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Abstract

We determine the complete solution of the Einstein field equations for the case of a
spherically symmetric distribution of gaseous matter, characterized by a polytropic
equation of state. We show that the field equations automatically generate two sharp
boundaries for the gas, an inner one and an outer one, given by radial positions r1 and
r2, and thus define a shell of gaseous matter outside of which the energy density is
exactly zero. Hence this shell is surrounded by an outer vacuum region, and surrounds
an inner vacuum region. Therefore, the solution is given in three regions, one being the
well-known analytical Schwarzschild exterior solution in the outer vacuum region, one
being determined analytically in the inner vacuum region, and one being determined
partially analytically and partially numerically, within the matter region, between the
two boundary values r1 and r2 of the Schwarzschild radial coordinate r.

This solution is therefore somewhat similar to the one previously found for a spher-
ically symmetric shell of liquid fluid, and is in fact exactly the same in the cases of the
inner and outer vacuum regions. The main difference is that here the boundary values
r1 and r2 are not chosen arbitrarily, but are instead determined by the dynamics of
the system. As was shown in the case of the liquid shell, also in this solution there is
a singularity at the origin, that just as in that case does not correspond to an infinite
concentration of matter, but in fact to zero matter energy density at the center. Also
as in the case of the liquid shell, the spacetime within the spherical cavity is not flat, so
that there is a non-trivial gravitational field there, in contrast with Newtonian gravita-
tion. This inner gravitational field has the effect of repelling matter and energy away
from the origin, thus avoiding a concentration of matter at that point.
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1 Introduction

In a previous paper [1] we established the exact static solution of the Einstein field equations
for the case of a spherically symmetric shell of liquid fluid located between two arbitrary
radial positions r1 and r2 of the Schwarzschild system of coordinates. In this paper we will
give the complete solution for a similar problem, that of a spherically symmetric distribution
of a gaseous fluid that satisfies the equation of state of a polytrope. We will see that for
most sets of values of the physical parameters of the system the Einstein field equations
coupled with the polytropic equation of state automatically imply the existence of certain
radii r1 and r2 where the energy density of the gas becomes exactly zero, thus giving rise to
two gas-vacuum interfaces. These two values of the radial variable are not imposed by hand,
but are a consequence of the equations describing the dynamics of the system. There are
no geometrical free parameters, all the free parameters of the system are those describing
the state and properties of the matter.

This puts us in a position, in the current problem, and in a very natural way, which is
very similar to the one we had in [1], with a shell of fluid matter surrounding an internal
vacuum region and surrounded by an external vacuum region. In these two vacuum regions
the solutions of the field equations are known exactly, and were in fact derived and discussed
in detail in [1]. Consequently, all that was said in that paper regarding the inner and outer
vacuum regions is valid here without any change. However, our current problem in this
paper is far less academic in nature, being much closer to the astrophysical applications.
The family of solution that we find here can be considered a generalization of the particular
family of solutions originally found by Tooper [2].

Results similar to the ones we present here were obtained for the case of neutron stars by
Ni [3], including the automatic generation of the inner and outer matter-vacuum interfaces.
However, the crucial consideration of the interface boundary conditions was missing from
that analysis, thus leading to incomplete results. The discussion of the interface boundary
conditions was subsequently introduced by Neslušan [4, 5], thus completing the analysis of
the case of the neutron stars. Just as in [1] and in the present work, the discussion of the
interface boundary conditions led, also in that case, to an inner vacuum region containing
a singularity at the origin and a gravitational field leading matter and energy away from
that origin.

There is a connection between the purely numerical results presented in [3] and [4]
and the ones we present here, which are partly analytical and partly numerical. This is
so because the equation of state for a neutron star can be approximated by a polytrope
under certain particular conditions. On the other hand, however, the results we present
here are not limited to cold neutron stars or some other particular type of object, but can
be applied as well to normal stars of any type and size, at any temperature range, such
as main sequence stars, red giants and white dwarfs, including configurations with two or
more layers, with a different behavior of the matter in each layer.

In regard to the solution within the region containing the polytropic matter, we will
present a solution which is partially analytical and partially numerical. We will reduce,
by analytic means, all the quantities and functions involved to a single real function that
is the solution of a second-order ordinary differential equation. We will show analytically
that this function has a very simple behavior, which can be rigorously established without
any recourse to numerical means. This function, which we will denote by β(r), is the single
element of the whole system that eventually has to determined in detail numerically, but
its most important properties are analytically established beforehand.

The two radial positions r1 and r2 where the energy density becomes zero are soft
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singular points of the function β(r), where by “soft” we mean that the function is not
analytic, but also does not diverge to infinity at those points. Besides, the positions of
these points are not known beforehand, since they are a consequence of the dynamics of
the system. Due to all this, it is not really possible to integrate the differential equation
numerically from these positions, which constitute the boundary of the region of space
containing the matter, into the interior of the matter region. We will therefore have to
develop an alternative way to solve this kind of differential problem numerically, since it is
significantly different from a typical boundary value problem.

This paper is organized as follows. In Section 2 we gill give the full statement of the
problem and describe the resolution method; in Section 3 we will obtain analytically the
main properties of the solutions; in Section 4 we will present a few examples of complete
numerical solutions; in Section 5 we will analyze and comment on the numerical results
obtained; and in Section 6 we will present our conclusions.

2 The Problem and its Solution

We will present, in the case of a spherically symmetric distribution of gaseous fluid satisfying
a polytropic equation of state, the complete static solution, over all the three-dimensional
space, of the Einstein field equations of General Relativity. In this work we will use the
time-like signature (+,−,−,−), following [6]. We will start from the same differential
system already described in [1], which we will succinctly review here. Just as in [1], the
solution will be given in terms of the coefficients of the metric, for an invariant interval
given in terms of the Schwarzschild coordinates (t, r, θ, φ) by

ds2 = e2ν(r)c2dt2 − e2λ(r)dr2 − r2
[

dθ2 + sin2(θ)dφ2
]

, (1)

where exp[ν(r)] and exp[λ(r)] are two positive functions of only r. As was shown in detail
in [1], under these conditions the independent components of the Einstein field equations
and the Bianchi consistency condition are equivalent to the set of three first-order differential
equations

{

1− 2
[

rλ′(r)
]

