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Abstract.                                                                                                                      
 This  paper was written to graduate and postgraduate  students of  Physics. We 

study the emission of gravitational waves by binaries composed by micro non-charged 

black holes (mBH).  It is assumed that the mBHb dynamics obeys General Relativity 

and that its inspiral motion can also be described by a quantum approach given by the 

Schrödinger-Newton equation, for large quantum numbers.                                                                                                                             
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 (I) Introduction.                                                                                                
 This is a paper written to graduate and postgraduate students of physics. Our 

intention is to investigate only basic aspects about emission of gravitational waves 

(GW) by binaries composed by two non-charged micro black holes (mBHb). We use  

classical mechanics
[1]

, classical electrodynamics,
[2] 

quantum mechanics (QM),
[3,4]

 

special relativity (SR) and general relativity(GR).
[5]  

In Section 1 are given significant 

parameters associated with micro black holes (mBH). In Section 2 with the GR are 

estimated the gravitational luminosity LGW and the "spiral time" τ of a mBBb. In 

Section 3,we suppose that the mBBH is a microscopic system that obeys a Schrödinger-

Newton equation. So, in this context, we show to how calculate the gravitational energy 

per unit of time dE/dt emitted by the mBHb using an "hybrid" GR and QM approach. It 

is also shown that the dE/dt and the "spiral time" τ of the mBHb calculated with the 

hybrid approach is in good agreement with the LGW and τ estimated with the GR theory. 

In Section 4 are presented conclusions and discussions of our analysis. In Appendix A is 

shown how to calculate the emission of gravitational waves emitted by a BHb. In 

Appendix B and C is briefly shown how to calculate  the electromagnetic radiation in 

Classical and Quantum Electrodynamics. Finally, in Appendix D are done comments  

on a possible Gravitation Quantum Field Theory .   
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(1) Significant Parameters associated with mBH.                                    
 In Figure 1 is shown a binary (mBHb) composed by two non-charged micro 

black holes (mBH).
[5,7]

 

         

Figure 1. Binary system (mBHb) formed by non-charged mini black holes(mBH).  

 The BH mass M according to the classical GR
[5] 

can be arbitrarily small, 

however, the smallest M is estimated by Planck mass
[8]

 MP = (ħc/G)
1/2

. The BH 

Schwarzschild  radius
[9]

 rs  and its lifetime τH 
[10]

 , due to the Hawking radiation, are  

estimated,  by  rs = 2GM/c
2
  and   τH = 5120πG

2
M

3
/(ħc

4
),  respectively.  Here the Planck 

mass MP, the radius rs , the lifetime τH , the "gravitational Bohr radius" (ao)g , the metric 

tensor component goo(r) and a Plank length ℓP = ħ/cMP are written in terms of the 

constants c, G and ħ, in the MKS system, 

                                       MP = (ħc/G)
1/2

 ~ 2 10
-8

  (Kg)                                               (1.1), 

                                          rs  = 2GM/c
2
  ~ 1.5 10

-27
 M     (m)                                    (1.2), 

                                          τH = 5120πG
2
M

3
/(ħc

4
) ~ 4 10

-18 
M

3
  (s)                           (1.3),                                  

                                         (ao)g = ħ
2
/GM

3
 ~  10

-58
/M

3
   (m)                                        (1.4), 

                                          goo(r) =  - 1- 2GM/rc
2                                                                                    

(1.5), 

 and                                   ℓP = ħ/cMP ~ 1.616 10
-35

 m                                               (1.6). 

 

(2)Gravitational mBHb luminosity according to the "classical"GR.  
 Gravitational waves emitted by a black hole binary (BHb) formed by BH with 

total mass M+ = M1 + M2 ~ 20 - 30 solar masses have been recently detected  by Abbott 

et al.
[ 11,12]  

The BHb motion is unstable; this unstable motion can be divided into three 

stages:
[11-13]

 "inspiral", "merger" (or "plunge") and "ringdown". During this motion the 

BHb emits GW.
 
 The "inspiral" is the first stage of the BHb life which resembles a 

gradually shrinking orbit and take a longer time; the emitted GW are  weak when BH 

are distant from each other.
   

During the "inspiral" motion of a BH binary with M1= M2 

= M the gravitational luminosity LGW  would be given by 
[5,13-16]

 (see Appendix A)  

                                        LGW  = dE/dt = - (8G/5c
5
)

 
M

2
r
4
ω

6
                                       (2.1), 

where r is distance between the BH and ω is the orbital rotational frequency. With  

Kepler´s law
[1,5]

  r(t)
3
ω(t)

2 
= GM+ the luminosity given by Eq.(2.1) becomes,  
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                                |LGW(ω)|  =  (8G/5c
5
)
 
M

2
r
4
ω

6
  ~ 10

-192/3 
(Mω)

10/3 
                       (2.2), 

or 

                                    |LGW(r)|  = - (8G/5c
5
)
 
M

2
r
4
ω

6
  ~  10

-84
 (M/r)

5
                          (2.3). 

In addition, as rs = 2GM/c
2
 ~1.5 10

-27
 M we get 

                                                ωmax
 
 ~ 10

26
M

1/2                                                   
                         (2.4). 

The "spiral time" τ 
[5,16] 

of the BBH is estimated writing  the total mechanical energy E 

of the BBH as E = Iω
2
/2 - GM

2
/r  that can be written,  using the "virial" theorem,

[1]  
as    

E = - GM
2
/2r. Taking this equation and Eq.(2.1) we verify that

[5]
 

                                           dr/dt = - (128/5c
5
) G

3
M

3
/r

3
                                        that is,  

                                    r
3
 dr/dt = (1/4)d(r

4
)/dt  = -(128/5c

5
) G

3
M

3
                              (2.6). 

Integrating Eq.(2.6) from ro up to 2rs we get       

                                         ro
4
  = (2rs)

4
 - (128/5c

5
) G

3
M

3
 τ                                          (2.7),    

where τ, that is also called "time to fall" from a generic orbit r = ro to the closest 

distance 2rs between two BH, is given by : 

                                      τ  =  [5c
5
/(128 G

3
M

3
)] (ro

4
 - 16rs

4
)                                        (2.8). 

 In this paper we will suppose that the lifetime of the mBH is τH ~ 60 s. So, to 

satisfy this condition we see, using Eq.(1.3), that the mBH mass must be M ~ 10
6 

kg. 

For this mass, using Eqs.(1.1)-(1.4) the Schwarzschild radius rs  ~ 1.5 10
-27 

M ~ 10
-21

 m. 

For these masses the mBHb has microscopic dimensions... 

 (2.1) Estimations of  LGW and τ  for M = 10
6 

kg.                                                           

 Kepler´s law, in non relativistic classical mechanics, for a binary is given by   

ω
2
r
3
 = 2MG, where M1 = M2 = M, establishes a constraint between ω(t) and r(t). The 

maximum values of ω(t) occurs for the minimum value of r(t) and vice-versa. So, 

putting M = 10
6 

kg in Eq.(1.2) and Eqs.(2.2)-(2.4) we get  rs ~ 10
-21

 m, ωmax ~ 10
29

 rad/s  

and the maximum luminosity                             

                         |LGW|max = |LGW(ωmax)|  =  |LGW(rs)| ~ 10
41

 J/s = 10
41

W                     (2.9). 

 The time τ to fall from ro ~ 100 rs
 
m up to 2rs ~ 10

-21
 m given by Eq.(2.8) is                           

                          τ  =  [5c
5
/(128 G

3
M

3
)] (ro

4
 - 16rs

4
) ~3 10

53
 10

-76
 ~ 10

-17
 s               (2.10), 

that is, the gravitational energy would be "instantaneously" emitted , like a "flash".  

