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Abstract. This paper was written to graduate and undergraduate students 

of physics and engineering. Using only basic concepts of undergraduate 

physics course we propose a simple model to roughly estimate the very 

intense radiation beams like lighthouses (LHR) emitted by pulsars along 

their magnetic axis. We adopt two different approaches to estimated the 

LHR: cyclotron radiation and Faraday´s disk effect.                                              
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(I)Introduction.                                                                                                     

 Pulsars are neutron stars (NS)
[1-3]

 that have a radius of 10 Km and 

masses of about 1.4 Msun. They result from explosions ("supernova") of a 

massive stars, combined with gravitational collapse, that compresses their 

cores which arrive to have a nuclear density.
[1-3]

 Neutron stars that can be 

observed are very hot and typically have a surface temperature of around 

600 000 K.
[2,3]

Their magnetic fields are between 10
8
 and 10

15
 Gauss. The 

gravitational field at the neutron´s star surface is ~2 x10
11

 times the Earth´s  

gravitational field. As the star´s core collapses, its rotation rate increase as 

a result of the angular momentum conservation, and the newly formed NS 

hence rotates at up a several hundred times per second. Let us call this final 

angular momentum by S. They become very high density stars with a 

magnetic dipole μ along S assuming that it is spinning rapidly around an 

external fixed axis with angular velocity Ω with periods between 1ms and a 

few seconds. When their magnetic dipole μ spinning axis are not aligned 

with the external rotation axis
[2]

they become pulsars (see Figure 1).
  
By 

peculiar mechanisms, intense coherent beams of radiation are produced 

along the magnetic axis and these beams swing round like lighthouses as 

the star rotates. The electromagnetic radiation spectrum is composed, in 

general, by frequencies that go from radio waves up to X-rays and γ-rays. 

A beam from a favorably located pulsar can illuminate the earth once per 

cycle and its behavior is detected, usually with radio-telescopes, as pulses 

of radiation at regular intervals. In reference [2] one can see an illustration 
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of the lighthouse effect. Below, in Figure 1
[2]

 is shown the schematic vision 

of a pulsar. 

 

Figure 1.Schematic vision of a pulsar.
[2]

 The sphere in the center represents the NS, the 

curved lines indicate the lines of the magnetic field, the blue cones indicate the radiation 

emission zones and the red line represents the rotation axe of the NS. 

 Note that the pulsar magnetic axis that determines the direction of 

the electromagnetic emission is not necessarily equal to the rotation axis.                                 

 In Figure 2 is shown the image of the Crab Pulsar obtained by the 

Hubble and Chandra space telescopes.
[3] 

From this figure we verify that 

around the core of the NS there is a very large region which may extend to 

rmax > 2000 Km from the surface, named magnetosphere. There are found 

the residues of the supernova explosion composed by plasmas of ions, 

electrons and  macro particles. Pulsars emit not only lighthouse radiation 

but also surface radiation. The electromagnetic radiation spectrum is 

composed, in general, by frequencies that go from radio waves up to X-

rays. Description of the complete radiation process is extremely 

complicated. Many models have been proposed, but no satisfactory 

theory.
[4]

 

 

Figure 2.Image of the Crab Pulsar obtained by the Hubble (red region) and Chandra 

(X-ray, blue region) space telescopes
.[2]                                                                                                          



 

3 
 

 Pulsars are catalogued with the initials PSR;
[4] 

many of them are 

mentioned, for instance, in reference [4].The first one, PSR 1913+16, was 

discovered in ~1967 by J.B - Burnell and A. Hewish.
 
The stability of 

isolated pulsars rivals that of atomic clocks. The PSR 1937+21, for 

example, has a period of 1.5578 ms with a rate change of only 10
-19

s/s.        

Over 2000 pulsars have been detected in total. Most of them rotate on the 

order of once per second (these are sometimes called "slow pulsars"), while 

more than 200 pulsars that rotate hundreds of times per second (called 

"millisecond pulsars") have been found. The discovering of pulsar became 

possible to astronomers to study an object never observed before: the NS. 