}

e−2λ(r) = 1− κr2ρ(r), (2)
{

1 + 2
[

rν ′(r)
]

}

e−2λ(r) = 1 + κr2P (r), (3)

[ρ(r) + P (r)]
[

rν ′(r)
]

= −
[

rP ′(r)
]

, (4)

where the primes indicate differentiation with respect to r, ρ(r) is the energy density of
the matter, P (r) is its isotropic pressure, and where we have the constant κ = 8πG/c4, in
which G is the universal gravitational constant and c is the speed of light. Note that all the
derivatives are written as what we will call homogeneous derivatives, that is, the product
of the derivative by a single power of r. In our case here the matter distribution will be
characterized by four parameters, the two parameters defining the polytropic equation of
state, the total asymptotic gravitational mass M , associated to the Schwarzschild radius
rM , and a parameter associated to the value of the energy density ρ(r) at its point of
maximum. We will assume that the gas satisfies the polytropic equation of state

P (r) = K [ρ(r)]1+1/n , (5)

over the whole three-dimensional space, involving a positive real constant K and the integer
or half-integer n ≥ 1, which we assume not to be smaller than one. In principle n could
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be any real number larger than one, and we assume that it is either an integer of a half
integer just for simplicity, since this seems to cover all cases of interest. At this point we
will introduce an auxiliary function, also just for simplicity, since it will appear repeatedly
in all that follows,

F (r) = K [ρ(r)]1/n , (6)

which is a dimensionless function, so that the polytropic equation of state reduces to

P (r) = F (r)ρ(r). (7)

Note that from its definition we immediately have for the derivative of F (r),

[

rF ′(r)
]

=
1

n

F (r)

ρ(r)

[

rρ′(r)
]

. (8)

Given this, our system of differential equations shown in Equations (2)–(4) can now be
written as

{

1− 2
[

rλ′(r)
]

}

e−2λ(r) = 1− κr2ρ(r), (9)
{

1 + 2
[

rν ′(r)
]

}

e−2λ(r) = 1 + κr2F (r)ρ(r), (10)

[1 + F (r)] ρ(r)
[

rν ′(r)
]

= −
n+ 1

n
F (r)

[

rρ′(r)
]

, (11)

still in terms of homogeneous derivatives. Our problem is therefore that of finding three
functions, ρ(r), λ(r) and ν(r), that solve these equations and that satisfy the correct bound-
ary conditions at asymptotic radial infinity. We will start our analysis by partially solving
some of the equations by analytic means, in order to write all relevant quantities in terms
of a single function. In order to do this we first change variables from the dimensionless
function λ(r) to the equally dimensionless function β(r), which is defined to be such that

e2λ(r) =
r

r − rMβ(r)
, (12)

which then implies that we have for the corresponding homogeneous derivatives

2
[

rλ′(r)
]

= −
rMβ(r)− rM [rβ′(r)]

r − rMβ(r)
. (13)

The function β(r) is analogous to the function u(r) found in Equation (2.9) of the paper by
Tooper [2], but it is used here in a completely different context. Note that the asymptotic
boundary condition on λ(r), that it must behave as the exterior Schwarzschild solution for
sufficiently large r, translates here as β(r) = 1 under that same condition. Substituting
these expressions in the component field equation shown in Equation (9) a very simple
relation giving the derivative of β(r) in terms of ρ(r) results,

β′(r) =
κr2ρ(r)

rM
. (14)

Therefore, the energy density ρ(r) is given in terms of the derivative of β(r), and wherever
ρ(r) = 0, characterizing a region where there is a vacuum, we have that β(r) is a constant.
Since by Equations (6) and (7) F (r) and P (r) are both given in terms of ρ(r), and since
λ(r) is given in terms of β(r), it follows at this point that, given a function β(r), the
functions ρ(r), P (r), F (r) and λ(r) are all determined. The only function that has yet to
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be determined in terms of β(r) is ν(r). We can obtain ν(r) in terms of F (r), and therefore of
β(r), using the consistency condition in Equation (11), which with the use of Equation (8)
can be written as

ν ′(r) = −(n+ 1)
F ′(r)

1 + F (r)
. (15)

Note that Equation (11) cannot be used within the vacuum regions, but only within the
matter region. In the vacuum regions one must use Equation (10) instead, in order to
obtain ν(r). In all cases in which there is an outer matter-vacuum interface at r2 this can
now be integrated from r2 to r, and recalling that we have that F (r2) = 0, because for
n > 0 we have the boundary condition ρ(r2) = 0, we get

ν(r)− ν(r2) = −(n+ 1) ln[1 + F (r)], (16)

which determines ν(r) in terms of F (r), up to the integration constant ν(r2), that is to be
obtained from the asymptotic boundary conditions at radial infinity, which in the case of
ν(r) is simply ν(∞) = 0. Therefore, given β(r), this determines ν(r) in terms of it, through
F (r). Note, for future use, that in all cases in which there is an inner matter-vacuum
interface at r1 as well, the fact that we also have that F (r1) = 0, because for n > 0 we have
the boundary condition ρ(r1) = 0, implies that we always have that ν(r1) = ν(r2). We see
therefore that the determination of the function β(r) leads with no further difficulty to the
determination of all the functions that describe both the matter and the geometry of the
system,

ρ(r) =
rMβ′(r)

κr2
, (17)

P (r) = K

[

rMβ′(r)

κr2

]1+1/n

, (18)

F (r) = K

[

rMβ′(r)

κr2

]1/n

, (19)

λ(r) =
1

2
ln

[

r

r − rMβ(r)

]

, (20)

ν(r) = ν(r2)− (n+ 1) ln[1 + F (r)]. (21)

The free parameters of the system are K, n and M , all of which describe the nature and
state of the matter, and the value of β′(r) at its point of maximum, which can also be seen
as related to the matter, since it determines the general scale of the matter energy density,
as can be seen from Equation (17).