 In recent GW observations
[11,12]

 known as GW150914 and GW151226 the BBH 

were composed by BH with masses M ~ 10
30 

kg. The measured GW frequencies are in 

the range 30-500 Hz, the peaked luminosities LGW ~10
49

 W and spiral times τ ~1 s.  
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(3)mBHb described by Schrödinger-Newton Equation.                                                                                                                               
 According  to Section 2, depending on the BH masses, mBHb systems  can have 

microscopic dimensions.  In this way, let us suppose that they can be taken as small 

systems in Dirac´s
[6]

 sense and so, could be described in the spiral stage, for very large 

quantum numbers, when GR gravitational effects are small, by a Schrödinger-Newton 

equation
[17]

                                                                                                                                        

     H ={(ħ
2
/2μ)∆ - GM

2
/r }Ψ(r,θ,φ) = EΨ(r,θ,φ)                     (3.1), 

taking into account that the BH masses are concentrated in a very small region of the 

space.  In Eq.(3.1), r is distance between the mBH, ∆  the Laplacian operador in 

spherical coordinates and μ = M1M2/(M1+M2) =  M/2 is the reduced mass of the system. 

In semi-classical limit 
[3,4]

, that is, for large quantum numbers, we will suppose that 

Eq.(3.1) can give a good description of the mBHb orbits obtained by the GR. Thus, 

solving Eq.(3.1)
[3,4] 

the gravitational energies E
g
n of the mBHb are given by                                                                                                                                                                                                                                                                                         

                                                                                                                    

              E
g
n = - Θgrav/n

2
,                                                         (3.2),   

where n = 1,2,3,...and  Θgrav = (M/2)(GM
2
)
2
/2ħ

2  
= G

2
M

5
/4ħ

2
. Since  G ~ 10

-10 
MKS   and               

ħ ~10
-34

 MKS we have                                                                                                                   

                          Θgrav = G
2
M

5
/4ħ

2
 ~ 10

47 
M

5     
J                                    (3.3). 

 For the hydrogen-like-atom (HLA) with charge Z we have,
[3,4] 

 

                                                       E
elet

n = - Θeletr/n
2
                                                  (3.4), 

where Θeletr = Z
2
mee

4
/2ħ

2
 . That is,

[3,4]  

                                
 Θeletr = Z

2
 13.6 eV ~  Z

2 
10

-18 
  J                               (3.5).  

and the normalized energy eigenfunctions  unℓm(r,θ,φ)  given by                                                                                                                      

                                                                                                        

      unℓm(r,θ,φ) = Rnℓ (r) |ℓm >                                         (3.6), 

where  Rnℓ (r) and |ℓm > = Yℓm(θ,φ) are shown in references,
[3,4]

 remembering  that                          

n = 1,2,..., ℓ = 0,1,2,..,n -1  and   m = -ℓ ,-ℓ+1,...,ℓ-1 ,ℓ.                                                       

 For the HLA the "electromagnetic Bohr radius" (ao)elet is given by
[3,4]

           

                                            (ao)elet= ħ
2
/me

2
 ~ 0.5 10

-10
 m                                            (3.7)                                                                                

 Similarly, for the mBHb the "gravitational Bohr radius" is given by,     

                                                     (ao)g = ħ
2
/G

2
M

3
                                                       (3.8).   

 From  Eqs.(3.2) - (3.8)  we verify that  the energies  E
g
n = E

elet
n  if   M ~ 10

-13
 kg; 

in this case the mBHb would be small in Dirac´s sense.  The orbit radius rn  are given by 

(rn)elet = n
2
(ao)Bohr

 
 = n

2
 (ħ

2
/me

2
) ~ n

2
 0.5 10

-10
 m  and (rn)g = n

2
(ao)g = n

2
(ħ

2
/G

2
M

3
). Let 

us remember that for the HLA the Kepler´s law is written as ω(t)
2
r(t)

3 
= Ze

2
/μ .                         

 Since v = ωr, the orbital relativistic parameter β = (v/c) for the mBHb will be 
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given β = (1/r)
1/2

(2GM/c
2
)
1/2

. For HLA the fundamental state n = 1 is stable.
[3,4] 

We 

suppose that this also occurs in the gravitational  case. So, gravitational waves (GW) 

would be emitted in "spontaneous" decay transitions between the quantum states 

unℓm(r,θ,φ)  → un´ℓ´m´(r,θ,φ) for n → n-1, when n  > 1.  At this point we could ask:"what 

kind of interaction field would be responsible for these transitions?" This question 

will be answered in Section(3.3). 

(3.1)mBHb Stability.                                                                                            

 The HLA ground state unℓm(r,θ,φ) (n = 1) is stable.
[3,4]

  In this state the atomic 

radius r ~ 10
-10

 m is much larger the nuclear radius ~ 10
-15

 m. That is, the electron can 

be thought as moving in a orbit very far from nucleus. Supposing that this condition is 

essential to the stability of the HLA we "take for granted" that mBHb ground state 

cannot  be stable if inside the sphere with radius  (ao)g = ħ
2
/G

2
M

3
 there is "contact" 

between the mBH, which one with radius rs.  Let us suppose that mBHb system is 

unstable if, for instance,  4rs > (ao)g. Using (3.1) and (3.4) this condition is written as 

8GM/c
2
  >  ħ

2
/G

2
M

3
. Thus, M

4
 > (ħ

2
/G

3
c

2
)/8, that is, M > 0.5 (ħ/c)G

-3/2
 ~ 10

-27 
kg. So, 

we see that  the mBHb would be unstable if  

                                                              M  >  10
-14 

kg                                                      (3.7).  

 Thus, for mBH masses M > 10
-14

 kg our mBHb would be unstable. In these 

conditions, the mBHb unstable motion can be divided into three stages:
[11-14]

 "inspiral", 

"merger" (or "plunge") and "ringdown". During this motion the system emits GW.
 
 The 

"inspiral" is the first stage of the mBBH life which resembles a gradually shrinking orbit 

and take a longer time; the emitted GW are weak when the mBH are distant  from each 

other, that is, r >> rs.  As the mBHb orbit shrinks, the speeds of the mBH increase, and 

the GW emission increases. When the mBH are close (r ~ rs ) the GW cause the orbit to 

shrink rapidly. In the final fraction of a second the mBH can reach extremely high 

velocities. This is followed by a plunging orbit and the mBH will "merge" once they are 

close enough, that is,  r ≤ rs. At this instant the GW amplitude reaches its peak. Once 

merged, the single hole settles down to a stable form, via a stage called “ringdown", 

where any distortion in the shape is dissipated as more gravitational waves.   

(3.2) Inspiral motion.                                                                                                         

 For  M = 10
6 

kg, by Eq.(1.2) the Schwarzschild radius rs  ~ 1.5 10
-27 

M ~ 10
-21

 m, 

(ao)g = ħ
2
/G

2
M

3
 ~10

-66
 m and the binary "quantum radius" would be (r)g = n

2
 10

-66
 m. 

The energies En (see Eqs.(3.2) - (3.3)) are given by E
g 

n = - 10
77

/n
2 

 J ~ - 10
96

/n
2 

 eV.  As 

rs ~10
-21

 m the mBH would be distant when (r)g  > 10
-21

 m,  that is, only  when  n > 10
22

.  