This is the only kind of object where the matter behavior with a nuclear 

density can be indirectly observed . In addition, millisecond pulsars became 

possible to study the General Theory of Relativity in the presence of 

intense gravitational field
.[1,5]

  In Section 1 are seen the structure, 

compositions and properties of the magnetosphere and core. In Section 2 

are analyzed the surface radiation and the LHR. We assumed that the 

magnetosphere can be divided into two regions. In the first one that goes 

from R up to r* the free electrons move attached to the NS surface just as 

the air in the Earth's atmosphere moves attached to the Earth. In the second 

region, that goes from r* up to rmax, the magnetosphere is considered to be 

at rest, that is, not attached to the NS. In Section 3 the LHR is estimated 

assuming that, in the region that goes from R up to r*, it is generated by the 

cyclotron mechanism. In Section 4, assuming that in the region that goes 

from r* up to rmax, is calculated the LHR energy spectrum using the 

Faraday´s disk effect. In Section 5 are presented the Conclusions about the 

estimated frequencies obtained in Sections 3 and 4 that would be observed 

in the LHR.  

 

(1) Pulsar Magnetosphere and Core.                                                                         

 To explain the PSR radiation we need to know the composition, 

structure, internal properties of its magnetosphere and core.
[1-4]  

Around the 

NS core there is very large region with a radius rmax >> R where R is the 

NS radius.
 
Current models indicate

[5]
 that matter at the surface of a neutron 

star is essentially composed of ordinary iron nuclei crushed into a solid 

lattice with a sea of electrons flowing through the gaps between them and 

by a very dense electron plasma. The density of this region is ~10
6 
g/cm

3
.
[5]        

This "outer crust" should be solid with T ≤10
6 
K and fluid with T > 10

6
 K 

https://en.wikipedia.org/wiki/Electron
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only for younger NS. Below this crust, with at most several micrometers 

thick, one encounters a solid crust composed by different structures (see 

Figure (3) described in reference [3]. Temperatures in the internal cores, in 

newly formed NS, are very high, going from 10
11 

up to 10
12

 K with 

densities comparable with that of atomic nucleus.   

                                                                  
 

 

Figure 3.Cross section of the NS core.
.[3]  

  

 According to some models
[6−11]

the NS cores are not in equilibrium. 

Are submitted to perturbations of the self-gravitating neutron matter. These 

would be governed by an equation of state very close to that of an elastic 

solid. Perturbations of the equilibrium state would create pulsar glitches
[12] 

Pulsating frequencies ω* of the star, when its equilibrium state is disturbed, 

can be estimated taking into account that the compressibility χ of neutron 

matter. It is given by χ = - (∆ρ/∆p)/ρ where p is its pressure and ρ its 

density. Recalling that the speed vs propagation of sound waves is given by 

vs = 1/√χρ = √∂p/∂ρ
[13,14]

 it can be written as vs ~ √p/ρ. As typical pressure 

p in a self-gravitating sphere
 [15]

 of radius R and mass M is p = GM
2
/R

4
 we 

obtain vs ~ (G/ρ)
1/2

(M/R
2
) ~ (GM/R)

1/2
. Assuming that the wavelengths λ of 

the lowest mode of vibration oscillations are given by λ ~ R we obtain ω* = 

(2π/λ)vs ~ 2π (Gρ)
1/2

. For ρ ~10
14

 g/cm
3
 we have frequencies f ~ 10

3
 Hz. 
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(2)Pulsar Electromagnetic Radiation.                                                            

(2.a)Surface Radiation.                                                                                             

 The surface radiation is due essentially to the core surface 

temperature. The young pulsar has surface temperatures T~10
9
 K. The 

whole surface is so high that it emits X-rays. There are also charged 

particles in the pulsar´s magnetic surroundings that also emit synchrotron 

and X radiation as they move, accelerated outwards, along the magnetic 

field lines.
[4]

Detailed calculations can be seen, for instance, using the 

Magnetic Hydrodynamics theory
[16-18]

(MHD ).
 
