                                                                                                   

        Q = 2πa
2
 < σ(θ) > ~ 3πa

2
εoEo                              (4.2). 

 As the electron charge is 10
-19

 C and εo = 8.85 10
-12

 SI, the number of 

induced electrons is given by  

                                              N ~ 8.3 10
7
 a

2
 Eo                                       (4.3) 

 When N<< 1 the multipolar electric interactions between metallic 

particles can be neglected. Consequently, in the viscous medium there 

would be no electric forces beyond that created by the applied field Eo. For 

sufficiently small Eo values electrostriction effects can also be neglected.
[6]
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