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Abstract.  It is shown how the autocorrelation function theory based on 

the Wiener-Khintchine Theorem (WKT) is used to analyze stochastically 

fluctuating phenomena. This theory might be called "time-dependent 

statistical mechanics" since it permits to describe fluctuations that are 

outside the scope of the equilibrium statistical mechanics. It is of prime 

importance in the investigations of noise problems. Are analyzed here the 

Drag and Brownian motion and Electric noises. It will be also briefly 

shown how these phenomena can be understood taking into account the 

Fluctuation-Dissipation Theorem (FDT).  

Key words: stochastically fluctuating phenomena; noise. 

                                                                                                                      

 

(I) Introduction. 
 According to the Wiener-Khintchin Theorem (WKT) the 

autocorrelation function of a wide-sense-stationary random process has a 

spectral decomposition given by the power spectrum of that process.
[1-3] 

 
Here we show the main aspects of this autocorrelation function 

approach
[4]

 which is used to analyze stochastically fluctuating phenomena. 

To do this, let us consider a random function of time y(t) of some 

stochastically fluctuating system under observation. In Figure 1 is seen 

y(t), measured in a time interval τ, as a function of the time t  

 

 

Figure 1. Stochastic y(t) as function of the time t. 
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 Assuming that y(t) can be expanded using a Fourier integral
[4]

we get: 

 

                            y(t) =  ∫o
∞
 a(f) cos(ft)df  +  ∫o

∞
 b(f) sin(ft)df           (I.1), 

where a(f) and b(f) are given by 

                 a(f) = ∫o
∞
 I(t) cos(ft) dt     and         b(f) = ∫o

∞
 I(t) sin(ft)dt . 

 In the time interval τ, during which y(t) is measured, is defined the 

correlation function:
[4]

 

                                      ψy(τ) = < y(t) y(t + τ) >                                   (I.2), 

 

where the average value < ... > is estimated taking into account a large 

number of systems in thermodynamic equilibrium for different instants of 

time t. Here we are assuming the validity of the "ergodic theorem", that is, 

that the time average for a single system in statistical equilibrium may be 

replaced by an average over an equilibrium ensemble.
[4]

 In this sense, t is 

the "ergodic time". Defining the "noise power spectrum" ωy(f) by 

 

                                 ωy(f) = 4 ∫o
∞
 ψy(τ) cos(2πfτ) dτ                             (I.3), 

we see that 

                                  ψy(τ) =  ∫o
∞
 ωy(f) cos(2πfτ) df                               (I.4). 

 

 Taking into account Eq.(I.3) one can show that
[4]

 

 

     < y
2
> = ∫o

∞
 ωy(f)df    and, consequently, that  < δyf

2 
> = ωy(f) df .   (I.5), 

 

where  δyf
2
 gives the y 

2 
fluctuations due to frequencies that are in the 

interval between f and f+df.  

 Equations (I.3) and (I.4) together comprise what is known as the 

Wiener-Khintchine Theorem
[1-4]

 which is of prime importance in the 

analysis of noise problems. In Figure 2
[4]

 are shown sketches of two 

different stochastic noises y(t) and the respective functions ωy(f) and ψy(f).    
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Figure 2. Sketches of noise, autocorrelation function ψy(f) and power spectrum ωy(f) 

for two types (a and b ) of statistically stationary fluctuations. 
 

 Defining                          Fy(τ) = ∫o
t+τ 

y(t) dt                                 (I.6) 

we can show that
[4]

                     

                            < Fy
 2
(τ)> = (1/2π

2
) ∫o

∞
 [ωy(f)/f

2
]{1- cos(2πfτ)}df      (I.7) 

and that 

                       ∂< Fy
2
(τ)>/∂τ = (1/π) ∫o

∞
 [ωy(f)/f] sin(2πfτ)] df               (I.8), 

 

and hence by inversion, 

                                      ωy(f) = 4πf ∫o
∞
 ∂< Fy

2
(τ)>/∂τ sin(2πfτ) dτ         (I.9). 