This radiation from ions and 

electrons is due to the star rotation and by the intense magnetic field. As 

soon NS are born they begin to cool down. After several million years, they 

have cooled from billions of degrees to much less than 500 000 K. The 

surface radiation intensity decreases very much. Their surface-wide X-ray 

emission, for instance, has faded from the view.                                                  

(2.b)Lighthouse radiation.                                                                                   

        The lighthouse radiation (LHR) is also very difficult to be 

estimated. As occurs with the surface radiation, many models using the 

Magnetic Hydrodynamics (MHD)
[16-18]

 have been proposed
 
but no 

satisfactory theory.
[4]

 Unfortunately, there are no precise information about 

the magnetosphere compositions that are essential to perform reliable MHD 

calculations.                                                                                                                        

 In this paper we intend to obtain only orders of magnitude of the 

LHR. This will be done in a non relativistic limit, avoiding the use of the 

MHD theory
[19]

 and assuming that the magnetosphere can be divide into 

two regions (see Introduction). In Section 3 is shown that the region from 

r =R up to r*, attached to the NS, would be responsible mainly by the 

emission of very high energy photons like X-Rays and γ -rays. In Section 4 

is shown that the region going from r* up to rmax, will be responsible for 

low the energy radiation like radio waves and infrared. Of course, this 

sharp frontier is a "poetic license" assumed to simplify the calculations. 

 

(3) LHR cyclotron radiation model.                                                                                                           

 To perform the calculation we will assume that: 

(i)free electrons in the magnetosphere move attached to the NS surface 

just as the air in the Earth's atmosphere moves attached to the Earth.  

(ii)These electrons are submitted to a static magnetic field B(r), parallel to 

the rotation (spin) axis k of the pulsar ( Figure 1), given by  
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                                            B(r) ≈ (2μ/r
3
) k                                         (3.1), 

 

where r is the distance measured from the origin of the NS. 

(iii)Free electrons move along perpendicular planes to B(r) inside a long 

cylinder with height r
*
 and basis with area πR

2
,where R is the NS radius.                                                                                                          

 With hypothesis (1) it is unnecessary to take into account the 

electric induction field E =- {(Ω x r)x B}/c, where Ω = Ω k is the rotational 

angular velocity of the NS around the axis k.
[16-18,20]  

                                               

 In our calculations we are at the North Pole of the NS. Similar 

results will be obtained to the South Pole.  

               So, electrons moving along a perpendicular plane to k, passing by  

r , are submitted to a force F(r) = v x B(r). Thus, all them would describe 

circular motions with radius ρ with the same angular velocity ωsr(ρ),
[19,21,22] 

 

 

                         ωsr(ρ) = ωsr(r) = qB(r)/m = (qBo/m)(R/r)
3
                 (3.2).                                                         

 

As B(r) = 2μ/r
3 
 and μ = BoR

3
/2,

[19,21,22]
 the maximum emitted frequency, 

for a given Bo, would be ωsr max(ρ) = qBo/m.                                       

 From Eq.(3.2) all electrons at a distance r from the NS center 

would move with the same angular frequency. Half of them moving in the 

horary sense and half in the anti-horary. If their average velocity is v
@,

 the 

average radius ρ
@

 (r) of motion would be given by,  

  

                                            ρ
@

(r) = mv
@

/qB(r)                                      (3.3),                

and their average centrifugal acceleration asr
@

(r) by,   

                                 asr
@

(r) = ωsr
2
(ρ)ρ

@
(r) = (qB(r)/m)v

@
 .                    (3.4). 

Eqs.(3.2)-(3.4) show that ω(r), ρ
@

(r) and aρ
@

(r) are constants in a plane at a 

distance r from the NS center. Note that B(r) = 2μ/r
3
 and μ = BoR

3
/2.

[21]                                                               

 As well known, the radiation intensity I = ℓ(luminosity) emitted by a 

charge in a circular motion is given by
[19,21]

 ℓ(r) = (2/3)q
2
a

2
/c

3
, where a is 

the centripetal acceleration. In a rough approximation, it will be assumed 

that the ℓ(r) emitted from NS pole by an electron located in a plane at 

distance r is given by,                                                                                                            

                                          ℓ(r)  ≈  q
2
asr

@
(r)

2
/c

3
                                       (3.5). 
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(3.1)Cyclotron luminosity Lcr(r) as function of r.                                                                                    