For  r ≥ 10
-20 

m  the binary is still  a microscopic system, about 10
7
 times smaller than 

the hydrogen-like atom(HLA). For r ≥ 10
-20

 m we get, using Eq.(1.5), that goo(r) ~ -1 

showing that gravitational distortions of the metric are negligible.
[5]

  If rs  ~ 10
-21

 m and 

the mBBH radius  r = rn = n
2
10

-66
 m we see that  r/rs ~ 3 10

27
/n

2
.  For n > 10

22
  we verify 

that  r/rs  < 1 and relativistic effects are  negligible.  So, we can say that the inspiral 

motion is restricted  to distances  r > rs, that is, for n > 10
22

 . Higher energy GW would 

be generated by transitions for distances (r)g ~ rs . Let us suppose that the inspiral motion 

occurs for n values in the range  n ~10
21 

-10
24

. For these  large n values we see that 

energies ħω in the transitions  n → n + 1 are given by 

          ħω = E
g 

n+1 - E
g 

n = -10
77

[1/(n +1)
2
 - 1/n 

2
 ] ≈ 10

77
/n

4
 J ≈ 10

96
/n

4
 eV.    (3.8).    
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So, in the inspiral region, for n ~ 10
22

 we have frequencies ω ~ 10
24

 rad/s.  Note that the 

recently observed GW frequencies
[11,12] 

 are  ω ~ 150π - 170π rad/s.                                                                                                    

                                                                                                                                                  

(3.3) mBHb gravitational luminosity emitted in Schrödinger approach.                                                                                   
 Let us  estimate the gravitational luminosity emitted in the inspiral motion  by 

the mBHH. Let us consider  GW with gravitational energies ħω = E
g 

n+1 - E
g 

n  given by 

Eq. (3.8),  emitted in transitions n → n + 1. To do this we suppose (without proving) 

that there is some kind of interaction (what kind?) that induces transitions between the 

quantum states  | n >. It will be done using the perturbation theory derived from 

Schrödinger´s equation. Let us represent by W(t) this interaction harmonically depend 

on the time
[4]

                                                                                                                                      

    W 
± 

(t) =  w
±
 exp[±iωt]                                            (3.9), 

 where w
±
 is time independent. It can be shown

[4] 
that the transition probability m → n 

per unit of time P
±

nm is written as                                                                                                      

                                                                                                                             

                             P
±

nm = (2π/ħ) |< n | w
±
 | m >|

2
 δ(En - Em  ± ħω)                 (3.10),  

where the  + and - correspond to the signs in the exponential in Eq.(3.9). Thus, under 

this perturbation, transitions take place to states with energies satisfying the condition 

Em = En  ± ħω. If the perturbation is of the form  W
+ 

(t) = w
+ 

exp(iωt) the system loses an 

energy ħω (energy is emitted), since En= Em - ħω in the transition, while if it is of the 

form  W
-
(t) = w

- 
exp(-iωt)  it gains an energy ħω, since En =  Em + ħω. Our main problem 

is to determine the function W 
± 

(t). The gravitational "luminosity" (LGW)nm  in the 

inspiral stage would estimated by (LGW)nm = ħω P
+

nm for very large quantum numbers.                                                                                         

 Before to propose a model to obtain W
+
(t) let us remember that according to 

Bohr correspondence principle (CP)
[3] 

for very large quantum numbers, classical and 

quantum physics are expected to give the same answer, at least in average. The 

probabilistic interpretation of the phenomenon obtained with the Schrödinger´s  

equation will give, in average the same results obtained by classical laws. Ehrenfest,    

for instance, showed that Newton's laws hold on average:  the quantum statistical 

expectation value of the position and momentum obey Newton's laws. Thus, we expect 

that in the inspiral stage mBHb properties estimations given by the "classical"  GR and 

QM laws agree in average. In addition,  as seen in Appendix B and C, in Classical 

Electrodynamics the luminosities Lω , emitted by  dipolar and quadrupolar radiation 

are given, respectively, by                                                                                                                                                      

     Lω = dE/dt = (ck
4
/3) |D|

2
 = (ω

4
/3c

3
) |D|

2
             and                                                                                                                             

     Lω = dE/dt = (ω
6
/360c

5
)Σαβ |Qαβ|

2
 .  

In  Quantum Electrodynamics these are given, respectively, by  Lω = (4ω
4
/3c

3
) |Dnm|

2
  

and Lω ≈ (ω
6
/2πc

5
)|Qnm|

2
 , where  ω = ωnm , Dnm = < n |D |m > and Qnm  =  < n | Q | m >.  

 Finally, according to the "classical" GR estimations, the  luminosity, in the 

inspiral stage, LGW is given by the quadrupolar radiation
[11-14]

according to Eq.(2.1):   

                   LGW = (32μ
2
G/5c

5
)r

4
ω

6
 = (8Gω

6
/5c

5
) M

2
r
4
 = (8Gω

6
/5c

5
)Q

2
          (3.11), 
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where Q = Mr
2
 is the mass quadrupole of the mBHb. Thus, by analogy with the 

predicted electromagnetic  radiation and based in the CP we admit that the QM 

gravitational luminosity (LGW)nm  can be estimated by 

                            (LGW)nm = ħω P
+

nm  ≈ (8Gω
6
/5c

5
) | < n | Q | m >|

2
                   (3.12).                                                                 

In Appendix D is shown a different approach of Weinberg
[15] 

to calculate  (LGW)nm .                                                                                                                                                                                          

 Now, let us give a reasonable justification for Eq.(3.12). Thus, let us suppose 

that W
+ 

(t) is proportional to the small perturbations hμυ of the tensor metric gμυ created 

by the quadrupole temporal oscillations Qαβ(t)
[16,19]

 of the mBBH that are written as   

                 Qxx(t) = 3μr
2
[1 + cos(2ωt)]/2    and    Qyy(t) = 3μr

2
[1- cos(2ωt)]/2      (3.13). 

 where  μ = m1m2/(m1 + m2)  and ω is the orbital angular frequency (see Appendix A).  

That is, gμν is slightly modified,  gμυ ≈ gμυ
(o) 

+ hμυ, where hμυ is due to quadrupolar 

effects pointed above. Taking into account that 
[14,19] 

hαβ(t,x) = (2G/c
2
r)(∂

2
Qαβ/∂t

2
) the 

"classical" gravitational luminosity LGW
  
is given by (see Appendix A)   

LGW = (G/45c
5
) < (∂

3
Qαβ/∂t

3
)
2 

> = (G/45c
5
) [< (∂

3
Qxx/∂t

3
)
2 

> + [< (∂
3
Qyy/∂t

3
)
2 

> ] = 

                                                    = (32μ
2
G/5c

5
)r

4
ω

6
  =  (8Gω

6
/5c

5
)Q

2
               (3.14), 

where Q = Mr
2
 is the mBBH mass quadrupole.  So, admitting that (LGW)nm = ħω P

+
nm ,  

w
+
(t) ~ hαβ(t) and using Eq.(3.10) we will assume that the QM the gravitational 

luminosity (LGW)nm  can be estimated by                                                                

                             (LGW)nm =  ħω P
+

nm  ≈ (8Gω
6
/5c

5
) |< n | Q | m >|

2
                  (3.15), 

in agreement with Eq.(3.12). At this point it is important to analyze this proposed 

mechanism to explain the decay transitions in mBBH. Indeed, as seen in Appendix A, 

the amplitude of the emitted GW are given by Ψαβ(t,x) = hαβ(t,x) = (2G/c
2
R)(∂

2
Qαβ/∂t

2
). 