Both for the subsequent analysis and for the numerical approach, it is convenient to
transform variables at this point, in order to write everything in terms of dimensionless
variables and functions. In order to do this we must now introduce an arbitrary radial
reference position r0 > 0. For now the value of this parameter remains completely arbitrary,
other than that it must be strictly positive, and has no particular physical meaning. It is
only a mathematical device that allows us to define a dimensionless radial variable and a
dimensionless parameter associated to the mass M by

ξ =
r

r0
, (22)

ξM =
rM
r0

, (23)
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as well as to define the dimensionless function of ξ, to assume the role of β(r),

γ(ξ) = ξMβ(r). (24)

Note that the asymptotic condition that β(r) = 1 for sufficiently large r translates here as
the condition that γ(ξ) = ξM for sufficiently large ξ. It is important to observe that under
the change of variables from r to ξ the homogeneous derivatives transform in a very simple
way, for example in the case of β(r),

r
dβ(r)

dr
= ξ

dβ(ξ)

dξ
. (25)

We will also introduce at this point a notation for the derivative of γ(ξ), which will be useful
in order to deal with the second-order differential equation for γ(ξ) that we will arrive at,

π(ξ) = γ′(ξ), (26)

where in this case the prime denotes differentiation with respect to ξ. We adopt the
convention that whenever there is a prime indicating a derivative, it is to be taken with
respect to the explicitly indicated variable of the function. From now on the problem will be
formulated in terms of the two functions γ(ξ) and π(ξ), that will be treated as independent
variables. In terms of these new variables we have for the system of differential equations
shown in Equations (9)–(11), where from now on, given that we have the expressions in
Equations (6) and (14), the auxiliary function F (r) will be written as F (ξ, π),

1− 2
[

ξλ′(ξ)
]

=
ξ[1− π(ξ)]

ξ − γ(ξ)
, (27)

1 + 2
[

ξν ′(ξ)
]

=
ξ[1 + F (ξ, π)π(ξ)]

ξ − γ(ξ)
, (28)

[1 + F (ξ, π)]π(ξ)
[

ξν ′(ξ)
]

= −
n+ 1

n
F (ξ, π)

[

ξπ′(ξ)− 2π(ξ)
]

, (29)

where the primes now indicate differentiation with respect to ξ. We therefore have for all
the relevant quantities written in terms of ξ, γ(ξ) and π(ξ),

ρ(ξ) =
1

κr20

π(ξ)

ξ2
, (30)

P (ξ) =
C

κr20

[

π(ξ)

ξ2

]1+1/n

, (31)

F (ξ, π) = C

[

π(ξ)

ξ2

]1/n

, (32)

λ(ξ) = −
1

2
ln

[

ξ − γ(ξ)

ξ

]

, (33)

ν(ξ) = ν(ξ2)− (n+ 1) ln[1 + F (ξ, π)], (34)

where C = K/
(

κr20
)1/n

is a dimensionless constant. We see therefore that the determination
of γ(ξ) and thus of π(ξ) leads to the complete solution of the problem. We have therefore
reduced the solution of the problem to the determination of the single function γ(ξ). In
order to determine γ(ξ), we obtain an ordinary differential equation for it by eliminating
ν ′(ξ) from Equations (28) and (29). Equation (28) can be written as
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[

ξν ′(ξ)
]

=
γ(ξ) + ξF (ξ, π)π(ξ)

2[ξ − γ(ξ)]
, (35)

and Equation (29) can be written as

[

ξν ′(ξ)
]

= −
n+ 1

n

F (ξ, π)

1 + F (ξ, π)

ξπ′(ξ)− 2π(ξ)

π(ξ)
, (36)

so that equating the two right-hand sides we get

π′(ξ) = π(ξ)

{

2

ξ
−

n

n+ 1

1

ξ − γ(ξ)

1 + F (ξ, π)

2F (ξ, π)

[

γ(ξ)

ξ
+ F (ξ, π)π(ξ)

]}

. (37)

Since π(ξ) is the derivative of γ(ξ), this can be interpreted either as a second-order ordinary
differential equation for γ(ξ), or as one of a pair of first-order coupled ordinary differential
equations determining γ(ξ) and π(ξ), the other equation being simply

γ′(ξ) = π(ξ). (38)

This second interpretation is the one we will adopt here. This pair of first-order ordinary
differential equations can be used for the numerical integration of this differential system,
as we will in fact do later on, in Section 4. However, before we plunge into the numerical
approach, let us first show that γ(ξ) is in fact a very simple function, as is β(r), and that
it has some properties which are, perhaps, somewhat unexpected.

3 Main Properties of the Solutions

Let us start by recalling that, if it turns out that there are indeed inner and outer vacuum
regions, then we already know the form of the solutions in those regions. From the deriva-
tions in [1], we have that in the inner vacuum region, where ξ < ξ1, the solution is given,
in terms of our current set of dimensionless variables, by

λi(ξ) = −
1

2
ln

(

ξ + ξµ
ξ

)

, (39)

νi(ξ) = A+
1

2
ln

(

ξ + ξµ
ξ

)

, (40)

where ξµ = rµ/r0, and where rµ and A are integration constants, and that in the outer
vacuum region, where ξ > ξ2, the solution is the exterior Schwarzschild solution, which can
be written, in terms of our set of dimensionless variables, as

λs(ξ) = −
1

2
ln

(

ξ − ξM
ξ

)

, (41)

νs(ξ) =
1

2
ln

(

ξ − ξM
ξ

)

, (42)

where ξM = rM/r0 and rM is the Schwarzschild radius. The constant A can be determined
with the use of the consistency condition and of the interface boundary conditions for P (ξ),
which as we saw before imply that we always have ν(ξ1) = ν(ξ2) within the matter region.
This fact allows us to determine the value of A, using also the fact that ν(ξ) is a continuous
function, thus leading to ν(ξ1) = νi(ξ1) and ν(ξ2) = νs(ξ2), which imply that we have
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νi(ξ1) = νs(ξ2) ⇒ (43)

A+
1

2
ln

(

ξ1 + ξµ
ξ1

)

=
1

2
ln

(

ξ2 − ξM
ξ2

)

. (44)

This gives us the solution for A in terms of the other quantities,

A =
1

2
ln

(

ξ1
ξ2

ξ2 − ξM
ξ1 + ξµ

)

. (45)

We can therefore write out the complete solution in both vacuum regions,

λi(ξ) = −
1

2
ln

(

ξ + ξµ
ξ

)

, (46)

νi(ξ) =
1

2
ln

(

ξ1
ξ2

ξ2 − ξM
ξ1 + ξµ

)

+
1

2
ln

(

ξ + ξµ
ξ

)

, (47)

λs(ξ) = −
1

2
ln

(

ξ − ξM
ξ

)

, (48)

νs(ξ) =
1

2
ln

(

ξ − ξM
ξ

)

. (49)

The quantities ξ1 and ξ2 are obtained during the resolution of the differential equation, as
are the other two quantities, ξµ and ξM , which once γ(ξ) is determined are given by

γ(ξ1) = −ξµ, (50)

γ(ξ2) = ξM , (51)

as consequences of the interface boundary conditions related to the continuity of λ(ξ). We
may now derive some crucially important properties of the solutions of the field equations
analytically, by obtaining these properties directly from the differential equations.