 Free electrons are inside a cylinder with a basis with area πR
2
 and 

height that goes from r = R up to r = r*. If ρe(r) is the electrons density at r, 

the cyclotron luminosity dLcr(r) due the electrons that are inside a volume 

dV = πR
2
dr is given by, using Eqs.(3.5) - (3.4), where μ = BoR

3
/2, 

                  dLcr(r)  =  ℓ(r)ρe(r) πR
2
dr = {q

2
aρ

@
(r)

2
/c

3
 } ρe(r) πR

2
dr =  

                              =  {4μ
2
q

4
v

@2
/m

2
c

3
r

6
} ρe(r) πR

2
dr , that is, 

                   dLcr(r)  = π ρe(r) {Bo
2
R

8
q

4
v

@2
/m

2
c

3 
} dr/r

6
                        (3.6). 

 Assuming that ρe(r) ≈ constant = ρe  and that they are spread in the 

magnetosphere, from R up to r = r*, the total cyclotron lighthouse 

luminosity Lcr would be given by  

                       Lcr(r*) =  π ρe{Bo
2
R

8
q

4
v

@2
/5m

2
c

3 
}(1/R

5
 - 1/r

*5
 )              (3.7).    

If  r
*
 > R , Eq.(3.7) becomes,  

                              Lcr ≈ π ρe v
@2

{ Bo
2
R

3
}{q

4
/5m

2
c

3 
}                            (3.8). 

 All frequencies ωsr(r), defined by Eq.(3.2), from qBo/m up to 

(qBo/m)(R/r
*
)

3
, contribute to the luminosity. The maximum and  minimum 

emitted frequencies ω(r) are given by                                         

                         ωmax = qBo/m                                               (3.9)  

and                                ωmin = (qBo/m)(R/r
*
)

3
. 

 

(3.2) Cyclotron Luminosity Lcr(ω) as a function of ω.                                                       

 In Appendix A the luminosity is calculated as a function of the  

frequencies ω, that is, Lcr = Lcr(ω). According to Eq.(A.6) 

            dLcr(ω)/dω  = - (π/3)ρe{Bo
2
R

3
v

@2
}{q

4
/m

2
c

3 
} ω

2/3
/ωmax

5/3  
        (3.10), 

and the luminosity δL12 due to frequencies in the frequency interval ω2 - ω1 

where ω2 ≤ ωmax, is given by Eq.(A.9), 

          (δLcr)12  = - (π/5)ρe{Bo
2
R

3
v

@2
}{q

4
/m

2
c

3 
}{ω2

5/3
- ω1

5/3
}/ωmax

5/3
   (3.11). 
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(3.3)Numerical estimates.                                                                                                 

  In the SI system of units, Bo = 10
8 
- 10

15 
Gauss, R = 10 Km = 10

4
 m                                          

q = e =1.6 10
-19

 C,  m = 9,11 10
-31

 Kg and c = 3 10
8 
m/s. At the temperature 

T we have v
@2

 = 8kBT/πm  ≈ 3.8 10
7 
T. In this way Eq.(3.2) and Eq.(3.6) 

give, respectively,    

   ωcr(r) = (qBo/m)(R/r)
3 
≈ 1.76 10

11
 Bo (R/r)

3
 rad/s            (3.12), 

and          

                        dLcr(r) ≈ π
 
v

@2
{Bo

2
R

8 
}{q

4
/m

2
c

3 
} ρe(r) dr/r

6
 

                                    ≈ π {T Bo
2
R

8
}10

-40
 ρe(r) dr/r

6
                            (3.13).

 

Taking into account that {q
4
/m

2
c

3 
} ≈ 2.30 10

-47
, ρe(r) = constant = ρe and 

integrating Eq.(3.11) from r = R up to r* we have total Luminosity,  

                        Lcr(r*) ≈ π ρe {T Bo
2
R

8
} 10

-39 
(1/R

5
 - 1/r*

5
)                  (3.14), 

that, for  r* >> R = 10 Km = 10
4 
m, gives 

                                   Lcr ≈ π ρe {T Bo
2
R

3 
}10

-39 
    W                           (3.15), 

where are present all frequencies ω(r), with r = R up to r* >> R. Note that      

                              ωmax = ω(R)
 
= 1.76 10

11
 Bo rad/s               and  

                            ωmin (r*) = 1.76 10
11

 Bo (R/r
*
)

3
 rad/s                         (3.16). 