 

 In the sequence the above approach is used to analyze many 

stochastic phenomena . In Section 1, the Brownian motion. In Section 2, 

the electric RL circuit. In Section 3, the electric RC circuit. In Section 4, 

the two resistors Johnson-Nyquist electric circuit. In Section 5, complex 

electrical circuits with impedance Z(f). In Section 6, a circuit with R and a 

frequency amplifier. In Appendix A is shown the estimation of < v
2
(τ) > 

and  < x
2
(τ) > for Brownian motion and, finally, in Appendix B is 

commented how these phenomena can be interpreted taking into account 

the Fluctuation-Dissipation Theorem.                                                                             

                               



 

4 

 

(1) Brownian motion.                                                                                        

 As well known, the motion of a "Brownian particle" with mass M is 

governed by the Langevin´s equation
[4, 5]

 

 

                                          Mdv/dt = - Bv(t) + F(t)                                (1.1),  

 

where B is the dissipative parameter and F(t) the stochastic force. This 

equation can be also written as 

                                             dv/dt  + v/τ1 = A(t)                                    (1.2), 

 

where τ1 is the "relaxation time" given by τ1 = M/B and A(t) = F(t)/M . 

 

Average velocity fluctuations < v
2
(τ) >. 

  Solving Langevin´s equation (1.1) we have v(t) given by
[4]

 

 

                          v(t) = vo e
-t/τ1

 + e
-t/τ1

 ∫o
t 
 e

u/τ1 
 A(u) du                             (1.3). 

 

 Following MacDonald
[4]

 one see that Eq.(I.2) is given by  

 

ψv(τ) =<v(t)v(t + τ)>= <vo
2
> e

-(2t+τ)/τ1
 + e

-(2t+τ)/τ1
 ∫o

t∫o
t+τ

 e
(u+ω)

 <A(u)A(ω)> du dω  

 

                                  = <vo
2
> e

-(2t+τ)/τ1
 + (kT/M) e

-τ/τ1
(1 - e

-2t/τ1
)              (1.4). 

  

 Note that the time t corresponds to the observation time in the 

ensemble. As ψv(τ), defined by (I.2), which is evaluated for an equilibrium 

ensemble, we can assume that < vo
2
> = kT/M. Thus, for a sufficiently long 

time-average t→∞ we have 

 

                                            ψv(τ) = (kT/M) e
-τ/τ1

                                (1.5). 

  

So, according to WKT, ωv(f) defined by (I.3) is given by
[4]

 

 

                              ωv(f) = (4kT/M) ∫o
∞
 e

-τ/τ1
cos(2πfτ) dτ ,  

that is,                                          

                               ωv(f) = (4kTτ1/M) {1/[1+(2πfτ1)
2
]}                   (1.6), 

 

showing clearly how the velocity fluctuations δvf
2  

of the particle would be 

distributed in frequencies f. As M → 0 , that is, τ1 → 0 the "power" 

spectrum of the velocity fluctuations becomes uniform, that is, 
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                                                 ωv(f) ≈ 4kTB                                      (1.7), 

  

which corresponds to the "perfect random motion".                                        

 According to Eqs.(I.6) and (1.6) it can be verified that
[4]

 

  

                 < δvf
2
 > =  ωv(f) df = (4kTB) {1/[1+(2πfτ1)

2
]}df             (1.8). 

 

For time intervals τ >> τ1, that is, for frequencies fτ1 <<1, Eq.(1.8) gives, 

  

                                         < δvf
2
 > ≈ 4kBT df                                    (1.9). 

 

 The total average squared velocity fluctuations < v
2 
>, that is, due to 

all frequencies f, is given by  

 

   < v
2
 > = ∫o

∞ 
< δvf

2
 > df = ∫o

∞ 
ωv(f) df  

                                           

                                         = 4kTB ∫o
∞ 

df/[1+ (2πfτ1)
2
]  

 

    = 4KT(τ1/M)[1/4τ1] = kT/M                       (1.10). 

 

which is the equilibrium average squared velocity, according to the 

("equilibrium") Maxwell-Boltzmann statistical mechanics. If we have a 

measuring instrument with a limiting response time τ << τ1 , then the 

observed fluctuations would be  

 

              < v
2
 > ≈ 4kTB ∫o

1/τ 
df/[1+ (2πfτ1)

2
]  ≈ (4kT/M)(τ1/τ)              (1.11). 

 

In other words, for  times τ << τ1  the observed velocity (1.11) would be 

increased roughly by ratio (τ1/τ)
1/2

 as compared with value [~(kT/M)
1/2

], 

predicted by the "equilibrium" statistical mechanics.
[4,5]

 

 

Average displacement fluctuations < x
2
(τ) >. 