Property (1). The first important fact about the solution γ(ξ), away from the origin,
comes from Equations (14) and (24). From the first of these, since all quantities on the
right hand side are non-negative, and the only one that can be zero away from the origin
is ρ(r), it follow that β′(r) is a non-negative function, that is zero only within a vacuum
region. It therefore follows that β(r) is a monotonically increasing function, which is a
constant if and only if we are within a vacuum region. In addition to this, since according
to the asymptotic boundary condition we have that β(∞) = 1, it also follows that β(r) is
limited from above by 1. It then follows from Equation (24) that similar conclusions can
be drawn for γ(ξ), which is therefore a monotonically increasing function which is limited
from above, the limit in this case being the parameter ξM , and which is constant within
vacuum regions.

There are two more important properties of the solutions γ(ξ) and π(ξ) of Equations (37)
and (38), away from the origin, that we can establish analytically. Let us therefore consider
Equation (37), in which F (ξ, π) is given as in Equation (32). Let us also recall that we are
working under the assumption that we have n ≥ 1.

Property (2). For the second important property, if we assume that there is a radial
position ξ = ξe, where the subscript e stands for extremum, at which we have that π′(ξe) = 0
and π(ξe) 6= 0, then there is a definite and unique solution to these conditions that presents
itself, namely the expression within braces in Equation (37) must vanish, leading to
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4(n+ 1) [ξ − γ(ξ)]F (ξ, π) = n [1 + F (ξ, π)] [γ(ξ) + ξπ(ξ)F (ξ, π)] . (52)

Since we already know that γ(ξ) must be a monotonically increasing function that is limited
from above by ξM , the condition π′(ξ) = 0 with π(ξ) 6= 0 identifies the inflection point ξe
of γ(ξ), which is also the point of maximum of π(ξ). The equation above then identifies in
a definite way the value of γ(ξe) as a certain function of πe = π(ξe) at that inflection point,
a relation that is given explicitly by

γ(ξe) = ξeF (ξe, πe)
4(n+ 1)− nπ(ξe) [1 + F (ξe, πe)]

n+ (5n+ 4)F (ξe, πe)
. (53)

This relation is the second important property of the solutions, which identifies the radial
position ξe of the inflection point. This constitutes a radial position ξe and a pair of values
γ(ξe) and π(ξe) of γ(ξ) and π(ξ) that can be used as the starting point for a numerical
integration of the equation, to either one of the two sides of ξe. When there is a well-
defined matter region, it allows us to perform the numerical integration starting from a
regular point in the interior of the matter interval, rather than at one of the two ends of
that interval which, as we will see shortly, are soft singular points.

Property (3). The third important property of the solutions is that, if there is a radial
position ξ = ξb where π(ξ) = 0, then Equation (37) implies that π′(ξ) = 0 at that radial
position. Since the equation for γ(ξ) is a second-order one, and in this situation we have
that both π′(ξ) = 0 and γ′(ξ) = 0 when we approach that radial position integrating from
one side, then on the other side of that radial position we will have that both π(ξ) and γ(ξ)
are constant, and in particular that π(ξ) = 0 is the null constant. Since we have that the
energy density ρ(ξ) is proportional to π(ξ), this implies that on that other side we have a
vacuum, so that the radial position ξb represents the boundary of the matter. Note that
this also implies that, if there is such a radial position ξb, then we must conclude that the
dynamics of the system leads to the formation of a sharp boundary for the matter, even in
the case of a gas, so long as it satisfies the polytropic equation of state exactly.

Let us now consider the consequences of Equation (37) regarding the manner in which
such a radial position ξb is approached by π(ξ). We must consider separately the cases in
which the radial position is approached from the left and from the right. We start by the
case in which the radial position ξb is approached by the integration process from the right,
from values ξ > ξb. We will assume that the function π(ξ) goes to zero at ξb as a power
m ≥ 1, and verify whether we can find a solution of Equation (37) in a right-neighborhood
of ξb. Since we know that π(ξ) must be real and positive, while m is not necessarily an
integer, this means that we should assume that in a right-neighborhood of ξb we have

π(ξ) = Bm
⊕ (ξ − ξb)

m, (54)

where we must have that B⊕ > 0 and that m ≥ 1, given that π(ξ) is real and non-negative
and that π′(ξ) must exist. The question is then whether or not we can find values of m and
B⊕ such that the equation is satisfied in that neighborhood. If we denote the difference
shown by δξ = ξ − ξb, we may then write for all the quantities involved in Equation (37),
in a right-neighborhood of ξb,

γ(ξ) = γ(ξb) +
Bm

⊕

m+ 1
(δξ)m+1, (55)

π(ξ) = Bm
⊕ (δξ)m, (56)
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π′(ξ) = mBm
⊕ (δξ)m−1, (57)

F (ξ, π) = D⊕ξ
−2/n(δξ)m/n, (58)

where D⊕ = CB
m/n
⊕ . Substituting all the quantities in Equation (37), recalling that we are

interested only in the δξ → 0 limit, assuming that γ(ξb) 6= 0, which allows us to use for
γ(ξ) just its dominant term γb = γ(ξb), and dropping negligible terms where possible, we
get

m = −
n

n+ 1

ξ
2/n−1
b γb

2D⊕(ξb − γb)
(δξ)1−m/n. (59)

It then follows from the δξ → 0 limit that the only possible solution with m 6= 0 is m = n,
thus confirming that m ≥ 1. Recalling the value of D⊕, we then have for B⊕

B⊕ =
ξ
2/n−1
b

2C(ξb − γb)

(−γb)

n+ 1
. (60)