That is, GW are emitted due to the  "metric perturbation" hαβ(t). To obtain Eq.(3.15) a 

similar hypothesis is assumed: the time dependent metric modification is responsible for 

a potential interaction W
+
 that induces transitions n → m between quantum states. The 

gravitational luminosity would now be given by (LGW)nm = ħω P
+

nm. That is, 

gravitational quantum transitions are induced by metric perturbations due to mass  

quadrupolar effects. In the electromagnetic quantum field theory transitions are induced 

by "vacuum" fluctuations due to electric quadrupoles.        

(3.4)Estimation of  the quantum luminosity (LGW)nm.                                               

 Let us compare the LGW emitted in the inspiral stage given by Eq.(2.1), using 

the "classical" GR, with our hybrid GR&QM approach given by Eq.(3.12). So, putting 

in Eq.(3.12)  M = 10
6
 kg and taking | n > → | m > =  | n +1 >, ω = ωnm = (En - Em)/ħ  and  

      |< n | Q | m >|
2 

~ [2M < n |r
2
| m > ]

2
 = 4 M

2 
|
 
< n |r

2
| n +1 > |

2
 = 4 M

2  
|
 
(r

2
)n,n+1 |

2 
  

we have                                                                                                                                       

          (LGW)nm  ~ 10
-41 

ωn,n+1
6 
 |

 
(r

2
)n,n+1 |

2 
                           (3.16). 

As in the inspiral stage, following Eq.(3.8), ħω = ħωn,n+1 = E
g 

n+1 - E
g 

n ≈ 10
77 

/n
4
  J, the 

most significant contributions to the luminosity occurs when n is the range n ~10
21

-10
23 
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with  frequencies  in the range ω ~10
29

 - 10
19

 rad/s.                                                                      

 Taking, e.g., ω ~ 5 10
27

 rad/s and  |r n,n+1| ~ 10
-20

m the gravitational luminosity 

(LGW)nm  estimated with the QM approach, using Eq.(3.16), is given by  

                                                  (LGW)nm  ~ 10
41

 W, 

showing a fair agreement with the luminosity |LGW|max ~ 10
41

 W calculated with the GR 

theory  using Eq.(2.9). This agreement is not at all surprising because according to Bohr 

correspondence principle (CP)
[3] 

for very large quantum numbers, e.g. n >> 1, classical 

and quantum physics are expected to give the same answer, at least in average.  

(3.5)Evaluation of the spiral time.                                                                                                      

  To evaluate the QM "spiral time" τ we must remember that in this stage, 

according to Eqs.(3.2) and (3.3) the energy levels E
g
n = - Θgrav/n

2
 are very close since 

quantum numbers are very large,e.g. n > 10
24

. As there is a "continuum of levels" it is 

expected, according to the CP, the mBBH description given by quantum mechanics 

approaches asymptotically a state of motion obtained with the "classical" GR. Indeed, 

for the inspiral stage Eq.(3.11) can be written as  

                 (LGW)ab = (dE/dt)ab  ≈  (8Gω
6
/5c

5
) M

2
r
4
 = (8 M

2
Gω

6
/5c

5
) r

4
                  (3.17). 

which is similar to Eq.(2.1) given by the "classical" GR. Integrating Eq.(3.17) as was 

done in Section 2 we get for the spiral time τ the same result predicted by Eq.(2.8).   

 

(4)Conclusions and Discussions.                                

(4.1)A good agreement between the estimated luminosity and inspiral time is obtained 

with the GR and the quantum approach. So, it seems reasonable that in the mBHb spiral 

motion the effects of the gravitation interaction can be quantized in a non relativistic 

limit of Schrödinger - Newton equation.                                                                                                 

(4.2) As, in the inspiral motion, according to Appendix C, quantum states |a > and |b > 

of the mBBH are represented  by unℓm(r,θ,φ) = Rnℓ (r) |ℓm > the quadrupole matrix 

elements are written as  

                           Qab 
=   ∫dr r

4
 Ra (r) Rb (r) < ℓbmb|Y2m

*
(θ,φ)| ℓama >                        (4.2.1). 

Eq.(4.2.1) shows that, according to the Wigner-Eckart Theorem,
[4]

 quadrupole 

transitions  a → b  are allowed only if  ℓb  = ℓa  ± 2  and   mb = ma + 2 . So, if GW are 

composed by "gravitons", selection rules dictated by the matrix elements  in Eq.(4.2.1) 

suggest that "gravitons" have spin 2. 

(4.3)According to Appendix (A.1) the gravitational luminosity LGW emitted by a BH  

binary with black holes with equal mass M, is given by LGW = (32M
2
G/5c

5
)r

4
ω

6
 . In the 

radiation zone the gravitational energy is transported by a plane wave with amplitude 

h(ω) given by Eq.(A.17)
[13,14]

                                                                                              

     h(ω) = (4
2/3

/√36) [(GM)
5/3

/Rc
4
] ω

2/3
                        (4.3.1)                                                                                                                                   
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where R is distance from the BHb and the observer  at the radiation zone.                                                                                                                           

 Gravitational waves have been detected,
[11-13]

 from black hole binaries (BHb) 

distant  R ~ 1.3 10
9
 light years from the Earth and with M ~ 20 solar masses. Using 

Eq.(4.3.1) and the BHb parameters given above we verify that                                                                                                                                                                                           

                                 h(ω)  ~ 5.6 10
-52

 M
5/3

 ω
2/3

 ~ 10
-23

 ω
2/3

                                    (4.3.2). 

The  average measured amplitude
[11-13

 < h >  for frequencies  ω ~ 160 π rad/s was found 

to be < h > ~10
-21

, in good agreement with h(ω) predicted by Eq.(4.3.2).
 
  

(4.4) Now, let us consider a mBHb and a BHb both distant R ~1.3 10
9
 light-years ~1.2 

10
25

 m from the Earth. The mBH with mass m and the BH with mass M. Using 

Eq.(4.3.1) we have, respectively, 

                                               hm(ω)  ~ 5.6 10
-52

 m
5/3

 ω
2/3

                                        (4.4.1)                                                  

and                                                                                                                                                       

    hM(W)  ~ 5.6 10
-52

 M
5/3

 W
2/3

                                     (4.4.2). 

 From Eqs.(4.4.1) and (4.4.2) results,  

                                           hm(ω)/ hM(W)  = (m/M)
5/3

 (ω/W) 
2/3

                              (4.4.3). 

According to Kepler´s law, the highest frequencies ωmax and Wmax are given by ωmax
2 

= 

2Gm/rs
3
  and  Wmax

2 
= 2GM/r´s

3
, where rs = 2Gm/c

2 
 and r´s =2GM/c

2
 are the 

Schwarzschild radius of the masses m and M, respectively. From these relations obtain  

                                                   ωmax/ Wmax  =  M/m                                               (4.4.4), 

showing that  ωmax >>  Wmax  if  M >> m. That is, frequencies  emitted by mBHb can be 

much  higher than those emitted by BHb. With Eqs.(4.4.3) and (4.4.4) we verify that  

                                             hM(Wmax)  = (M/m)
5/3

 hm(ωmax)                                   (4.4.3), 

showing, on the other hand, that  hM(Wmax)  >> hm(ωmax)  when M >> m.                                  

 This implies that  energies emitted by the BHb can be much higher than that 

emitted by mBHb. Considering the now days detection techniques
[11,12]

 it seems to be 

easier to detect GW from BHb than those emitted by mBHb.                                                                                                                                                                                       

  Acknowledgements. The author thanks the librarian Virginia de Paiva for his 

invaluable assistance in the pursuit of various texts used as references in this article.     