 If we put y(t) = v(t) we verify from Eq.(I.6) that Fv(τ) is the mean 

square  displacement x(t) of the particle in interval τ , that is, < x
2
(τ) >. So, 

from Eq.(I.7) we have,  

 

                   < x
2
(τ) > = (1/2π

2
) ∫o

∞
 [ωv(f)/f

2
]{1- cos(2πfτ)}df        

 

                                  = 2kTBτ - (2kTτ1
2
/M) (1 - e

-τ/τ1
)                       (1.12), 

 

 For long time intervals of observation τ >> τ1 we verify that 
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                                 < x
2
(τ) >  → 2kTBτ = 2Dτ                                  (1.13), 

 

where D = kTB is the "diffusion coefficient", which is the familiar Einstein 

equation characteristic of the random Brownian movement.
[4,5].

 On the 

other hand for τ ≤ τ1 we obtain 

 

                               < x
2
(τ) >  ≈ vo

2
τ

2
 ,      where    vo = (kT/M)

1/2
        (1.14), 

 

which describes the motion of a free molecule.
[4,5]                                                       

 Thus, for observation times τ comparable with the relaxation time τ1 

we have two different results for particle displacements (see Appendix A). 

 

 

 

 

(2) Electrical Circuit  RL. 
 The RL circuit obeys  the Langevin´s equation LdI/dt  + RI = E(t),  

that is,
[4,5]

   

                                            dI/dt + I/τ2 = A(t),                               (2.1),                                                         

where E(t) is a fluctuating voltage, A(t) = E(t)/L and τ2 = L/R the relaxation 

time, characteristic of the RL circuit.                                                                                                                                                                                                                                          

 The charge current I(t) obeys an equation (2.1) that is formally 

equivalent to Eq.(1.2). In this case we have, instead of Eq.(1.5),              

ψI(τ) = (kT/L) e
-τ/τ2

, where is taken into account an average over an 

equilibrium  ensemble of RL systems. Thus, following the same procedure 

adopted in Section 1 we verify that the "current noise" in the frequency 

interval df is given by                                                                                                                

                             < δIf
2
>RL = (4kT/R)df/[1+ (2πfτ2)

2
]                        (2.2). 

So, the current noise in the RL circuit < I
2
 >RL  would be given by 

        < I
2
 >RL = ∫o

∞ 
 < δif

2
> df = (4kTτ2/L) ∫o

∞ 
df/[1+ (2πfτ2)

2
] =  (4kTτ2/L)[1/4τ2]                           

that is,                                                                                                                             

    < I
2
 >RL  =  kT/L                                          (2.3). 
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(3) Electrical Circuit  RC. 
 The RC circuit obeys the Langevin´s equation C dV/dt + V/R  = E(t), 

that is,
[6]

                                                                                                                         

               dV/dt  + V/τ3 = F(t),                                  (3.1),                                                                                                                                                                                                 

where E(t) is a fluctuating voltage, F(t) = E(t)/C and τ3 = RC the relaxation 

time characteristic of the RC circuit. Following the same procedure used in 

Section 1 and 2 we see that  ψV(τ) = (kT/C) e
-τ/τ3

 and that  

                               < δV
2
>RC= (4kTτ3/C)df/[1+ (2πfτ3)

2
]                  (3.2), 

which is the voltage noise in the frequency interval df.                            

 Thus, the voltage noise in RC circuit < V
2
 >RC would be given by 

        < V
2
 >RC =  ∫o

∞ 
< δVf

2
> df = (4kTτ3/C) ∫o

∞ 
df/[1+ (2πfτ2)

2
] = (4kTτ3/C)[1/4τ3] 

  That is,                                                                                                                                   

     < V
2
 >RC  =  kT/C                                  (3.3). 

 Note that, according to the Equipartition Theorem of  Energy 

(ETE) we must have                                                                                                            

                         C < V
2
 >/2 = L < I

2
 >/2  = kT/2,   that is, 

                           < I
2
 >RL  =  kT/L       and     < V

2
 >RC  =  kT/C         (3.4). 

 Eqs.(3.4) are used by many authors to estimate voltage and current noises  

in RL and RC circuits,
[6-9]

 respectively. 

 

(4) Two resistors Johnson-Nyquist Circuit.                                                                                         
 In his original paper,

[6] 
Nyquist analyzed a circuit formed only by two 

ideal resistors in parallel, with resistance R each one, at a temperature T, 

connected by a long non-dissipative transmission line. He has shown that 

the resistance R generates a voltage noise < V
2
 >R, given by  

                                                                                                                             

                      < V
2
 >R  = 4kTR                                             (4.1), 

and a current noise  

                                     < I
2
 >R = < V

2
 >R /R

2 
= 4kT/R                            (4.2). 