 Using Eqs.(3.10) -(3.11) -(3.15) and (3.16) we obtain, 

               dLcr(ω)/dω ≈ - πρe{T Bo
2
R

3
}10

-39 
ω

2/3
/ωmax

5/3                        
(3.17). 

 and                 (δLcr)12 ≈ πρe{T Bo
2
R

8
}10

-39
{ω2

5/3
- ω1

5/3
}/ωmax

5/3
          (3.18). 

 Let us analyze some cases, using Eqs.(3.12)-(3.18), taking  ρe = 

10
12

/m
3
, R =10 Km and T~10

6
 K, for Bo=10

15
,10

12
,10

10
 and 10

8
 Gauss. 

(A)Bo = 10
15 

Gauss.                                                                                                       

Lcr ≈10
21

 W                                                                                                     

(δLcr)12 = contributions of emitted frequencies in rad/s in the intervals 1-2:                                                                                                                    

(a) 10
25

 - 10
21

  (γ-rays)             →             δL12
 
~10

-23
(10

25x5/3
)  ~ 10

19
 W                                 

(b) 10
19

- 10
17     

(x-rays)             →             δL12
 
~10

-23
(10

19x5/3
)  ~ 10

9
 W                 

(c) 10
15

- 10
12

   (infrared-ultraviolet)   →   δL12
 
~10

-23
(10

15x5/3
)  ~ 10

2
 W                       
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(d) 10
11

-10
8 
    (microwave -TV) →            δL12

 
~10

-23
(10

11x5/3
) ~ 10

-4
 W               

(e) 10
9
 -10

3  
    (radio)                 →              δL12

 
~10

-23
(10

9x5/3
)  ~ 10

-8
 W 

(B)Bo = 10
12

 Gauss                                                                                                                

Lcr ≈ 10
15 

 W                                                                                                                

(δLcr)12                                                                                                                                

(a) 10
22

 -10
19

 (γ rays)                        →  δL12
 
~10

-24
(10

22x5/3
)  ~ 10

12
 W                                                                                                                                                             

(a) 10
18

 -10
15 

(x-rays - ultraviolet)     →  δL12
 
~10

-24
(10

18x5/3
)  ~ 10

6
 W                       

(b) 10
14

 -10
9
 (infrared-microwave)   →  δL12

 
~10

-24
(10

14x5/3
)  ~  10

-1
 W                

(c) 10
8   

- 10
4  

 (radio)                          →  δL12
 
~10

-24
(10

8x5/3
)   ~ 10

-11
 W      

(C)Bo =10
8
 Gauss,                                                                                                                                

Lcr ≈ 10
7 
W                                                                                                                          

(δLcr)12                                                                                                                                                                                                                                                              

(a) 10
18

 -10
15 

(x-rays - ultraviolet)     →  δL12
 
~10

-25
(10

18x5/3
)  ~ 10

5
 W                       

(b) 10
14

 - 10
9
 (infrared-microwave)   →  δL12

 
~10

-25
(10

14x5/3
)  ~ 10

-2
 W                

(c) 10
8  

-  10
4  

 (radio)                          →  δL12
 
~10

-25
(10

8x5/3
)   ~ 10

-12
 W                                                                                                                                                                                               

(3.4)Conclusions.                                                                                                          

 From these results we verify that the cyclotron mechanism favors 

high frequencies like x-rays and γ-rays. It is not adequate to estimate low 

frequencies emissions like, for instance, radio waves. In Section 4, 

assuming that the magnetosphere is at rest, that is, not attached to the NS, is 

shown that is possible to obtain a reasonable description for low frequency 

emissions. 