                                                                                                             

Appendix A. Emission of gravitational waves by BBH.                                                    
  In GR 

[5,14-16]
, assuming that the gravitation field is weak and that the bodies 

have small velocities compared with the light velocity, the space-time metric tensor gμυ 

we can put gμυ ≈ gμυ
(o) 

+ hμυ, where hμυ is as mall perturbation of gμυ
(o)

.
[5,14-16]

 In the 

Newtonian limit we have goo = - 1 - 2φ/c
2
, where φ = GM/r.

[5] 
In these conditions the 

Ricci tensor Rik can be written as  

                                                      Rik = - (1/2)□hμυ                                                   (A.1). 
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 Defining  the gravitational field  as Ψμυ  = hμυ - (1/2)δμυ h, where h = hα
α
 , in 

weak field limit the field Ψμυ  obeys the equations
[5, 14-16]

   

                   □Ψμυ = - (16πG/c
4
)τμυ    and    ∂μΨ

μυ
 =  0     (gauge condition)            (A.2),                                                                                             

  where τμυ is a pseudo-tensor mass-energy momentum.                                                    

 The solution of (A.2) for retarded times is given by
[5,18]

  

                       Ψμυ(x,t) = - (4G/c
4
) ∫τμυ(t - |x - x´|/c, x) d

3
x´/ |x - x´|                        (A.3), 

 where the integration is over the volume V of the system.                                        

 Supposing that gravitational effects  are observed very far from the origin O 

("wave zone") where they are produced, that is, |x| = R >> |x´|  we get from (A.3), 

remembering that we have a retarded time function τμυ : 

                                           Ψμυ(x,t) ≈ - (4G/c
4
R) ∫τμυ d

3
x´                                        (A.4). 

Integrating Eq.(A.4) over the volume V we obtain the gravitational field
[5,13]

 

                                          Ψαβ(x,t) = (2G/c
2
R) (∂

2
Qαβ/∂t

2
)                                        (A.5), 

where Qαβ is the mass quadrupole moment of the emitting system defined by  

                                            Qαβ  = ∫ρo(x´)(3x´αx´β - r´
2
δαβ) d

3
x´                                     

where ρo is the mass density.  At this point it opportune to remember that gravitational 

multipoles are defined by the potential expansion 
[14]

 

φ(x) = -G ∫ρo(x´)d
3
x´/|x - x´| ≈ - Gm/r - (G/r

3
) x.D - (G/2r

5
)Σαβ Q

αβ
 x

α
x

β 
+ ....      (A.6),  

where   m = ∫ρo(x´) d
3
x´,  D = ∫ρo(x´) x´d

3
x´  and  Qαβ = ∫ρo(x´)(3x´αx´β - r´

2
δαβ) d

3
x´.   

The mass dipole moment is null (D = 0) since the origin of coordinates O is chosen to 

coincide with the center of mass.                  

 In vacuum we have the traditional wave equations 

                □Ψμυ = □hμυ   = 0         with the "gauge "      ∂(h
μ 

ν)/∂x
μ
  = 0                    (A.7)                             

showing that the gravitational field propagates with the light velocity. Note that the 

tensor field hμυ is obtained integrating Eq.(A.4) as will be seen later.                                    

 At this point we find a fruitful  analogy with the electromagnetism. The Maxwell 

equations in Lorentz gauge in empty space are  □Aμ = 0   and  ∂A
μ
/∂x

μ
  = 0.                           

 Let us consider a plane GW, that is, a field that changes only in one direction z 

of the space. Choosing z > 0 as the direction of propagation of the wave we can write  

hik = hik(t -z/c). So, the wave equation  Eq.(A.7) becomes  

                                              [∂
2
/∂z

2 
 - (1/c

2
) (∂

2
/∂t

2
)] hik  = 0                                  (A.8) 
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that has the familiar solution with the gauge condition, 

                                                  hik(z,t) = Aik cos(kμxμ)                                             (A.9),                                                                                                                                               

where kμ = (0,0,k,ω), k = kz = |k| = ω/c is the wave vector and ω is the frequency of the 

wave. As hik(z) obey (A.8) the following conditions are obeyed: Aβαk
α
 = 0 and kαk

α
 = 0. 

Under these conditions the amplitude tensor Aik has only 4 non-null components    

A11= - A22 
,
 A12 = A21 with the condition Tr(Aik) = Ai

i
 = 0 and only the following 

transversal components to the z-direction of propagation: Axx = -Ayy and Axy = Ayx.  

                                                Aik  = 





















0000

0AA0

0AA0

0000

1112

1211

-

                                     

The transversal fields hxx, hyy and hxy are represented using (2x2) matrices called 

polarization matrices (ε+)ik and (εx)ik :  

                          ( ε+ )ik = 








10

01
            and         ( εx )ik = 









01

10
                     (A.10)                                           

The general solution of Eq.(A.8) can be written as a linear combination of the fields hik, 

with polarizations (+) and (x), respectively:                                                                                 

             hik
(+)

 = h+ (ε+)ik cos(ωt - kz)      and     hik
(x)

 = hx (ε+)ik cos(ωt - kz + α)      (A.11), 

where  h+
 
= A11, hx = A12 and α is an arbitrary phase. The tensorial  polarization of the 

GW creates an effect much more complicate than the linear polarization of the 

electromagnetic waves. These fields deform the space-time creating tidal (shear) on the 

matter . The line forces due to the polarizations (X) and (+) are shown in Figure 2. 

                        

Figure 2. Line forces due to the polarizations (X) and (+). 

  The total energy emitted per unit of time dE/dt  or "gravitational luminosity"  

LGW is given by
[5,14]

    

                                 LGW = dE/dt =  - (G/45c
5
) < (∂

3
Qαβ/∂t

3
)
2 

>                              (A.12), 
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 where the brackets indicates a time average and are taken into account the effect of all 

components of the quadrupole tensor.  Note that the GW is a tensor function not a scalar 

function like an electromagnetic wave.  

(A.1)GW emitted by BBH.                                                 

 For a binary system (see Fig.1) composed by stars with masses m1 and m2
 
 

separated by a distance r one can show
[14,19]

 that  

               Qxx = 3μr
2
[1 + cos(2ωt)]/2     and          Qyy = 3μr

2
[1- cos(2ωt)]/2              (A.13), 

 where  μ = m1m2/(m1 + m2)  and ω is the orbital angular frequency. In these 

conditions  one see that hαβ(t,x), using Eqs.(A.11) and (A.13), would be given by 

                      Ψαβ(t,x) = hαβ(t,x) = (2G/c
2
R)(∂

2
Qαβ/∂t

2
) ~  h cos(2ωt)                      (A.14),  

where h = 6μGr
2
/Rc

2
.  Showing that the GW frequency is ωg = 2ω.                         

 Using Eqs.(A.12) and (A.13) we obtain 

 LGW = (G/45c
5
) < (∂

3
Qαβ/∂t

3
)
2 

> = (G/45c
5
) [<(∂

3
Qxx/∂t

3
)
2 

> + [<(∂
3
Qyy/∂t

3
)
2 

> ] = 

                                                      = (32μ
2
G/5c

5
)r

4
ω

6
                                               (A.15).  

 As the energy of the GW in the radiation zone  is transported by a plane wave 

with amplitude h and rotation frequency ω one can show that
[13,14]

 

                                               h
2
 = (8πG/ω

2
c

3
) (LGW /4πR

2
)                                    (A.16). 

            As Kepler´s  law for a binary
 [1,5]

 says that ω
2
r
3
 = G(M1 + M2) and M1= M2 = M 

we get r = (2GM/ω
2
)
1/3

. Substituting this r value  in Eq.(A.16) we obtain h as a function 

of the orbital angular frequency ω (rad/s):
[11,12]

 

            h(ω) =  (4GM/Rc
4
√36)(2GM/ω

2
)
2/3

ω
2
 = (4

2/3
/√36) [(GM)

5/3
/Rc

4
] ω

2/3
      (A.17). 