 Nyquist´s formula
[6]

 is essentially the same as that derived by Planck 

in 1901 for the electromagnetic radiation of a black body in one dimension   

i.e., it is the one-dimension version of the blackbody Planck´s law.
[8]  

In 
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other words, a hot resistor will create electric energy on a transmission line 

just like a hot object in free space. The electric current in the circuit, are 

generated by  the thermal energy stored in a body at temperature T obeying 

by Planck distribution. So, indicating by hf df  the electric power, with 

frequencies in the interval f and f + df, transferred to the circuit by each one 

of the resistors it would be given by  

                             hfdf = (Icircuit)
2
Rdf = [(δVf

 2
)R/4R

2
]R

                                      
(4.3), 

where (δVf)R is the resistance noise voltage in the interval f and f + df. In 

this way we see that                                                                                                                                   

                    (δVf
 2
)R = 4R hf df                                   (4.4). 

 Taking into account the radiation Planck´s law the "voltage noise"  

< V
2
 >R , due to all degrees of freedom f, would be given by  

           < V
2
 >R = ∫o

∞ 
(δVf

 2
)RP(f) df = 4R ∫o

∞ 
hfdf /(e

hf/kT 
-1) = 4RkT, 

according to Eq.(4.1). For high temperatures, that is, kT >> hf  we see 

that                                                                                                                                          

    (δVf
 2
)R  ≈ 4RkT df                                 (4.5),                                                                                                     

that is, the "voltage noise" (δVf
 
)R

2
 does not depend of the frequency f. It is  

known as a "white noise". 

 

(5) Complex Electrical Circuits with Impedance Z(f).                                                                        
 Nyquist´s  original paper

[6]
 also provided the generalized noise for 

components having partly reactive response, e.g., sources that contain 

capacitors or inductors. Such component  can be described by a frequency-

dependent impedance Z(f). He has shown that, over a span of frequencies f1 

and f2 the voltage noise < V
2 
> will be given by 

[4,7]
 

        < V
2
 > = ∫f1 f2 Sv(f) df         where     Sv(f) = 4kT η(f) Re[Z(f)]      (5.1),  

and η(f) = (hf/kT) /(e
hf/kT 

-1).                                                                          

 In what follows it will be analyzed only circuits at high temperatures, 

that is, when kT >> hf and in which electric currents are generated by an 

external voltage. Thus, putting  η(f) ≈ 1 in Eq.(5.1) we have             

                                                                                                                                                          

                   (δVf
2
 )z  = 4kT Re[Z(f)].                                    (5.2). 

 Alternatively, the noise current  < I
2
 > could be obtained by

[4,7-10 ]
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                 SI(f) = 4kT Re[Y(f )],     where the admittance Y(f) = 1/Z(f),                                                                  

that is,                                                                                                                                                                                                                 

    (δIf
2
)z =  SI(f) df         and    < I

2
 >z = 4kT ∫f1 f2 Re[Y(f)] df       (5.3).  

(5.1)Circuit RC.                                                                                                             

 As, for the RC circuit 1/Z = 1/R + i2πfC, that is, 

   Re[Z] = |Z| = R/(1 + 4π
2
f

2
C

2
R

2
)

1/2 
 we  obtain,                      

                               (δVf
2 
)RC   = 4kTR/(1 + 4π

2
f

2
C

2
R

2
)

1/2 
                       (5.4). 

 According to Eq.(5.1) we must have  

     < V
2
 >RC = 4kT ∫o

∞ 
Re[Z(f)] df = 4kTR ∫o 

∞ df/(1 + 4π
2
f

2
C

2
R

2
)

1/2
 

                 =
 
  (4kTR/a) ∫o

∞ 
dx/(1 + x

2
)

1/2
,  where a = 2πRC. 