 

(4)LHR using Faraday´s disk model.                                                                                   

 In preceding Section  the  LHR was estimated assuming that for      

r ≥ R up to r
*
 free electrons in the NS magnetosphere move attached to the 

NS surface just as the air in the Earth's atmosphere moves attached to the 

Earth. They  were submitted to a magnetic field B(r), parallel to the rotation 

axis k of the pulsar, given by Eq.(2.1), B(r) ≈ (2μ/r
3
) k, where r is the 

distance measured from the origin of the NS. So, to estimate the LHR, it 

was not necessary to take into account the electric induction field                       

E =- {(Ω x r)x B}/c, where Ω = Ω k is the rotational angular velocity of the 

NS around the axis k.
[16-18,20]                                                                                

 
Now, it will be assumed that the magnetosphere for r ≥ r* up to rmax 

is at rest, that is, not attached to the NS. In these conditions, to calculate the 
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LHR luminosity it will be necessary to take into account the effect of 

induction electric field E mentioned above.                                                                                                

 Now, it will be assumed that the magnetosphere for r > r* is at rest, 

nor attached to the NS, and the NS is rotating with angular velocity Ω. In 

these conditions we must take into account the induction electric field E 

which will be responsible for an effect observed in "Faraday´s disk".
[23] 

                                                                                              

 Let us analyze for regions r > r* the effect of induced rotation of 

electrons in a circle with a radius R* = χR, where χ >> 1, due to the 

separation of the  magnetic field lines as expected for r* > R .This circle is 

located in a plane perpendicular, at point r, to the axis k. Its origin O is at 

the axis k. Let ρ be the distance of a point of this circle to the center O. The 

relative motion to the NS will create at ρ, the emf  ε(ρ) = (1/2)BΩρ
2
.
[23] 

This 

ε(ρ), due to the induced field E(ρ), is directed to the center of a circle. It 

will generate radial electronic currents in the circle. Since, on the electron 

at ρ is applied a central force F(ρ)  = qε(ρ)/ρ, its centripetal acceleration 

ω(ρ) would be given by,  
 

                                         F(ρ)  = qε(ρ)/ρ = mω(ρ)
2
ρ,  

that is, 

                                    q{(1/2)BΩρ
2
}/ρ = (1/2)qBΩρ = mω(ρ)

2
ρ, 

giving, finally 

                                         ωrot(ρ) = ωrot(r) = {qB(r)/2m}
1/2

Ω
1/2

 , 

that is, 

                                          ωrot(r) = {qBo/2m}
1/2

(R/r)
3/2 

Ω
1/2

                 (4.1),  

 

remembering that
  
B(r) = 2μ/r

3
 and μ = BoR

3
/2. Note that rotational 

frequency ωrot(r) is given by the product of the resonant frequency ωrs(r), 

defined by Eq.(3.2), and the NS angular frequency Ω. 

 

(4.1)The rotational luminosity Lrot (r). 

 In the region with r ≥ r*, electrons are inside a cylinder with a basis 

area πR*
2
and height rmax - r*. According to Eq.(4.1), the centripetal 

acceleration of each electron is, taking the average value < ρ > ~ R*/2, 

                         ac(r) = ωrot(ρ)
2
ρ ≈ ωrot(ρ)

2
={qB(r)/m}ΩR*/2,                              
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 and that its luminosity is given by ℓ(r) = {q
2
ac(r)

2
/c

3
}. Following the same 

procedure seen in Section 3 the rotational luminosity dLrot(r) due to 

electrons inside a volume dV = πR*
2
dr = πχ

2
R

2
dr is given by, 

              dLrot(r)  =  ℓ(r)ρe(r) πχ
2
R

2
dr = π χ

2
R

2
{q

2
ac(r)

2
/c

3
 }ρe(r) dr =   

                            =  πχ
4
R

2
ρe(r) B

2
(r)R

2
Ω

2
{q

4
/4m

2
c

3
} dr 

                             = πχ
4
R

2
ρe(r){Bo

2
Ω

2
R

8
}{q

4
/16m

2
c

3
} dr/r

6
                   (4.2). 

 Assuming ρe(r) ≈ constant = ρe  and that electrons in the 

magnetosphere are spread from r* up to rmax, the LHR luminosity Lrot(r), 

that are in region rmax- r*, would be: 

                  Lrot (r) ≈  πχ
4
R

2
ρe{Bo

2
R

8
Ω

2
}{q

4
/80m

2
c

3 
}(1/r*

5
 - 1/rmax

5
 )        (4.3). 