 Recently 
[ 11-13]  

gravitational waves have been detected, with frequencies                   

ω ~ 160 π rad/s. They have been emitted by a black hole binary (BHb). The BHb, that 

was distant R ~ 1.3 10
9
 light years ~1.2 10

25
 m from the Earth had M ~ 20 solar masses. 

Using Eq.(A.17) and taking into account the BHb parameters given above we see that 

                                               h(ω)  ~ 10
-23

 ω
2/3

                                                        (A.18). 

 The  measured average amplitude < h > for frequencies  ω ~ 160 π rad/s  was 

found to be < h > ~10
-21

, in good agreement with the experimental results.  
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Appendix B. Classical electromagnetic radiation.                                      
  According to classical Electrodynamics

[2]
  

                                      □A(x,t) = - μoJ(x,t)                                          (B.1), 

 where □ is the d´Alembertian operator □ =  ∂μ∂
μ 

. The solution of (A.1)is given by
[2]

 

                      A(x,t) = μo∫ d3
x´∫dt´[J(x´,t´)/|x - x´|] δ (t´+ |x - x´|/c - t)              (B.2).  

With the sinusoidal time dependence J(x,t) = J(x) exp(-iωt)  (A.1) becomes given by  

                           A(x,t) = μo∫ J(x´) exp(ik|x - x´|)/|x - x´| d
3
x´                             (B.3), 

that can be expanded in series taking into account that the fields are very far from the 

source, that is, r >> d  and that d << λ, where d is the dimension of the source and λ the 

wavelength of the emitted radiation.  The rate of the emitted electromagnetic radiation 

dE/dt can be calculated expanding A(x,t) using electric and magnetic multipoles. 
[2]

                                                                                                                                       

 In vacuum (A.1) obeys the equation    

                                                       □A(x,t) = 0                                                     (B.4). 

The general solutions of the above equations for A is formed by superposing  transverse 

waves
[2]

 of the field A(xμ). In second quantization context 
[4,21]

 planes waves A are 

written as (omitting details of normalization constant, wave polarization,...) where kμ = 

(k,iω/c), 

                                   A(xμ) = Σkω [akω exp(ikμxμ) + a*kω exp(-ikμxμ
 
)]                   (B.5), 

 (B.1) Emitted electromagnetic energy per unitof time dE/dt.                                                                                                                             

 If the emitted radiation is mainly due to the electric dipole D = ∫ x´ρe(x´) d
3
x´ we 

have 
[2]

 

                                             dE/dt = (ck
4
/3) |D|

2
  = (ω

4
/3c

3
) |D|

2
                             (B.6),                            

where ρe(x´) is the electric charge density and k =2π/λ = ω/c.                                            

 If the energy is mainly emitted by electric quadrupole Qαβ and by magnetic 

dipole m we can show that 
[2]

 

                                                   dE/dt = (ck
6
/360)Σαβ |Qαβ|

2
                                    (B.7), 

where  Qαβ = ∫ρe(x´)(3x´αx´β - r´
2
δαβ) d

3
x´   and  m = ∫ x´X J(x´) d

3
x´.                      

(B.2)Larmor Acceleration Formula.                                                          
 According to the classical electrodynamics accelerated charges emit radiation 

and the dominant energy loss is from electric dipole which obeys the Larmor formula 

(in Gaussian units),
[2,17]     

 

                                                    dE/dt = (2/3c
3
)|d

2
D/dt

2
|
                                                          

 (B.8). 
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 This formula can be used to estimate the classical lifetime of the Bohr atom.
[17]

 

For very large quantum numbers n, Bohr's correspondence principle (CP) demands that 

classical physics and quantum physics give the same answer, at least in average.  In 

these conditions as the energy levels are very close the radiate energy is estimated using 

the classical electrodynamics.
[17]

 So, putting D = er it is assumed that the electron 

moves in circular orbits around the nucleus emits continuously radiating energy 

according to, 

                                                        dE/dt =  (2/3c
3
)e

2
a(t)

2                                                 
       (B.9), 

 where a the electron acceleration, which is essentially the radial one ar = rω
2
. In this 

adiabatic approximation the electronic orbit remains nearly circular at all times whith   

ω ≈ constant. According to reference 
[17]

 the electron will fall to the origin, following a 

spiral motion, after a time  tfall  ~ 10
-11

 s. The observed lifetime of the 2p
1/2

 state of the 

hydrogen is ~10
-9

 s (see Appendix C). In quantum mechanics the ground state, however, 

"appears" to have infinite lifetime. The accelerated electron along a radius r(t) with a 

tangential speed vΘ(t) and angular speed ω = dΘ/dt = vΘ(t)/r emits a wave with 

frequency ω called synchrotron radiation.                                                                                                         

 Taking into account that |a| ~ ar = rω
2
 Eq.(B.9) becomes written as 

                                                    dE/dt  ≈  (2e
2
ω

4
/3c

3
) r(t)

2                                                 
 (B.10).   

 

 

Appendix C. Quantum electromagnetic radiation.                                                         
 In Special Relativity (SR) 

[2,4]
 the generalized vector potential is defined by            

Aμ = (A, iAo) = (A, iφ).  A free particle with a mass m has a 4-momentum pμ = (p, iE) 

where E is the total energy  E = (m
2
c

2
 + p

2
c

2
)
1/2

 . The 4-momentum a charged particle 

submitted to an electromagnetic field   becomes given by pμ → pμ
 
- (e/c) Aμ.  That is,     

E → E - eφ and p →  p - (e/c)A.                                                                                                                              

 The relativistic wave equation
 [4]

 for a charged spin zero particle submitted to an 

external electromagnetic field  is obtained through the transformation 

                                       pμ - (e/c) Aμ  →  - iħ ∂/∂xμ -  (e/c) Aμ                                              (C.1), 

that is 

                                   { Σμ (- iħ ∂/∂xμ - (e/c) Aμ)
2
 + m

2
c

2
 }Ψ  = 0                          (C.2),                       

or 

                              (1/c
2
)[iħ ∂/∂t - eφ]

2
 Ψ  =  [(iħ grad  - (e/c)A)

2
 + m

2
c

2 
]Ψ             (C.3). 

According
 
to quantum mechanics

[4]
 the interaction of a charged spinless particle with 

the electromagnetic radiation is given by the operator, putting p =
 
-iħ grad, 

                        W(t) = -(e/mc)(A.p) + (e
2
/2mc

2
)A

2
                            (C.4),  
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where the vector potential A is written  in the form of a plane wave with wave vector k 

and frequency  ω,  A(r,t) = Ao u cos[k.r - ωt], with u the unit vector determining the 

polarization of the radiation (direction of the electric field vector). With the perturbation 

theory to evaluate the transitions probabilities, in a first order approximation, we neglect 

the term (e
2
/2mc

2
)A

2
 since it is gives a small contribution, of the order of α = e

2
/hc 

~1/137.
[4] 

 In this way we retain only the first term of (C.4),   

                                                    W(t) =  - (e/mc)(A.p)                                             (C.5). 