Note that, since B⊕ must be strictly positive, it follows from this that we must have
γb < 0, thus confirming a posteriori that γb 6= 0, so long as we are not dealing with just
the identically null solution for π(ξ). Since in the resulting internal vacuum we have that
γb = −ξµ = −rµ/r0, we once more conclude that we must have rµ > 0, just as we did in [1],
but in a very different way. We may also identify that in this case we have ξb = ξ1, the
inner boundary of the matter, and hence we may write that

B⊕ =
ξ
(2−n)/n
1

2C(n+ 1)

ξµ
ξ1 + ξµ

. (61)

We now consider the case in which the radial position ξb is approached by the integration
process from the left, from values ξ < ξb. Again we will assume that the function π(ξ) goes
to zero at ξb as a power m ≥ 1, and verify whether we can find a solution of Equation (37)
in a left-neighborhood of ξb. Since we know that π(ξ) must be real and positive, while
m is not necessarily an integer, this means that this time we should assume that in a
left-neighborhood of ξb we have

π(ξ) = Bm
⊖ (ξb − ξ)m, (62)

where once again we must have that B⊖ > 0 and thatm ≥ 1. If we now denote the difference
shown by δξ = ξb − ξ, we may then write for all the quantities involved in Equation (37),
in a left-neighborhood of ξb,

γ(ξ) = γ(ξb)−
Bm

⊖

m+ 1
(δξ)m+1, (63)

π(ξ) = Bm
⊖ (δξ)m, (64)

π′(ξ) = −mBm
⊖ (δξ)m−1, (65)

F (ξ, π) = D⊖ξ
−2/n(δξ)m/n, (66)

where D⊖ = CB
m/n
⊖ . As before, substituting all the quantities in Equation (37), recalling

once again that we are interested only in the δξ → 0 limit, assuming that γ(ξb) 6= 0, which
allows us to use for γ(ξ) just its dominant term γb = γ(ξb), and dropping negligible terms
where possible, we get
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m =
n

n+ 1

ξ
2/n−1
b γb

2D⊖(ξb − γb)
(δξ)1−m/n. (67)

It follows once more from the δξ → 0 limit that the only possible solution with m 6= 0 is
m = n, once again confirming that m ≥ 1. Recalling the value of D⊖, we then have for B⊖

B⊖ =
ξ
2/n−1
b

2C(ξb − γb)

γb
n+ 1

. (68)

Note that, since B⊖ must be strictly positive, in this case it follows that we have γb > 0,
once again confirming a posteriori that γb 6= 0. Besides, the quantity γb can be written in
terms of the parameters of the resulting external vacuum as γb = ξM = rM/r0, which also
implies that it cannot be zero. We may also identify that in this case we have ξb = ξ2, the
outer boundary of the matter, and hence we may write that

B⊖ =
ξ
(2−n)/n
2

2C(n+ 1)

ξM
ξ2 − ξM

, (69)

where we necessarily have that ξ2 > ξM since the integration cannot produce the singularity
of a horizon. This gives us the exact asymptotic behavior of π(ξ), and hence also of γ(ξ),
as we approach the radial positions ξ1 and ξ2 that delimit the region containing the matter,
from within that region.

Whether or not these points exist in each particular case, for various values of the
parameters that define the physical system, has to be determined numerically. If they do,
then there is more that can be established about γ(ξ). In this case, not only is this a
monotonically increasing function that is limited from above, but we now know that it is
also limited from below, since it is a constant within the inner vacuum region. In fact,
it must go from a constant negative value within the inner vacuum region, to a constant
positive value in the outer vacuum region. In addition to this, so long as n ≥ 0 it is a
continuous and differentiable function on the whole positive real semi-axis. In particular,
it follows from this that γ(ξ) must have a single zero in the open interval (ξ1, ξ2), which
therefore is always within the matter region. This completes the discussion of the third
property.

It is worth the trouble exploring now some of the consequences of the facts just established
about γ(ξ) and π(ξ). Note that these two boundary points are soft singular points of both
functions γ(ξ) and π(ξ), since these functions cannot be analytic at these points. This
follows from the fact that they are constant on one side of the points and behave as a
strictly positive power on the other side. Due to this there is no power series centered at ξb
that can converge to these functions on a neighborhood of these points, and therefore they
are not analytic. However, both functions are still well-defined at the boundary points,
thus characterizing the singularities as soft ones.

Added to the fact that the position of the boundary points is not known beforehand,
this makes it impossible to integrate the equation numerically starting at these points.
Since the equation for γ(ξ) is a second-order one, and since in this situation we have that
both π′(ξ) = 0 and γ′(ξ) = 0 hold at the positions of the boundaries, if we try to integrate
from these points into the matter region we will simply get a constant for γ(ξ) and the
constant value π(ξ) = 0, which corresponds to a vacuum rather than to the matter that
is there. Therefore, the solution within the matter region is not determined by its values
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at the boundaries, and hence this problem cannot be characterized as a typical boundary
value problem.

Since n ≥ 1, the two functions π(ξ) and γ(ξ) will be continuous at these boundary points,
but there will be some higher-order derivative that does not exist there. For example, if
n = 1 the derivative π(ξ) will be continuous but not differentiable at these points, so that
the second derivative π′(ξ) = γ′′(ξ) does not exist there. A relevant example is n = 3/2,
which is typical of the convective layer of a star, in which case π′(ξ) will not be differentiable
at these points, although it is still continuous there, so that the third derivative π′′(ξ) of
γ(ξ) will not exist, since it diverges at these points. As another relevant example, if n = 3,
which is typical of the radiative layer of a star, then the fourth derivative π3′(ξ) of γ(ξ) will
be discontinuous at these points, so that its fifth derivative π4′(ξ) will not exist there.

This same singular character of the interface boundary points has the global conse-
quence that, given definite boundary conditions at radial infinity, the complete solution
of the problem is not determined, and is therefore not unique. On the one hand, if one
integrates inwards from a point ξ > ξ2, then one produces just a continuation of the exte-
rior Schwarzschild solution of the outer vacuum region, until one reaches its horizon, and
never any solution associated to the matter. On the other hand, if one integrates outwards
from a point ξ < ξ2, then there will be many sets of values of the parameters that describe
the state and character of the matter which are such that the solution arrives at ξ2 with
π(ξ2) = 0 and γ(ξ2) = ξM . There are therefore many interior solutions that correspond to
the same exterior solution.