As rmax >> r*, we obtain, with ωrot(r*) = qB(r*)/m and B(r*) = BoR
3
/r*

3
, the 

total luminosity Lrot(*) due to all frequencies in the range r*- r
max

: 

                           Lrot(*) ≈ πχ
4
ρe R

5
{BoΩ}

2 
(R/r*}

5
{q

4
/80m

2
c

3 
}                  (4.4). 

The luminosity Lrot(1,2) in the range r1 and r2 would be given by   

                   Lrot (1,2) ≈  πχ
4
R

2
ρe{Bo

2
R

8
Ω

2
}{q

4
/80m

2
c

3 
}(1/r1

5
 - 1/r2

5
 )       (4.5). 

and the emitted frequencies ωrot(r), using Eq.(4.1),                                                                                                                             

                 ωrot(r) = {qB(r)/2m}
1/2 

(Ω)
1/2

 = (q/2m)
1/2 

Bo
1/2

 Ω
1/2 

(R/r)
3/2      

 (4.6). 

 

(4.2) Rotational Luminosity Lrot(ω) as a function of ω.                          

 Using Eq.(4.5) and (4.6) the contributions of frequencies in the 

interval ωrot(r1) - ωrot(r2 ), indicate by δ(Lrot)12, can be obtained substituting 

r1 and r2  as functions of ωrot(r1)  and  ωrot(r2 ),respectively, in Eq.(4.6). 

 

(4.3)Numerical estimates.                                                                              

 In the SI system of units, Eqs.(4.4) -(4.6)become, respectively,  

                        Lrot(*)  ≈ 3π χ
4
ρe R

5
{BoΩ}

2 
(R/r*}

5
10

-49 
    W                 (4.7), 

and 

                            ωrot(r) ≈ 3 10
5
 {BoΩ}

1/2 
(R/r)

3/2
      rad/s                      (4.8), 
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where Bo = 10
8 
- 10

15 
Gauss, R = 10 Km = 10

4
 m, ρe~10

12
/m

3[22]
and Ω goes 

from 50 milliseconds up to 1 s. Measuring the frequencies in Hertz, f =2πω 

and F = 2πΩ, Eqs.(4.6)-(4.7) are given by, putting X = r/R: 

 

                      Lrot(*) ≈ 2.40 χ
4
{Bo

 
F}

2
{1/X*}

5
10

-18
        W                    (4.9) 

and                      

              frot(X)  ≈ 8.45 10
4
 {Bo}

1/2
{F}

1/2
(1/X)

3/2
    Hz .               (4.10).   

 It will be assumed in what follows, for example, that χ =10
3
, F = 1s 

and that r* = 5R. Log{frot(X)},defined by Eq.(4.10), are plotted in Figure 4 

as functions of X = r/R and Bo = 10
15

,10
12

,10
10

 and 10
8
 Gauss. 

 

Figure 4. Log{frot(X)}measured in Hz plotted as functions of X = r/R and Bo. 

 The total luminosities Lrot(*), defined by Eq.(4.9), are calculated, 

assuming that r* =5R, F= 1s χ ≈10
3
, for Bo = 10

15
, 10

12
, 10

10
 and 10

8
 

Gauss, respectively. 

                       Bo = 10
15

 Gauss   → Lrot(X*) ≈ 7.68 10
16

 W 

                       Bo = 10
12

 Gauss   → Lrot(X*) ≈ 7.68 10
10

 W 

                       Bo = 10
10

 Gauss   → Lrot(X*) ≈ 7.68 10
6
 W 

                       Bo = 10
8
 Gauss    →  Lrot(X*) ≈ 7.68 10

2
 W 

 From the above results and taking into account Figure 4 we can 

verify that: 
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(a) for Bo = 10
15

 Gauss → essentially infrared waves are emitted. 

(b)for Bo = 10
12

 Gauss → are emitted infrared and microwaves. 

(c)for Bo = 10
10

 Gauss → mainly microwaves and also radio waves. 

(d)for Bo = 10
8
 Gauss  → only radio waves are emitted.  