 The amplitude ao will be determined in such a way that there are an average N 

photons of energy ħω and polarization u in a volume V . So, from  

                                         E= - (1/c)∂A/∂t = Ao u (ω/c) sin[k.r - ωt]                           and 

from the condition  

                       Nħω/V = < E
2
(t)>/4π = (Ao

2
ω

2
/4πc

2
) < sin

2
[k.r - ωt] > = Ao

2
ω

2
/8πc

2
 

 we see that   Ao = 2c(2πħN/ωV)
1/2

.                                                                           

 Writing  W(t) = w exp(iωt) + w*exp(- iωt) where w = Ao exp(-ik.r)(u.p) the 

transition  probability per unit of time  for a transition from a (initial) state |b > to a 

(final)state |a > with the emission of a quantum ħω will be determined by the expression  

                                           Pab = (2π/ħ) | < a |w| b > |
2 

ρ(Efin)                                     (C.6), 

where the initial energy  Einit = final energy Efin or Ea = Eb + ħω and  ρ(Efin) = ρ(ħω) 
[4]

  

is the density of final photon states dN/dε = ρ(ħω) = [Vω
2
/(2πc)

3
ħ]dΩ , remembering 

that for photons  ε = ħω and p = ε/c. The matrix element < a |w| b > is given by   

                                    < a |w| b > = - Ao < a | e
 - i k.r 

(u.p) | b >                                  (C.7), 

remembering that p =
 
-iħ grad. Since the integration of matrix element is will be 

essentially over the region (r) of the size (a) of emitting system it is convenient to 

expand the exponential factor in a power series, 

                                     e
 - i k.r 

 = 1 - i (k.r) + [-i(k.r)]
2
/2! +... =                                  (C.8). 

(C.1) Dipole radiation.                                                                                                  

 When  ka = 2π/λ << 1, where λ is the wavelength of the emitted photon, it is 

enough to consider only of the first term of Eq.(C.8) obtaining:
[4]

 

                                             < a |w| b > = - i ωab Ao(u.D)ab                                      (C.9),                                     

where D = Σi qi ri is the electric dipole moment operator of the emitting system with 

discrete charges qi. One can show that  

                                              < a |w| b > = - i ωab Ao u.(Dab)                                   (C.10), 

 where the vector  Dab = < a |D |b > is called the electrical dipole moment of the  b → a  

transition. In this way, using (C.6)-(C.10) we obtain the probability per unit of time 

dPab
+
  that a photon with polarization u and frequency ω = |ωab| = (Ea - Eb)/ħ is emitted 

within a solid angle dΩ , 
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                                          (dPab
+ 

)dip
  
= N (ω

3
/2πħc

3
) |u.(Dab)|

2
 dΩ                         (C.11). 

 The polarization u is perpendicular to the direction of propagation k. If we 

denote by θ the angle between k and the dipole moment of the transition Dab we have 

|u.(Dab)|
2
  = |Dab|

2
 sin

2
θ . Thus,   

                                           (dPab
+ 

)dip
 
= N (ω

3
/2πħc

3
) |Dab|

2
 sin

2
θ dΩ                      (C.12). 

Integrating Eq.(C.12) with N =1
[4]

 over all directions of the radiation we get the total 

transition probability per unit of time Pab involving the emission of one photon: 

                                                (Pab
+ 

)dip = (4ω
3
/3ħc

3
) |Dab|

2
                                      (C.13). 

To estimate the order of magnitude of Eq.(C.13) for atomic systems with linear 

dimension a we put D = er taking  |rab|
 
 = a ≈ e

2
/ħω. Thus, (Pab

+
)dip can be written as 

                                              (Pab
+ 

)dip ≈  (e
2
ω/ħc)(ωa/c)

2
   ≈  ω/(137)

3
, 

that for optical radiation (ω ~ 10
15

/s)  gives  (Pab )dip~10
9
/s. The observed lifetime            

τ ~1/(Pab)dip of the 2p
1/2

 state of the hydrogen is τ ~10
-9

 s.
[4]                                                             

  

 Consequently, energy emitted  per unit of time dE/dt will be given by (dEab )dip = 

ħω(Pab
+ 

)dip, that is,  

                                               (dE/dt)dip = (4ω
4
/3c

3
) |Dab|

2
                                       (C.14). 

In case of the Bohr atom with D = er (C.14) becomes written as 

                                                (dE/dt)dip  = (4e
2
ω

4
/3c

3
) |rab|

2
                                    (C.15).  

It becomes equal to Eq.(B.8) if the average energy (averaged over the time) emitted per 

unit of time is due to a dipole D(t) = er(t) = 2 (|Dab|
2
)
1/2

 cos(ωt) = 2e |rab| cos(ωt).   

(C.2)Quadrupole radiation.                                                                                                    

 If it is necessary to take into account the second term of the expansion (B.8) the 

matrix element  < a |w| b > given by Eq.(C.7)  will be   

        < a |w| b >  = -i Ao < b |(k.r´)(u.p´)| a >  = Ao (ħk/2)μω < b| r´(n.r´)| a >    (C.16),                                          

where ωab = ω, μ the electron mass and n = r´/r´. Eq.(C.16) would be responsible for 

electric quadrupole transitions involving  matrix elements of the products xy, xz and yz 

and dipole magnetic transitions of matrix elements of the angular momentum operators 

Lx, Ly and Lz. In quantum systems with spherically symmetric potential magnetic dipole 

transitions give no contributions to photons emission.
[4]

 So, following the same 

procedure used for dipole radiation we can calculate the total emission probability per 

unit of time within the solid angle dΩ. The general  angular distribution of the 

quadrupole radiation is very complicated. 
[2,20,21]  

 As we only intend to obtain an order 

of magnitude of the quadrupole radiation  we put 

                                                                                                                                                                                           

                          (Pab
+
)Q ≈ (ω

5
/2πħc

5
)|Qab|

2
                                        (C.17), 
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where, the quadrupole matrix element is represented by Qab.  So, the total energy per 

unit of time (dE/dt)Q emitted by the quadrupole is given by  

                                                (dE/dt)Q ≈ (ω
6
/2πc

5
)|Qab|

2
                                         (C.18). 

In classical electrodynamics we have
[2]

 

                                        (dE/dt)class ≈ (ck
6
/240)Qo

2  
= (ω

6
/240c

5
) Qo

2
                     (C.19). 

 Let us estimate  (Pab
+
)Q, given by Eq.(C.17), for systems emitting optical 

frequencies ω ~ 10
15

/s  and with atomic dimensions a ~10
-7

 cm. Taking Qab ~ ea
2 

we 

verify that   

                                           (Pab
+
)Q ≈ (ω

5
/2πħc

5
)|Qab|

2
 ~  10

5
/s                                 (C.20), 

that is, (Pab
+
)Q  ~ 10

-4
 (Pab

+ 
)dip. 

                   

(C.3)Multipole tensor operators Tℓm(θ,φ).                                                                              

 Since calculations of quadrupole and magnetic dipole transitions and of higher 

order terms of the expansion (B.8) are very intricate it is convenient to use a different 

approach to estimate these matrix elements. In this way are used the tensor multipole 

operators Tℓm(θ,φ) defined by 
[2,4,20,21]

 

              Tℓm(r,θ,φ) = [4π /(2ℓ +1)]
1/2

 r
ℓ
 Yℓm(θ,φ) = [4π /(2ℓ +1)]

1/2
 r

ℓ 
|ℓm>            (C.21), 

where ℓ =1, 2,...correspond to dipole, quadrupole ,... and the angle θ is between k and r. 

 If the state functions are given by  unℓm(r,θ,φ) = Rnℓ (r) |ℓm > the transition 

probabilities per unit of time Pab will directly proportional to |aE(ℓ,m)|
2
 where the 

amplitudes  aE(ℓ,m) are given, for ka << 1, by
[4]

 

                             aE(ℓ,m) = - [4π/(2ℓ+1)!!](ℓ+1/ℓ)
1/2

 k
ℓ+2 

Qℓm                                (C.22),  

where                                                                                                                                    

      Qℓm 
=   ∫dr r

ℓ+2
 Ra (r) Rb (r) < ℓbmb|Yℓm

*
(θ,φ)| ℓama >.     