The numerical analysis indicates that the boundary points ξ1 and ξ2 exist for all values
of the parameters of the system, within a wide range of variation of these parameters,
within physically reasonable bounds. The boundary point ξ2 seems to always exist, for all
physically allowed values of the parameters. The boundary point ξ1 seems to exist for most
sets of values of the parameters. When it does not exist, the integration for the matter
density diverges to infinity towards the origin, so that there is no inner vacuum region, and
a truly hard singularity develops at the origin. In such cases there is no acceptable solution
at all. This seems to indicate that, if a static solution exists at all, then it has the property
that these points are present. Next we will describe in detail the numerical approach that
leads to this conclusion.

4 Examples of Numerical Solutions

Let us now describe in detail our strategy for the numerical solution of Equation (37). We
will consider this to be a system of two coupled first-order differential equations for the
functions γ(ξ) and π(ξ), leading to a pair of numerical development equations, which can
be easily obtained, and that are given by

δγ = π δξ, (70)

δπ = π
4(1 + 1/n)Fξ − [1 + (5 + 4/n)F ]γ − F (1 + F )ξπ

2(1 + 1/n)Fξ(ξ − γ)
δξ, (71)

where F is the value of the auxiliary function F (ξ, π), where δξ is a small increment of the
variable ξ and where δγ and δπ are the corresponding increments of the functions γ(ξ) and
π(ξ). This system can be integrated by the use of the Runge-Kutta fourth-order algorithm
in a straightforward way, so long as one has a sensible starting point for the integration
process.

We must now discuss where to start the integration process. There are two alternatives
that we have used. The first alternative is to start at the inflection point ξe of the function
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γ(ξ). As we saw in Section 3, Equation (37) itself provides us with a fixed relation between
γ(ξe) and π(ξe) at this point. This means that, given a value of π(ξe) at this point, which
will have the role of a free parameter of the system, we have the corresponding value of
γ(ξe), which then allows us to start the integration process. The second alternative is to
start at the root ξz of γ(ξ), which we know necessarily exists and is necessarily located
within the matter region. Once again the value of π(ξz) at this point will have the role of
a free parameter of the system, and in this case we just start with γ(ξz) = 0. The first
alternative seems to work better for the larger initial values of π(ξe), which corresponds to
the more dense objects, and the second alternative seems to work better for the smaller
initial values of π(ξz), which corresponds to the less dense objects.

In either case, we must start with a choice for the initial value of ξ. Taking the position
ξe = re/r0 of the inflection point as the example of a starting point for this discussion, we
note that a choice of value for ξe is tantamount to a choice of a relation between re and
r0, without implying the choice of a definite value for either one. Therefore the choice of
the initial value of ξ can be quite arbitrary, without leading to any loss of generality. For
example, if we start with ξe = 1, this only means that we choose the arbitrary parameter
r0 = re to be the position of the inflection point, without actually choosing a value for re.
Therefore, a solution found in this way is not just a single solution, but a one-parameter
family of solutions, parametrized by the values of r0. A similar argument can be made in
the case in which we start at the position ξz = rz/r0 of the zero of γ(ξ).

Note that the physical constants K, κ and r0 do not appear individually in either the
numerical propagation equations or the initial values. They appear only as the combination
seen in the definition of the dimensionless constant C, which in turn appears only in the
expression for F (ξ, π),

F (ξ, π) = C

(

π

ξ2

)1/n

, (72)

C =
K

(

κr20
)1/n

. (73)

We will therefore adopt C as one of our free parameters for the numerical work, the others
being n and the initial value of π(ξ), which will then result in a certain value of ξM .
Note that the parameters ξM that contains the mass M also does not appear in either the
equation or the initial values. It appears only as the asymptotic boundary condition for
γ(ξ), which is obtained only at the end of the integration process in the outward direction.

Having chosen an arbitrary initial value for ξ, and depending on whether we are starting
at the zero of γ(ξ) or at its inflection point, for example with either ξz = 1 or ξe = 1, we
then choose a value for either π(ξz) or π(ξe), and we use either the value γ(ξz) = 0 or the
value of γ(ξe) given in Equation (53), as implied by πe = π(ξe), which is given by

γ(ξe) = ξeF (ξe, πe)
(4 + 4/n)− [1 + F (ξe, πe)]πe

1 + (5 + 4/n)F (ξe, πe)
. (74)

Departing from the chosen initial point, we then integrate out in both directions, of in-
creasing and decreasing ξ, until π(ξ) approaches zero in each case, with a high degree of
numerical precision. Subsequently we concatenate the results into a single function from ξ1
to ξ2. The values obtained for γ(ξ) at the two boundary points are then used to generate
analytically the correct exact solutions in the inner and outer vacuum regions, which are
plotted alongside the corresponding numerical solution, from some point to the left of ξ1
to some point to the right of ξ2. In order to do this, at the outer boundary we just use the
fact that
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Figure 1: Graph of the functions γ(ξ), π(ξ), π′(ξ) and ρ(ξ) in a typical case, with the
parameters C = 0.05, n = 3/2 and πe = 1.0, resulting in ξM ≃ 0.5392 and ξµ ≃ 0.1668.
The vertical dotted lines mark the positions of the matter-vacuum interfaces.

γ(ξ2) = ξM , (75)

as given in Equation (51), in order to generate the correct exterior Schwarzschild solution as
given in Equations (41) and (42). In order to obtain the dimensionfull physical parameters,
we must recall that

ξM =
rM
r0

. (76)

We can then simply choose any positive value that we want for rM , and thus obtain the
corresponding value of the parameter r0 = rM/ξM . This value of r0 can then be used to
obtain the values of all the other dimensionfull physical parameters of the system. In the
case of the inner boundary we use the fact that

γ(ξ1) = −ξµ, (77)

as given in Equation (50), as well as the fact that we have for the integration constant A

A =
1

2
ln

(

ξ1
ξ2

ξ2 − ξM
ξ1 + ξµ

)

, (78)

in order to generate the correct interior vacuum solution as given in Equations (39) and (40),
with
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Figure 2: Graph of the functions ν(ξ) and λ(ξ) in a typical case, with the parameters
C = 0.05, n = 3/2 and πe = 1.0, resulting in ξM ≃ 0.5392 and ξµ ≃ 0.1668. The vertical
dotted lines mark the positions of the matter-vacuum interfaces.