(5) Conclusions.                                                                                          

  According to our model, where the LHR is simultaneously 

produced by two different mechanisms, cyclotron radiation and 

Faraday´s disk effect, we can conclude that:                                                                                                               

(1) The cyclotron radiation, created at the magnetosphere attached to the 

NS that goes from r = R up to r*≈ 5R, would be responsible mainly by the 

emission of high energy photons with frequencies higher 10
12

 Hz (infrared, 

ultraviolet, X-rays, γ- rays).                                                                            

(2) The Faraday´s effect, created in the rest magnetosphere going from r* 

up to rmax, would be responsible by emission of low energy photons with 

frequencies smaller than 10
12

 Hertz (infrared, microwaves, radio waves). 
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discussions on Pulsars, the librarian Virginia de Paiva for invaluable 

assistance for publication of this paper and the Eng. Leonardo Sgubin for 
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APPENDIX A. The frequency spectrum Lsr(ω).                                                                              

 In Section 3 Lcr(r) was estimated taking into account all emitted 

frequencies from r = R up to r*. Here it will be obtained as a function of the 

frequencies ω.                                                                                              

 Since B(r) = 2μ/r
3
 and μ = BoR

3
/2, according to Eq.(3.2),  we have                                                                                                                              

                                  ω(r) = {qB(r)/m} = A/r
3
                                  (A.1), 

where  A = (2qμ/m) = qBoR
3
/m. So,                                                                         

                                  r = {A/ω(r)}
1/3

,                                        (A.2). 

According to Eq.(3.6), 

                         dLcr(r)= πρe(r){Bo
2
R

8
v

@2
}{q

4
/m

2
c

3 
} dr/r

6
                   (A.3). 

from Eq.(A.1) we get   
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              dω = -3Ar
-4 

dr = -3 Ar
2
 (dr/r

6
)       →      dr/r

6
 = - dω/3Ar

2
   

Using Eqs. (3.15) and (3.16) and assuming that ρe(r) = constant = ρe,                         

                       dLcr(ω)  = - πρe{Bo
2
R

8
v

@2
}{q

4
/m

2
c

3 
} dωsr/3Ar

2
              (A.4) 

Since  1/Ar
2
 = ω

2/3
/A

2/3
  Eq.(A.4) becomes,  

                   dLcr(ω)  = - (π/3)ρe{Bo
2
R

8
v

@2
}{q

4
/m

2
c

3 
} ω

2/3
dω/A

5/3             
(A.5). 

Remembering that the  A = R
3
ωmax = R

3
ω(R) = qBoR

3
/m, 

       dLcr(ω)/dω  = - (π/3)ρe{Bo
2
R

3
v

@2
}{q

4
/m

2
c

3 
} ω

2/3
/ωmax

5/3  
              (A.6). 

Taking into account that v
@2

 ≈ 3.8 10
7
(m/s)

2
 we see that  

                      dLcr(ω)/dω ≈ - πρe{T Bo
2
R

3
}10

-39 
ω

2/3
/ωmax

5/3                            
(A.7). 

 As, seem before, according to Eq.(3.16), the Lsr would be obtained 

integrating ω from 0 up to ωmax : 

                                        Lcr ≈ πρe{T Bo
2
R

3
}10

-39 
                                 (A.8), 

in good agreement with Lcr given by Eq.(3.15).                                                                

 Now, with Eq.(A.6) we can calculate the frequency contributions to 

the luminosity in intervals 
 
like, for instance, ω2 - ω1

 
, where ω2 ≤ ωmax:                                            

                      δL12 ≈ πρe{T Bo
2
R

8
}10

-39
{ω2

5/3
- ω1

5/3
}/ωmax

5/3
                (A.9). 

 Taking into account that ωmax = ω(R) = qBo/m, Eq.(3.23) becomes  

                   δL12 ≈ πρe{T Bo
2
R

3
}10

-39
{ω2

5/3
- ω1

5/3
}/(qBo/m)

5/3
            

                          ≈ πρe{T Bo
1/3

R
3
}(m/q)

5/3
10

-39
{ω2

5/3
- ω1

5/3
}         , that is, 

                          δL12 ≈ πρe{T Bo
1/3

R
3
} 10

-39
{ω2

5/3
- ω1

5/3
}                    (A.10).   

 From  these equations we note that the luminosity depends only of 

three independent parameters ρe, Bo, T; it does not depend of the intrinsic 

angular velocity(spin) of the NS and of the rotational velocity Ω of the 

dipole moment μ about an external axis. 
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