In this way we obtain, in agreement with Eq.(3.4):                                    

                                      < V
2 
>RC = kT/C ,                                                               

So, we  have 

                                     < I
2 
>RC = < V

2 
>RC/R

2
 =  (kT/R

2
C)                     (5.5).  

(5.2)Circuit RL.                                                                                                             

 In this case Z(f) = R + i2πf L, that is, Re[Z(f)] = [R
2
 + 4π

2
f

2
L

2
 ]

1/2
. In 

this way we obtain, using Eq.(4.8), 

                (δVf
2
)RL = 4kT  Re[1/Z(f)] df = 4kTR df /(1 + 4π

2
fτ2

2
)

1/2
      (5.6), 

where τ2 = L/R.                                                                                                         

 When  L/R << 1, that is, fτ2 << 1, Eq.(5.6) becomes,  

                                     (δVf
2
)RL ≈ 4kTRdf                                              (5.7), 

showing that when the resistive effects are much larger than the inductive 

ones results:       

(δVf
2
)RL= (δVf

 2
)R ≈ 4kTR df    and   (δIf

 2
)RL= (δVf

 2
)R ≈ (4kT/R) df     (5.8), 

that is, the noise effects are essentially the resistive ones.                                                      

 The total RL noise, due to all frequencies, is given by 

   < I
2
 >RL = 4kT ∫o

∞ 
Re[1/Z(f)] df = 4kT ∫o

∞ 
df /(R

2
 + 4π

2
f

2
L

2
)

1/2
         (5.9), 

that is,                                    < I
2
 >RL =  kT/L                                      (5.10), 
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in agreement with Eq.(2.3).  Consequently,   

                                      < V
2
 >RL = < I

2
 >RL R

2
 = kTR

2
/L.                    (5.11).                                           

 Finally, let us note that for the RC circuit we have  

               < V
2 
>RC = kT/C       and      < I

2 
> RC = < V

2 
> RC/R

2
 =  (kT/R

2
C), 

and for the RL circuit, 

               < V
2 
> RL = kT/L       and      < I

2 
> RL = < V

2 
> RL/R

2
 =  (kT/R

2
L).  

From these equations result:  

                 < V
2 
>RC / < V

2 
> RL = L/C      and       < I

2 
> RC  / < I

2 
> RL = L/C .   

 

(6) Circuit with R and a Frequency Amplifier A(f).
[4]

                                
 Let us consider a circuit (see Figure 3) with R in parallel with an 

amplifier network A(f) with a very high input impedance (|Z| >> R).  

 

Figure 3. Sketch
[4]

 to the illustrate amplification of electrical noise generated by  a  

resistor R. 

 Assuming that the amplifier itself introduces a negligible "noise" in 

comparison with that of passive resistor R at the input terminals, the over-

all noise at the output will be estimated by
[4]

 

                               < δV
2
(t) >A = 4RkT |A(t,f)|

2
 df                         (6.1),                               

where A(t,f) is the complex voltage gain of the amplifier as a function of    

t and frequency f. So, the " noises" < V
2
(t) >A and < δI

2
(t) >A, at the time t, 

due to the contribution of all frequencies, are given by   

                              < X
2
(t) >A ~ ∫o

∞
 |A(t,f)|

2
 df                                  (6.2) 
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If  the amplifier unit has a gain concentrated around a frequency fo like 

|A(f)|= δ(f-fo)  the "noises" would be: 

   < V
2
(t) >A = 4RkT |A(t,fo)|

2
  and  < I

2
(t) >A = (4kT/R) |A(t,fo)|

2
    (6.3). 

 

APPENDIX A.  Estimation of < v
2
(τ) > and  < x

2
(τ) >.                                                 

 According to Eq.(13) we have
[4]

 

                         v(τ) = vo e
-τ/τ1

 + e
-τ/τ1

 ∫o
τ 
 e

u/τ1 
A(u) du                           (A.1). 

 

Integrating Eq.(A.1) we obtain x(τ) and taking into account "reasonable 

molecular chaos approximations" one can see that
[4]

 

              

 < x
2
(τ) > = <vo

2
> τ1

2
(1- 2e

-τ/ τ1
+2e

- 2τ/ τ1
) + (kTτ1

2
/M)(-1+4e

-ττ1
-e

- 2t/ τ1
) + 2BkTτ    (A.2). 

 

For τ >> τ1 we obtain, if  <vo
2
> = kT/M, since the average is performed over 

the equilibrium ensemble, 

 

                         < x
2
(τ) >  ≈ <vo

2
> τ1

2
- (kT/M)τ1

2
 + 2BkTτ  ≈ 2Dτ         (A.3)                         

 

that describes the molecular motion in a viscous medium according to 

Einstein.
[4]  

On
 
the other hand for τ ≤ τ1 we get 

 

                               < x
2
(τ) >  ≈ vo

2
τ

2
, where vo = (kT/M)

1/2
                   (A.4), 

 

which gives the motion of a free molecule.                                                       

 That is, for observation times τ > τ1 or τ < τ1, where τ1 is the 

relaxation time of the system, we have two different results for the particles 

displacement. This shows why fluctuation theory (or "correlation function 

approach") might be called "time-dependent statistical" mechanics.  