ξµ =
rµ
r0

. (79)

Note that the integration constant for the function ν(ξ) within the matter region must be
chosen so that at the outer interface we have that ν(ξ2) = νs(ξ2) has the correct value,
given by Equation (42). This is easily accomplished by just correcting the values of ν(ξ)
afterwards, by simply adding a constant to them. From Equation (32) we can see that,
since at the outer interface we have that F (ξ2, π2) = 0, where π2 = π(ξ2), it follows that
if we just ignore the integration constant we get ν(ξ2) = 0. Therefore, all that we have to
do is to add νs(ξ2) to ν(ξ) afterwards, for which we may take advantage of the fact that
νs(ξ2) = −λs(ξ2) is already known.

We have used three sets of values of the parameters in order to generate the data seen
on the graphs, the first two starting from the inflection point of the function γ(ξ), and the
last one starting from the zero of that function. These sets of parameters are as follows.

Set 1: C = 0.05, n = 1.5, ξe = 1.0, πe = 1.0.

Set 2: C = 0.01, n = 3.0, ξe = 1.0, πe = 100.0.

Set 3: C = 1/3, n = 1.5, ξz = 1.0, πz = 1.0× 10−3.

The first set uses some arbitrary mid-range values of the parameters, that have the property
of just displaying in a simple and clear way all the main characteristics of the solutions. The
second set of parameters corresponds qualitatively to the configuration of a high-density
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Figure 3: Logarithmic graph depicting π(ξ) in the approach to the inner interface from
within the matter region. That approach proceeds to the left in the graph. Small error
bars are barely visible at the left end of the graph. The line seen was obtained by linear
regression from the data points shown.

object such as a white dwarf or neutron star. In these two cases the integration was started
from the inflection point ξe of γ(ξ). The third set of parameters corresponds qualitatively
to the configuration of a low-density object, such as a normal main sequence star. In this
case the integration was started from the zero ξz of γ(ξ).

5 Analysis of the Numerical Results

The graph seen in Figure 1 shows most of the functions involved in the solution, for a
typical mid-range set of the dimensionless parameters, namely n = 3/2, C = 0.05, and
πe = 1.0. The crucial function, from which everything else stems, is the function γ(ξ),
which in all cases has the same qualitative behavior shown in that graph, for any values
of the parameters for which a solution exists. It is a very simple function, that slopes
up monotonically from a constant negative value to a constant positive value. These two
constant values determine ξµ and ξM respectively. Its derivative π(ξ) is also a simple
function, with a single well-defined point of maximum. It is closely related to the matter
energy density ρ(ξ), which is also shown in the graph. The second derivative π′(ξ) gives
the numerical propagation function. For the value n = 3/2, which is used in this case, it
clearly marks the positions of the interface points, where its graph hits the ξ axis at right
angles.

The general behavior of the solution is that almost always there are two interface points
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Figure 4: Graph of the functions γ(ξ), π(ξ) and ρ(ξ) in a high-density case, with the
parameters C = 0.01, n = 3 and πe = 100.0, resulting in ξM ≃ 1.0096 and ξµ ≃ 15.0838.
The vertical dotted lines mark the positions of the matter-vacuum interfaces.

and thus both an inner vacuum region and an outer vacuum region. However, the param-
eters can be judiciously adjusted so as to decrease the width of the inner vacuum region
to zero, in which case the shell becomes a filled sphere. In this case one gets ξ1 = 0, so
that the inner interface tends to the origin, and then one gets ξµ = 0 as well, so that we
have that γ(ξ) is zero at the origin, that is, the Tooper boundary condition γ(0) = 0 holds,
as is the case in most treatments, such as in [7–10]. Therefore, this takes us back to the
solutions found by Tooper [2].

For each given value of C there is a minimum positive and non-zero value of πe that
is allowed, which is the one that gives the Tooper solution. Below that minimum value
of πe a hard singularity of π(ξ) is generated, corresponding to an infinite matter energy
density, and then there is no acceptable solution to the problem. On the other hand, the
outer interface point seems to always exist, for all allowed values of the parameters of the
system. The only limitation on the values of the parameters due to existence conditions for
the solutions are those related to the inner interface.

The graph in Figure 2 shows the functions ν(ξ) and λ(ξ) that describe the geometry
of the solution for this same set of input parameters. Outside the outer interface these
are the just the functions of the exterior Schwarzschild solution, for which we have that
ν(ξ) = −λ(ξ), with λ(ξ) > 0 and ν(ξ) < 0. Somewhere within the matter region there is
a crossing of the graphs of ν(ξ) and λ(ξ), so that for sufficiently small ξ these signs are
reversed, and we then have that λ(ξ) < 0 and ν(ξ) > 0. Inside the inner interface these are
the functions of the exact solution for the inner vacuum. Since these two functions have
singularities at the origin, the graphs are limited to a region within which the graphs stay
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Figure 5: Graph of the functions ν(ξ) and λ(ξ) in a high-density case, with the parameters
C = 0.01, n = 3 and πe = 100.0, resulting in ξM ≃ 1.0096 and ξµ ≃ 15.0838. The vertical
dotted lines mark the positions of the matter-vacuum interfaces.

below certain maximum absolute values of ν(ξ) and λ(ξ). It is worth emphasizing that
these are the only two functions involved that diverge somewhere in their domains, and
that such divergences only happen at the origin.

The graph in Figure 3 shows the quantity log(π) as a function of log(ξ − ξ1), for this
first set of values of the parameters. This graph depicts the behavior of the function π(ξ)
in the approach of the inner interface at ξ1 from within the matter region, which proceeds
from the right to the left in the graph. In this limit π(ξ) behaves indeed as (ξ − ξ1)

3/2, as
one can see from the fact that the slope of the straight line shown in the graphs is exactly
3/2, within the numerical precision level in use. This straight line was obtained by linear
regression from the numerical data. This result confirm the analysis made in Section 3, and
it also shows that π(ξ) in fact hits zero at ξ1, since otherwise this log-log graph could not
turn out to be a straight line.