The matrix element  < n´j´m´|Tk
q
 | n j m > according to the Wigner-Eckart Theorem 

(WET)
[22]

 is given by < n´j´m´|Tk
q
 | n j m > = (jkmq|j´m´) (n´j´||Tk||nj), where 

(jkmq|j´m´) ≠ 0 only when  m + q = m´ and |j - k| ≤  j´ ≤ j + k.                                            

 For dipole (ℓ=1)  using Eq.(C.18) the transition probabilities per unit of time Pab 

between  states  | a > and | b > are proportional to |Dab|
2
 where,  

                       |Dab| =  (4π /3)
1/2

 ∫ dr r
3
 Ra (r) Rb (r) < ℓbmb|Y10(θ,φ)| ℓama >             (C.23). 

Thus, following the WET the a → b transition is allowed only if we have:  

                                           ℓb  = ℓa  ± 1      and     mb = ma .                                    

This kind radiation is called electrical dipole radiation and is denoted by E1.           

 For electric quadrupole (ℓ=2) Pab is proportional to |Qab|
2
 where          
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                           Qab 
=   ∫dr r

4
 Ra (r) Rb (r) < ℓbmb|Y2m

*
(θ,φ)| ℓama >                         (C.24), 

showing that quadrupole transitions  a → b  are allowed only if   

                                            ℓb  = ℓa  ± 2   and    mb = ma + 2                                   (C.25).                                                

This kind of radiation is called electric quadrupole radiation and is denoted by E2.                                                                                                                                                                     

(C.4)Second quantization approach.                                                        
 Basic ideas on the quantization of radiation can be seen in many books.

  
In 

vacuum, with the Lorentz gauge the electromagnetic field A(x
μ 

) is given by
[4,21] 

      

div(A) = 0, ∂μ∂
μ 

= □A = 0, μ =1,2,3,4, xμ = (x, ict) and Aμ = (A,iφ).                             

 The general solutions of the above equations for A is formed by superposing  

transverse waves
[2,4]

 of the field A(xμ). In the second quantization context planes waves 

A are written as (omitting details of normalization constant, wave polarization,...)  

                              A(xμ) = Σkω [akω exp(ikμxμ
 
+ a*kω exp(-ikμxμ

 
)]/√ω                   (C.26), 

where kμ = (k,iω/c) , akω and a*kω are the creation and annihilation photon operators, 

respectively.                 

 In this approach transition probabilities Pab  are now estimated using in Eq.(C.6) 

the field operator  A defined by Eq.(C.22). Taking into account transitions involving  

vacuum states and wavefunctions unℓm(r,θ,φ) = Rnℓ (r)|ℓm >  we get the same results 

obtained before without the second quantization  approach. The main difference now is 

that the electromagnetic radiation is composed by photons.  Selection rules obeyed in  

electrical dipole radiation (E1) show that photons must have spin 1.    

 

                                                                                                                                                                                                                                                      

Appendix D. Comments on the gravitation quantum field theory.                                                                                                                   
 Classical electrodynamics, quantum theory and their connections are very well 

established. To introduce basis of a quantum field theory in GR, Weinberg
[15]

 analyzed, 

for instance, the possibility to quantize the gravitational wave field hμν that in free obeys 

the equations (see Appendix A) □hρν = 0  and  ∂hρ
ν
/∂x

ν = 0.  The general solutions of 

these equations are given by the superposition of transverse plane tensor waves hρν(x) 

which propagates with the light velocity c and helicities μ = ± 2. This would be done in 

order to construct, similarly to the Electromagnetic field, a Lorentz invariant 

Hamiltonian in terms of creation and annihilation operators of gravitons. That is, the 

Hamiltonian would be built up of quantum fields hρν(x) [transverse plane waves] that in 

a second quantization framework would be given by
[15]

 

      hρν(x) = Σμ ∫d3
k{a(k,μ) eρν(k,μ) exp(ikλx

λ
)
 
+ a

+
(k,μ) e*ρν(k,μ) exp(-ikλx

λ
)} (D.1), 

where eρν(k,μ)  is the polarization tensor for a graviton of momentum hk and helicity     

μ = ± 2, and  a(k,μ) and a
+
(k,μ)  are the corresponding annihilation and creation 

operators, characterized by the commutation relations  
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                                       [a(k,μ) , a
+
(k´,μ´)] = δ

3
(k - k´) δμ´μ                                                                                             

                                 (D.2) 

                                   [a(k,μ) , a(k´,μ´)] =  [a
+
(k,μ) , a

+
(k´,μ´)] =  0     

 The difficult in this approach comes from the fact that the operator Eq.(4.1) is 

not a "Lorentz tensor"(which is invariant by Lorentz group). Remembering that τμν is a 

Lorentz tensor if it transforms as τ´μν = Λμ
ρ 
Λν

σ
 τρσ

 
, where Λ is the Lorentz matrix.[15]   

As shown by Weinberg
[15]

 in Section (10.2) a "true" plane wave tensor would have 

helicities  0,  ±1 as well ± 2. This is in contradiction with Eq.(D.1) where there are only 

helicities  μ = ± 2. Of course, we can start with a true tensor and then subject eμν to a 

gauge transformation that will eliminate the unphysical helicities  0 and ±1, but once we 

choose a gauge in this way, hρν(x) is no longer a Lorentz tensor. This gauge condition is 

not Lorentz invariant. Many other attempts are mentioned by Weinberg.
.[15] 

According 

to him  at present does not exist any complete and self-consistent  quantum field theory 

of gravitation
 
. In his book he presents to the reader some taste of what a quantum 

theory of gravitation would be like.  Instead of using Lagragian or Hamiltonian  

formalisms  he adopts a different way. In this way he proposed, for instance, that for a 

general system the emission rate dΓGW of a gravitational wave ("gravitons") with 

frequency ω in a solid angle dΩ  is given by 

                           dΓGW = (Gω/ħπ)[T
λν

*(k,ω) Tλν(k,ω) - (1/2) |T
λ
λ(k,ω)|

2
] dΩ            (D.3), 

where Tλν(k,ω) is the energy-momentum tensor. Using Eq.(D.1) one can show
[15]

 that in 

the quadrupole approximation the total power emitted at a single discrete frequency ω is 

given by 

                                  ΓGW  = (2Gω
6
/5)[D*ij(ω)Dij(ω) - (1/2)|Dij(ω)|

2
]                        (D.4),  

where Dij(ω) =  ∫ xi
x

j
T

oo
(x,ω) d

3
x   which is the quadrupole matrix operator and T

oo
(x,ω) 

the energy density operator written as ρ. In this way, ΓGW given by Eq.(D.4) could 

interpreted as matrix element of ρ between final and initial states ψa and ψb. That is, in a 

quantum transition  a → b  the total rate (ΓGW)ab would be given by  

                         (ΓGW)ab  = (2Gω
5
/5ħ)[D*ij(a →b)Dij(a →b) - (1/3)|Dij(a →b)|

2
]       (D.5),  

where Dij(a →b) ≡ ∫ψb*(x) ρ xi xj ψa(x) d
3
x  which is a quadrupole matrix element. He 

applied this formula to calculate  GW emitted by 3d → 1s transition of hydrogen and 

concluded that there is no chance to be observe the event. Probably, he ought to have 

applied his formula to calculate GW emitted by mBBH. 
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