              From (A.1) we can see that ensemble average 

 

< v
2
(τ) > = <vo

2
> e

-2τ/τ1
 + 2 e

-2τ/τ1 ∫o
τ 
e

u/τ1
 <voA(u) > du   

 

                + e
-2τ/τ1

 ∫o
τ ∫o

τ 
e

(u+ω)/τ1
 <A(u)A(ω)> du dω                              (A.5).                         

 

The second term of Eq.(A.1) vanishes for large values of τ.
[4]

 However, the 

third term does not vanish because, when ω ≈ u and there is a finite 

contribution to the double integral. So, Eq.(A.2) is well estimated by
[4]

 

                      < v
2
(τ) > = <vo

2
> e

-2τ/τ1
 + (kT/M) (1 - e

-2τ/τ1
)                   (A.5), 
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where, as seen above, < vo
2
> = KT/M.                                                                           

 From Eq.(A.5), for τ >> τ1
 
 we verify that 

                                      < v
2
(τ) > ≈ kT/M = < vo

2 
>  , 

the average value obtained by the equilibrium Boltzmann statistics. On the 

other extreme, that is, for measuring instrument with limiting response time 

τ << τ1, then the observed velocity fluctuations would be given by                                                                                                 

                                                                                                                         

          < v
2
(τ) > ≈ (4kT/M)(τ1/τ)                           (A.6).                  

In other words, the observed Brownian Movement velocity (~ <vo
2
>

1/2
)  

would be reduced roughly by the ratio (τ1/τ)
1/2

 as compared with value 

[~(kT/M)
1/2

], predicted directly by the "equilibrium" statistical mechanics. 

  

APPENDIX  B.  The Fluctuation-Dissipation Theorem.                       
 The Fluctuation-Dissipation Theorem(FDT)

[11]
 was proven by H. 

Callen and T. Welton
[12]

 and expanded by R. Kubo.
[11] 

There are 
[11]

 

antecedents to the general theorem, including  Einstein explanations of the 

Brownian Motion and by H. Nyquist of the Resistance-Johnson noise.                                     

 The FDT is a powerful tool in statistical physics for predicting the 

behavior of systems that obey the detailed balance.
[13]

It is a general proof 

that thermodynamic fluctuations in a physical variable predict the response 

quantified by the admittance or impedance of the same physical variable 

(like voltage, temperature difference, etc.) and vice-versa. The FDT applies 

both to classical systems and quantum mechanical fluctuations.
[14]

                                       

 In few words, the FDT says that when there is process that dissipates 

energy, turning into heat (e.g., friction), there is a reverse process related to 

thermal fluctuations. The FDT is a general result of statistical 

thermodynamics that quantifies the relation between the fluctuations in a 

system that obeys the detailed balance and the response of the system to 

applied perturbations. This is can be best understood by considering some 

examples:
[11] 

 

Drag and Brownian motion.                                                                                    

 If an object moving through fluid, it experiences drag (air resistance or fluid 

resistance). Drag dissipates kinetic energy, turning it into heat. The corresponding 

fluctuation is the Brownian motion. An object in a fluid does not sit still, but rather 

moves around with a small and rapidly-changing velocity, as molecules in the fluid 

bump into it. Brownian motion converts heat energy into kinetic energy ---the reverse of 

drag.  
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Resistance and Johnson noise.                                                                                        

 If electric current is running through a wire loop with resistor in it, the current 

will rapidly go to zero because of the resistance. Resistance dissipates electrical energy 

turning it into heat (Joule heating). The corresponding fluctuation is Johnson noise. A 

wire loop with a resistor in it does not actually have zero current, it has a small and 

rapidly-fluctuating current caused by the thermal fluctuations of the electrons and atoms 

in the resistor. Johnson noise converts heat energy into electrical energy---the reverse of 

resistance. 

Ligth absorption and thermal radiation.                                                             When 

light impinges on an object, some fraction of the light is absorbed, making the object 

hotter(light heating). In this way, light absorption turns light  energy into heat. The 

corresponding fluctuation is thermal radiation (e.g.,the glow of a "red hot"object). 

Thermal radiation turns heat energy into light energy---the reverse of light absorption. 

Kirchhoff´s law of thermal radiation confirms that the more effectively an object 

absorbs light, the more thermal radiation it emits. 
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