In the graph shown in Figure 4 we display a high-density case, in which we use the value
n = 3, a smaller value of the parameter C, with C = 0.01, and a much larger value of the
parameter πe, with πe = 100.0. In this case the inner vacuum is very wide in the radial
direction, and all the matter is concentrated within a relatively thin shell located closer to
the outer interface than to the inner one.

As one can see in the graph in Figure 5, in this case the geometry becomes much more
extreme. The constant value of γ(ξ) within the inner vacuum regions becomes large and
negative. For large but finite values of πe this significantly decreases the physical volume of
the inner vacuum region, as compared to its apparent volume. Note that within the inner
vacuum region, since the radial lengths shrink, while the angular ones remain invariant, the
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Figure 6: Graph of the functions γ(ξ) and π(ξ) in a low-density case, with the parameters
C = 1/3, n = 3/2 and πz = 10−3, resulting in ξM ≃ 0.1848 and ξµ ≃ 3.3039 × 10−4. The
vertical dotted lines mark the positions of the matter-vacuum interfaces.

geometry of a two-dimensional spacial section through the origin, of this four-dimensional
geometry, is not embeddable in a flat three-dimensional space, in the way that the exterior
Schwarzschild geometry is.

The data for the third set of parameters, shown in the graphs is Figures 6 to 8, a
low-density example with n = 3/2, C = 1/3, and πz = 10−3, shows how our solution
approaches the behavior that is expected by our classical Newtonian intuition, along most
of the matter distribution. This example is well along the limit leading to the Tooper
solutions, as indicated by the very small value of ξµ given in the caption of Figure 6. In this
case the inner vacuum region and the singularity that it contains become reduced to a very
small region near the origin. The smaller the value of πz, the smaller this region becomes,
and in the πz → 0 limit it is reduced to a single point. Under appropriate conditions, with
small but non-zero πz, this very small singular region may then be washed away by the
thermal fluctuations of the system, since these fluctuations certainly violate the spherical
symmetry at a sufficiently small length scale, and will cause the small region containing the
singular point to fluctuate rapidly around the origin, thus smearing that singular point.

In this case the four-dimensional geometry becomes almost flat almost everywhere, since
both ν(ξ) and λ(ξ) become very small, as can be seen in the graph shown in Figure 7. What
curvature there is becomes quite smooth, and embeddable in three dimensions, all the way
down to the point where λ(ξ) becomes zero. This embedding only fails to be possible within
a very small region near the origin. In Figure 8 one can see the matter energy density, which
has a maximum quite close to the origin, and is monotonically decreasing outward from
there, just as is hypothesized in the case of the Tooper solutions. In the πz → 0 limit the
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Figure 7: Graph of the functions ν(ξ) and λ(ξ) in a low-density case, with the parameters
C = 1/3, n = 3/2 and πz = 10−3, resulting in ξM ≃ 0.1848 and ξµ ≃ 3.3039 × 10−4. The
vertical dotted line marks the position of the outer matter-vacuum interface.

radial position of the maximum of the matter energy density tends to the origin.

Note that while in the low-density case the inner vacuum region that contains the
singularity becomes ever smaller as πz decreases, in the case of the data for the second
set of parameters, with a large value of πe, the inner vacuum region and the effects of the
central singularity spread throughout most of the interior of the object, and thus cannot be
ignored. Therefore, while for low-density objects our solution does not differ significantly
from the Tooper solutions, for dense objects it is rather dramatically different from it.

6 Conclusions

In this paper we have given the complete static solution of the Einstein field equations for
the case of a spherically symmetric distribution of gaseous matter satisfying the equation of
state of a polytrope. We have arrived at some of the same important and rather unexpected
conclusions that we had already come across in a previous paper [1] on the solution for shells
of liquid matter.

One new fact, which is different from that previous case, is that in this case the inner
and outer boundaries of the matter, that define a spherical shell, are not imposed by hand,
but arise as inevitable consequences of the dynamics of the system, as determined by the
Einstein field equations. This makes it impossible to ignore these solutions, for there is
no arbitrary choice of a geometrical character involved. All the free parameters of the
system are related only to the physical characteristics of the matter, and all geometrical
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Figure 8: Graph of the function ρ(ξ) in a low-density case, with the parameters C = 1/3,
n = 3/2 and πz = 10−3, resulting in ξM ≃ 0.1848 and ξµ ≃ 3.3039 × 10−4. The vertical
dotted lines mark the positions of the matter-vacuum interfaces.

characteristics that arise are inevitable consequences of the equations.

The new solutions converge back to the known Tooper [2] family of solutions in certain
limits of the free parameters of the physical system, in which the shell becomes a filled
sphere. While for each value of the index n that appears in the polytropic equation of
state the Tooper family of solutions is described by a two-dimensional parameter space, the
family that we present here is described by a three-dimensional parameter space.

One of the conclusions that is just like those of the previous case involving liquid matter
is that all solutions of this type have a singularity at the origin, within the inner vacuum
region, that does not , however, lead to any kind of pathological behavior involving the
matter. Note that the resulting matter energy density is not imposed by hand, but is
instead a consequence of the dynamical equations of the system. Therefore, the fact that
the matter energy density is zero at the origin, where the singularity lies, is a consequence
of those equations. The other is that, contrary to what is usually thought, a non-trivial
gravitational field does exist within a spherically symmetric central cavity, namely the inner
vacuum region. This field can be characterized as being repulsive with respect to the origin,
which explains why we do not see an infinite concentration of matter at that point.

Unlike the problem examined in the previous paper [1], which can be seen as having a
somewhat academic character, the problem we examine here can have direct applications
to astrophysical objects. Not only we can use the isentropic case n = 3/2 to represent the
external convective layer of a star, and the case n = 3 to represent its internal radiative
layer, but we might also consider using both, tied up to one another by means of appropriate
interface boundary conditions at an intermediary point, in order to represent a star in a
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more complete fashion, including the two main layers that are known to exist.
Because these new solutions hold over the entire four-dimensional manifold, in certain

limits they have interesting consequences regarding the concept of a black hole, and specially
regarding the geometry of its interior region. However, a detailed discussion of that topic
would be excessively long to be included here, since it would involve mapping out the
whole parameter space of all these possible static solutions. Therefore, that discussion will
be presented in a separate paper.
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